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RESULTS ON THE COMMUTATIVE NEUTRIX
CONVOLUTION PRODUCT OF DISTRIBUTIONS

BriAN FISHER, EMIN OzZGAG

ABSTRACT. Let f, g be distributions in D’ and let fn(z) = f(z)7n(z), gn(z) =
9(z)mn(z), where 7 () is a certain function which converges to the identity function
as n tends to infinitity. Then the commutative neutrix convolution product f g
is defined as the neutrix limit of the sequence {fy * gn }, provided the limit exists.
The neutrix convolution product Inz— xq_ is evaluated for r = 0,1,2,... , from
which other neutrix convolution products are deduced.

In the following, we let D be the space of infinitely differentiable functions
with compact support and let D’ be the space of distributions defined on D. The
following definition for the convolution product of certain distributions f and g in

D', was given by Gel’fand and Shilov [6].

Definition 1. Let f and ¢ be distributions in D’ satisfying either of the following
conditions:

(a) either f or ¢ has bounded support,

(b) the supports of f and g are bounded on the same side.
Then the convolution product f * ¢ is defined by

(Fxg)(x),0) = (f(y), (9(2), 6(x + v)))
for arbitrary ¢ in D.
It follows that if the convolution product f * g exists by Definition 1, then

(1) frg=g=x/,
(2) (fxg) =f*g =F =g

In the next definition, the function 7 is an infinitely differentiable, even function
with the properties:

HOo<r(x) <1, (i) () =1 for|z| < %, (#it) 7(x) = 0 for |z| > 1,

see Jones [7].
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106 BRIAN FISHER, EMIN (")ZQAG
Definition 2. Let f and g be distributions and let

L,
To(z) =< T(n"z — "t >,

r(n"r + ") < —n,

|z < m,

for n = 1,2,... , where 7 is defined as in Definition 2 of [5]. Let f, = fr, and
gn = g1 for n = 1,2,... . Then the commutative neutrix convolution product
f g is defined as the neutrix limit of the sequence {f, x g, }, provided the limit
h exists in the sense that

PL-_};OIH <fn *gna¢> = <h’¢>

for all ¢ in D, where N is the neutrix, see van der Corput [1], having domain
N'={1,2,...,n,...} and range the real numbers with negligible functions finite
linear sums of the functions

M

r—ln

n”* In In"n, (A>0;r=1,2,...)

bl

and all functions e(n) for which limy,_ ¢(n) = 0.

The convolution product f, * ¢, in this definition is again in the sense of Def-
inition 1, the support of f,, being contained in the interval [-n —n™" n+n™"].
It was proved in [3] that if a convolution product exists by Definition 1, then the
commutative neutrix convolution product exists and defines the same distribution.

The following theorems were proved in [3] and [4] respectively.

Theorem 1. The neutrix convolution product x? xi exists and
22 [l = B(=A —p— 1L p+ a2 B(—d — p— 1,0 4+ Dt

for A, u, A+ #£0,+1,+2,... , where B denotes the Beta function.

Theorem 2. The neutrix convolution product z* x:__A exists and

a2 l‘:__A =B(—r—1,r+1=XNaz"" 4+ B(—r - 1,1+ 1)1‘:_"'1

1) Ayt

for A£0,+1,42,... andr =—-1,0,1,2,... .
In this theorem, B again denotes the Beta function but is defined as in [2] by

1-1/n
B(\, p) = N—lim A — ) e

n—00 1/n
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Before proving the next theorem, we need the following result:

o\ (-1 (=1)re(r+1)
®) ;(i)(r—i—l—l)z_ r+1
for r =0,1,2,... | where

Proof. Putting

=Y ()

we have
we'(e) = ZZL; (7;) (r —):—I—ZT
and so
s/ (@] = - ([)ar = -y
Thus o 1
(@) r+ 1)

It now follows that

o $ ()

:7“-11-1/0 [(1—x)r+1—1]dlnx:/0 Inz(l—z) dx
0

:6_/\3(/\ r—l—l)J}\

_ ') -'(r+2)  (r+1)

- (r+ 1)(r+ 1)! o or+41

and equation (3) follows.
We now prove the following theorem.
Theorem 3. The neutrix convolution product Inxz_ l‘:_ exists and

r (_1)T+1 r+1 (=1)re(r+1) r+1 (r) r+1
() e [s]el = et ne 4 el 4 el
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108 BRIAN FISHER, EMIN OZGAG

forr=20,1,2,... .
Proof. We put

(Inz_), =Inz_7(x), (z7)n =2 70(2),
so that (Inz_), and (27, ), are summable functions. Then

() (@), () = (0 g Yo, (2 m 6+ 1))
- / In(=g)7 (1) / (& — 9, 7ol — y)(x) da dy

—n—n—" a

5 b 0
) = [ o) [ e - vt~ ) dyde

—-n

b -n
w o [ mean e - pine - dyde
for n > —a and arbitrary ¢ in D with support of ¢ contained in the interval [a, b].

