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REFLECTIONS WITH RESPECT TO
SUBMANIFOLDS IN CONTACT GEOMETRY

P. BUEKEN AND L. VANHECKE

ABSTRACT. We study to what extent some structure-preserving properties of the
geodesic reflection with respect to a submanifold of an almost contact manifold
influence the geometry of the submanifold and of the ambient space.

1. INTRODUCTION

Reflections with respect to points and curves and, more generally, with respect
to submanifolds in Riemannian manifolds are generalizations of reflections with
respect to linear subspaces of a Fuclidean space. The reflections with respect to
points and curves have been studied by different authors. It turns out that their
properties strongly influence the curvature of the manifold and that one can char-
acterize certain classes of manifolds (e.g., locally symmetric spaces and real space
forms) by using properties of the reflections with respect to their points or their
geodesics. For a survey of results of this type, we refer to [4], [14].

Later, one also started investigating similar problems concerning reflections with
respect to submanifolds. As before, the study shows that the properties of these
reflections influence both the curvature properties of the ambient manifold and
the geometry of the submanifold. (We refer to [14] for a survey and for references
to basic papers treating the subject.) In [3], the authors initiated the study of
reflections with respect to submanifolds in the framework of contact geometry. In
particular, they investigated the submanifolds of so-called Sasakian space forms
admitting isometric reflections. It turns out that one can completely characterize
these submanifolds, and that their structure is closely related to the Sasakian
structure on M. (We refer to Lemma 3 for the exact statement of the result.)
In this paper, we continue the study of this type of problems. In particular, we
will study the submanifolds of a general almost contact metric manifold admitting
so-called @-preserving or ¢-preserving reflections (we refer to Section 2 for the
definitions). These are the analogs of holomorphic and symplectic reflections with
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44 P. BUEKEN AND L. VANHECKE

respect to submanifolds in almost Hermitian manifolds. We will derive a list of
necessary conditions for the manifoldsin order to have such reflections. In the case
where the ambient manifold is a Sasakian space form, we completely characterize
the submanifolds admitting such reflections.

The paper is organized as follows. In Sections 2 and 3 we introduce some pre-
liminary material concerning contact geometry and reflections with respect to
submanifolds in Riemannian geometry. Then, in Sections 4 and 5, we treat our
main results. Finally, we will (in Section 6) briefly treat the reflection for a special
example of a submanifold in an almost contact metric space.

2. CONTACT GEOMETRY

A smooth (2n + 1)-dimensional manifold M?"*+! is said to be an almost contact
metric manifold if it admits a (non-zero) vector field & (called the characteristic
vector field), a one-form 7, a tensor field ¢ of type (1,1) and a (so-called associated)
Riemannian metric g, satisfying

(1) ¢ =-I+70¢& n€)=1, and g(pX,eY)=g(X,Y)—n(X)n(Y)

for all X and Y tangent to M. These conditions imply that ¢ =0, no¢ = 0 and
that

(2) n(X) =9(X,¢)

for any vector X tangent to M.
The fundamental two-form or Sasaki form of an almost contact metric manifold
(M,&,n,¢,g) is the two-form ¢ defined by

(3) P(X,Y) = g(X, pY)
for all X and Y tangent to M. If ¢ satisfies
¢ = dn,

the manifold M is said to be a contact metric manifold. If the characteristic vector
field ¢ of a contact metric manifold is a Killing vector field, then M is said to be
a K-contact (metric) manifold. Tt can be shown that an almost contact metric
manifold M is a K-contact manifold if and only if

(4) Vx{=—pX

for all X tangent to M, where V denotes the Levi Civita connection associated to
(M, g).

If the structure tensors of an almost contact metric manifold (M, &, 0, ¢, g)
satisfy

(5) (Vxe)Y = g(X,Y){ —n(Y)X
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for all X and Y tangent to M, the manifold M is called a Sasakian manifold. We
remark that all Sasakian manifolds are examples of K-contact manifolds. Further,
the Riemann curvature tensor

RxyZ =VixyZ - [Vx,Vv]Z
of a Sasakian manifold (M, £, n, ¢, ¢) satisfies
(6) Rxy&=n(X)Y —n(Y)X

for all X and Y tangent to M.

A plane section in the tangent space T, M, m € M of a Sasakian manifold is
said to be a -section if it is spanned by two unit vectors X and ¢ X, orthogonal to
. The sectional curvature Rx,xx,x of such a ¢-section is called the associated
p-sectional curvature. If the p-sectional curvature is constant, i.e. independent of
the point m € M and of the chosen ¢-section, then M is said to be a Sasakian
space form, and it is frequently denoted by M?"+1(¢) (where ¢ is the constant -
sectional curvature of M). The Riemann curvature tensor R of M?"+1(c) is given
by

#{g(x, Z)g(Y, W) = (¥, Z)g(X, W)}

™) + O ()X, W) (X ()Y, W)

— (X, Z)n(Y)n(W) + g(Y, Z)n(X)n(W) — 9(Z, Y )g(pX, W)
+ g(Z, gDX)g(gDY, W) - Qg(X, goY)g(gDZ, W)}

Rxyzw =

We refer to [1], [9], [15] for more information about almost contact metric manifolds
and related topics, and for an extensive list of references to the literature.