When z < 0 and —n < y < 0, 7,(z — y) = 1 on the support of ¢. Thus with
r < 0and —n < y < 0, we have, on using the substitution y = zu~*

xr

/ n(—y)(zx — y)y 7z — y) dy = / In(—y)(z — y)" dy

1
= (—J;)H'l ln(—x)/ u_r_z(l —u)" du
—z/n
1
— (—J;)H'l / uw " ?In u(l —u) du
—z/n
=1lip — Iop.
We have
1 r S 1 .
/ u_r_z(l —u) du= Z(—l)Z ( ) / w2 du
—z/n i=0 ¢ —z/n
! r 1 (—z/n)i—r—1
=S (=1) -
2:0( )<z) t—r—1 t—r—1

and it follows that

. - (_1)i+17°! 1
N-1 In: - - 3 — T+1 —
n—»olom ! ;z!(r—z)!(r—z—l—l)( z) n(-z)
- 1
6 =— —1) "
(6) T P e
:ﬂxmlm
r+1 o
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Further,

1 r 1
w2 nu(l — w)" du = -1 Z<r) / w2 Inu du

_ Z z r—llnu B ui—r—l 1
N i—r—1 (i—r—1)2

—z/n

and it follows that

N G A G ) o R
Q anlgomf%—;(i)m(‘@ BT EE

by virtue of equation (3). It follows from equations (6) and (7) that when z < 0,

(B

: (-1
(8) N-lim In(—y)(x —y), = ——2"TInz_ + 1 _

n—oo —n + 7°—|— 1 -

When z > 0 and —n < y < 0, we have

/ In(=y)(z = y)im(z —y) dy
(9) 0 - o—n
- /_ In(—y)(z —y)" dy + / In(—y)(z — y)" 7 (2 — y) dy.

r—n—n—"
Using the substitution y = #(1 — u~1), we have
1 1

0
ey e e T
r—n /n

z/n

1

P / v " ?lnudu
z/n

= IBn + I4n - IEm~
We have

/1 s J 1 N nT-I—l
u u=—
o/n r+1  (r4 Dart!
and it follows that
2"l Inz
1 N-limlz, = ——.
( 0) n—»olom 3 r + 1

Next we have

1 o 1 i—r—2
/ u_r_zln(l—u) du = —Z/ Y —du
z/n : /n ¢

B 1—¢( n/x’“ i+l > 1—(71/36)’“‘“’1
Z oDt i

i=r+42
lnx —Inn
r+1
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and it follows that

. zr 2" Inz
- Nn:1;m14n:§ r_l+1)+2 (r_l+1)+ —
o ) rrtl " Tline
- S (rt1)2 T +1
Finally, we have
! n"tnz—1Inn 1 nrti
/x/n v nudu = (r[—l— Dzt = G102 TR
and it follows that
. !
(12) anliomfgm = —m.
Further, with n > = + 1
c—n ndn="
/x_n_n_n In(=y)(x = y)" (2 — v) dy‘ < /n In(y —2)y" dy
=o(n" " Inn)
and so
(13) Jim o In(—=y)(z —y)" m(z — y)dy = 0.

r—n—n—"

It now follows from equations (9), (10), (11), (12) and (13) that

0
. - ®(r) ,
(14) Nn—_gom In(—y)(x —y)i (e —y)dy = . _(1_ )11‘ +

Next, with —%n <a<zr<b< %n, we have
[ e - e - < [ e -
=o(n""Inn)

and so

(15) nh—>Holo ) . In(—y)7 (y)(x — )y T (x — y) dy = 0.
It now follows from equations (5), (8), (14) and (15) that
N—lim ((In2_), * (2} )n, ¢(x)) = (r + D=H(=1) e ne_
+ (=17 @(r + el + 0(r)2F, 6(2))

and equation (4) follows. This completes the proof of the theorem.
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Corollary. The neutrix convolution products Inx ' Inwx_ x’“,

Inwy [«]e”, Infz| [*] 27, In|z|[*]2", and In || [*]z" exist and

(16) Inzy|*|a” = %xf’l Inzy + %xf’l S_(i_—r)lel'l,
(17) In l‘_l‘r = f_(i_—r)le'l,

(18) Inzy[x]a" = (_7{):_7?(70)1{“,

(19) Inlz|[x]al = %x”’l In|z| + %x”’l + f)_(i_—r)lxrfl,
(20) 1In|z|[*]z], = r%wl In|z| — %w + i—r)lxg“,

P
(21)  Inle|[x]z" = [27 4+ (= 1)" 2]

forr=20,1,2,... .

Proof. Equation (16) follows immediately on replacing « by —# in equation (4).
The convolution products In z *2’, and Inz_*2z” exist by Gel’fand and Shilov’s
definition and it is easily proved that

S, 1),
(22) 1HI+*I+IH—1I++11HI+—H71I++1,
1 0] 1
(23) Ine_+2" = ——2"HInxg_ — Maf_‘"l
r+1 r+1
for r=0,1,2,... . Since
Injzg|=Inzy +Inze_, " =2 +(-1)"2_

and since the neutrix convolution products are clearly distributive with respect to
addition, equations (17), (18), (19), (20) and (21) follow easily.
In the next theorem and its corollary, the distributions 7 * and 2”° are defined

by

-
vyt =

—S

(=1 () _ (e )®
-1 T T TG
fors=1,2,.... a

Theorem 5. The neutrix convolution product x_° l‘:_ exists and

v [ ]al = ( i 1) {(—1)’”_590’“__5"'1 Ine_ —(=1)""° [<I>(7° —s+1)

— B(s — )]« = d(r)a

S

(24)
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fors=1,2,...,r+1andr=0,1,2,... and

—5 r 7“!(5—7“—2)! r—s+1
(25) N e

fors=r+2,r+3,...andr=0,1,2,....

Proof. The convolution product (Inz_), * (¢, ), exists by Gel'fand and Shilov’s
definition and so equations (2) hold. Thus if ¢ is an arbitrary function in D with
support contained in the interval [a, b], where we may suppose that a < 0 < b,

([(nw_)n * (27 )n), @) = =((Inw)n * (2] )n, ¢'(2))
= (22 * (&), 8(2)) + (I _75, (2)] % (2] )n, 6(2))

and so

((22)n * (2] )0, 6(x)) = (I * (), ¢'(2)) + (I z_7 (2)] + (2] ), 6(2)).

The support of In z_7/ () is contained in the interval [-n —n~" —n] and so with

n > —a > n~", it follows as above that

(e ()] * (2, 6(2)) =
- / o(x) / In(— )7 (1) (& — 9) 7a(x — y) dy de

n—n—m"

= [Co) [ o - oy avas

n—n—m"

(26)
_/ () /_‘" (=)™ (y)(& — y)" dy da

—_n—n n—n-—mn

—-n

w [ @ [ meane -0 e - gy,

—_n—n n—n-—mn

where on the domain of integration, In(—y) and (x — y)" are locally summable
functions.
Putting M = sup{|7’(2)|}.sup{|¢(x)|}, we have

‘/_ n In(—y)7 (y)(2 — y) T (x — y) dy de| <

—nn"

< Mn" / / Yz —y) dydx

=o(n" "Inn)

and it follows that

—-n

lim ! - é(x) /_—” In(—=y)7) (y)(x — y) 7 (2 — y) dy dz = 0.

—
n oQ —n n—n-—mn
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Similarly,

i [ 6@ [ W@ - dyde=0.

—
n oQ —n n—n-—mn

Integrating by parts, it follows that

[ e - d
(27) —nent

—-n

=Inn(x+n)" — / [y_l(x —y) —rin(—y)(z — y)r_l]rn(y) dy,

—_n—_n—"

where
N—lim Inn(z + n)" = 0.

n—oQ

Further, it follows as in the proof of equation (15) that

—-n

lim [(—y)_l(x —y) —rin(-y)(x — y)r_l]rn(y) dy = 0.

—
n—oo J_ . _,-n

Thus

Nl (2 )+ (2 6(2) = N—lim (2 ) = (2, 2)
={lnz_ l‘:_, ¢ (x)).