Let (M,€,1,¢,9) be an almost contact metric manifold. A submanifold P is
said to be an invariant submanifold if the characteristic vector field ¢ is tangent
to P everywhere and if P is invariant with respect to ¢, i.e. (T, P) C T, P for
all p € P.If, for all p € P, o(T,P) C TpJ‘P, the submanifold P is said to be
anti-invariant. One has

Lemma 1. Let P be a submanifold of a K-contact metric manifold M2+ and
suppose that £ is everywhere normal to P. Then P is an anti-invariant submanifold
of M and dim P < n.

This result is proved in [16] under the assumption that the ambient space M is
Sasakian. One can immediately adapt the proof to the case of K-contact metric
manifolds. In Section 6 we will give an example showing that this result cannot be
generalized to the class of almost contact metric manifolds. We refer to [15], [16]
for more information on structure-related submanifolds in Sasakian geometry.

A (local) diffeomorphism f : M — M of an almost contact metric manifold M
is said to be ¢-preserving if it preserves the Sasaki form ¢, i.e.

(8) re=9,
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and f is said to be @-preserving if it preserves the structure tensor ¢, 1.e. if

(9) eofi=fiop.
For later use, we state the following result from [11] :

Lemma 2. Let M be a contact metric manifold with structure tensors (&,1, ¢, ¢)
and let f be a w-preserving local diffeomorphism. Then there exists a positive
constant « such that

(10) fE=af, [p=oan, fg=ag+ala—1nan.

3. REFLECTIONS WITH RESPECT TO SUBMANIFOLDS

Let (M, g) be an n-dimensional Riemannian manifold and suppose P is a con-
nected, relatively compact, (topologically) embedded submanifold of dimension g.
The mapping

Up i p = expy,(ru) — Yp(p) = exp, (—ru)
for all m € P, all u € TP, ||ul| = 1 and all sufficiently small r, is an involutive
local diffeomorphism of M| called the (local) reflection with respect to P.In what
follows, we will study the relation between the properties of the reflection ¥p and
the geometry of P in the case where the ambient space (M, g) carries an almost
contact metric structure.

In order to study this relation, we first introduce a general framework which
will allow us to treat our problems analytically. We start by constructing special
coordinate systems, the so-called Fermi coordinate systems. (We refer to [14] for
a more detailed treatment and for references to the basic papers treating this
subject.) First, let m € P and choose a local orthonormal frame field {F1, ..., E,}
defined along P in a neighborhood of m and such that £, ..., F, are tangent to P

while E411, ..., E, are normal to P. Next, let (y',...,y%) be a coordinate system
in a neighborhood of m in P for which
S = Eim), =1
—(m) = E;(m), i=1,...,q.
oyt 1

Note that, in a sufficiently small neighborhood U of m in M, every point p of U
can be expressed in a unique way as

n
p=expy( Y taFu)
a=q+1
for some point b € P. Hence, putting

xi(epr( Z toFy)) = yi(b), i=1,...,q,

a=q+1

2% (expy( Z toFy)) = ta, a=q+1,...,n,

a=q+1
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we obtain a coordinate system (z!,...,2") on U, called a Fermi coordinate system
(relative to m, (y',...,y?) and (E441,..., E,)). With respect to such a Fermi
coordinate system, the reflection t¢p with respect to the submanifold P takes the
following (local) form:

vp (et et ) e (2t et et ™).

Further, there exists a strong relation between the basic vector fields axia of the
Fermi coordinate system and some special Jacobi vector fields along geodesics in M
(see for example [14] for more details). To describe this relation, let p = exp,, (ru)
be a point in a small neighborhood of P in M (with m € P, u € TP, |jul| = 1
and small r), and denote by v : s — exp,,(su) the unit speed geodesic joining m
and p. Further, let (z!,...,2") be the Fermi coordinate system with respect to
m, (y',...,y?) and (E4q1, ..., E,) as before, where we now choose the frame field
{F1,..., Fy} insuch a way that F,(m) = u = 7/(0). Finally, we denote by Y, the
Jacobi vector fields along v satisfying the initial conditions

Yi(0) = Ei(m),  Ya(0) =0,
(11) . d .
Y/(0) = Vu=—, Y/(0)= Eq(m),

2 6132 ) a

foralli=1,...,qand ¢ = ¢+ 1,...,n — 1. These Jacobi vector fields are then

related to the basic vector fields Mia of the Fermi coordinate system (z!,... 2")
by
0 .
Yi(s)za =(7(s)), i=1,...,q,
x
(12 ;

Ya(s) = saxa('y(s)), a=q+1,... n—1.