This proves that the neutrix convolution product z~* x’:l_ exists and

! [*]al = —(Inw_[*]a?)
= (=) e Ine_ — d(r)z"] - O(r)xly
on using equation (4). Equation (24) follows when s = 1 and r=0,1,2,... .
Now assume that equation (24) holds for some positive integer s < r 4+ 1 and
r=20,1,2,... . Let ¢ be an arbitrary function in D with support contained in the
interval [a, b]. Then it follows as above that

([(22")n = (27 )n) @) = (22D * (2 ), $(2)) + ([227 7 ()] * (2 ), S(a))
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n

The support of z”*7)(x) is contained in the interval [-n — n~

with n > —a >n™", !
(L= 7 ()] * (), $(2)
= [ [ e - 0 e - pdyds

n—n—m"

,—n] and so

(29) = / ¢(z) / e — ) dyde

n—n—m"

) / o) [ o - dyda

—n

w[ @ [ R - e - ) dyde

—_n—n n—n-—mn

where on the domain of integration, (—y)~° and (# — y)" are locally summable
functions.
As above,

—n

6 dim [ e [ TR — 0 e - dyde =0

n—oo _

0 o —n
(31) =lim [ o) [ e - o dyde

Further, integrating by parts,

| o dy =y

(32) . n-n="
_/_ T T e =) =) T e = ) T () dy,
Now )
n_s(x —+ n)r = Z (:) P
and so
& ety = (D)o
As above
G dim [ =) =) = () =) () dy = 0
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and it follows from equations (29) to (34) that

N —tim ([ =7 ()] * (2 ). 6(2)) = () / (e ds

n—oQ

It now follows from equation (28) that

N—lims((z2°7 "), * (27),, 8(2))

e e o - (D)vr s

From our assumption, this proves that z~=°~1 x’:l_ exists and

e T el = (Z)(—l)’”_s_l{ Trnao 4 (r—s+ 1)
— [®(r— s +1) = ®(s — 1)] 2"
(=) TR 4 s e }

= (Z) {(—1)T_s_1x’;_s Inz_
(B 5) — B — a(r)a

Equation (24) follows by induction for s = 1,2,...;r+ 1l and r=10,1,2,... .
When s > r + 1, equations (28) to (33) still hold but this time

N-limn™*(z+n)" =0

n—00
and so
(a::sa::_)/ = sx:s_lx:_
fors=r+1,r+2,... and »r=0,1,2,... . In particular,

J::T_lx:_ =—Inz_ — ®(r)

and so on differentiating we get

(r+ 1z Tz.x_l__a: ,

proving equation (25) for the case s = r 4+ 2. Equation (25) now follows easily by
induction for s =r+2,r+3,... and r =0,1,2,... , completing the proof of the
theorem. d
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Corollary. The neutrix convolution products «7*[* |, xZ°[*]a", z3°[*]a",

x_sx’"_, ¢ l‘:_ and x=* x’" exist and
a2l = (5 i 1) {(—1)T_sx:__s+1 Inzy

(35) — (=) @ — s+ 1) — (s — )] a7

_(I)(r)xr s+1}
( 1) 1) a(s 1)x’;—8+1_<1>(7~)x;—8+1],
.

(
(5 )) [evrets - e - cayaper+].
-1

(36) x:sxr
(37)  xlf[¥]e”
v x_ (5 — 1)

(38) +(=1)"" ®(s — D)aty T
(1) B — s e @(r)x’“_—SH] ,
a” [* ]2l = ( " 1) [(—1)5_11‘T—s+11n |z
s

(39) + (=1 ®(s — 1)t

rsrs+1

In |z

+H(=1)*®(r— s+ 1)37:’“_54'1 — (—1)s<I>(r)x:__s+1 ,

r

(40) a7 [x]a" = (5 B 1) [®(s — 1) — @(r)][(—1)* =/~ F

(1)

fors=1,2,...,r+1landr=0,1,2,... , and

(S_T 2)' r—s4+1
(41) et x el = qu_ )
(42) ' [*x]a" =0,
(43) xl [x]a" =0,

(s—r—2)!
44 —s — r—s+1
(44) [+]o2 5—1). v ’

—s r (—1)T+17°!(5—7°—2)! r—s

(45) e [ ]al, = G- A

(46) x—sx’“:o
fors=r+2,r+3,...andr=0,1,2,....

Proof. Equations (35) and (41) follow immediately on replacing # by — in equa-
tions (24) and (25) respectively.
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Differentiating equations (22) and (23) s times using equations (2) gives
el wal = (=17 (5 i 1) [h T Iney — ®(r — s + L)zt

r P xax’ = (—1)5_1 ( " 1) [l‘r__s-l_l Inz_ — <I>(7° — s+ 1)1‘C_s+1]
s —

fors=1,2,...,r41land r=20,1,2,... , and

—s r (_1)7‘+1r!(5_ T_Q)! r—s4+1
vkl = Go1) !, ,
ro__ (_1)7‘+1r!(5_ T_Q)! r—s+1
- T (s— 1) -

fors=r+4+1,r+2,... and r = 0,1,2,... . Equations (36), (37), (42) and (43)
follow immediately. Equations (38), (39), (40), (44), (45) and (46) also follow on
noting that

fors=1,2,.... a
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