This relation plays an important role in the study of the geometry of a tubular
neighborhood of P. We describe now some useful facts about it. First, we denote by
{Fy,..., F,} the frame field along v, obtained by parallel translation (with respect
to V) of {E1(m),..., Ey(m)}, and define an endomorphism-valued function D by
(13) Ya(s) = D(s)Fq, a=1,....n—1.

This function D satisfies the Jacobi equation

(14) D'+ RoD=0.

The initial conditions for D are given by

(15) po=(g o) vo=(_""0)
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where T" and L are defined, via the Levi Civita connection V of P, by
VxY =VxY +TxY,
VxN=T(N)X+ LxN,
for all X and Y tangent to P and all N normal to P, and
T(u)ij = g(T(w)Ei, Ej)(m),
1 (u)ia = g(LE, Eq, En)(m).

TxY = T(X,Y) is the second fundamental form operator of P and T(N) is the
shape operator of P with respect to N. Further, LxN = V%N where V+ is the
normal connection along P.

Using these formulas (together with the Gauss lemma), one immediately sees
that the components of the metric tensor ¢ with respect to the Fermi coordinate
system are given by

9ij(p) = ('DD)i; (r),
3a(p) = (DD)ia(r),

(16) Jab(p) = riz(tDD)ab(r),
gin(p) = gan(p) = 0,
gnn(p) = 1,

where¢,j = 1,...,gand a,b = ¢+1,...,n—1. Further, using the Taylor expansion
for D together with the Jacobi equation (14) and the initial conditions (15), one
obtains the following power series expansions for the components of ¢:

9ij(p) = 9(Ei, Ej)(m) + 2rg(TEy, Ej)(m) 4+ O(r?),
(17) gia(p) = —rg(* L E;, Eq)(m) — grzg(REi, Eq)(m) +0(r%),

9as(p) = 9(Fay 0)(m) = 579(REa, Eu)(om) + O(r%).

Next, if we suppose that M carries an almost contact metric structure, we can
in a similar way derive a power series expansion for the Sasaki form ¢. Up to order
two in r, this expansion for ¢;;, ¢, = 1,...,¢ is given by

05 (p) = g(Es, pEy)(m)

+r{g(Ei, (Vup) E) + Y T(wiig(EBx, o Fj)

k=1
(18) ! =
+ Z T(u)rjg(Ei, oEr) — Z L (w)iag(Ea, pEj)
k=1 a=g+1

2n

N Z € (u)jag(Ei, @Ea)}(m) + 0(7“2),

a=gq+1
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The other components can be computed in the same way, but as we do not need
them here, we skip the explicit expressions. Note that, analogously, the expressions
for the components of ¢ can be obtained by using the expansions for ¢ and g,
together with the fact that

ng = _qj)oz'ygvﬁa

but we omit the explicit expressions again.
Finally, we state the following results for later use.

Lemma 3. Let M?"*! be a Sasakian manifold with structure tensors (£,1, ¢, g)
and with constant holomorphic sectional curvature ¢ # 1. Further, let P be a
submanifold of M. Then the reflection ¢ p is isometric if and only if P is either
a totally geodesic invariant submanifold or a totally geodesic anti-invariant sub-
manifold with £ normal to P and dim P = n.

For the proof of this theorem we refer to [3]. In the case where ¢ = 1, (7) implies
that M is a manifold of constant curvature (a real space form) and in this case
the following result holds (see for example [6], [12], [13]):

Lemma 4. Let M be a real space form and suppose that P is a submanifold of
M. Then ¥p is isometric if and only if P is a totally geodesic submanifold of M.

4. ¢—PRESERVING REFLECTIONS

In this section, we start our study of the relation between some particular prop-
erties of the reflection with respect to a submanifold and the geometry of that
submanifold. As a first step, we will consider the submanifolds P of an almost
contact metric manifold M such that the reflection ¢ p is ¢-preserving. The fol-
lowing theorem gives necessary conditions for the submanifold in order to have
such a ¢-preserving reflection.

Theorem 5. Let M be an almost contact metric manifold with structure tensors
(&,m, 0, 9) and Sasaki form ¢. If the reflection ¢p with respect to a submanifold P
in M is ¢-preserving, then P is either an invariant submanifold of M | or it satisfies
the following conditions:

1. (T P) C T P for all m € P;

2. & is normal to P everywhere.

Proof. Suppose that P is a submanifold in M such that the reflection ¥p with
respect to P is ¢-preserving. Note that, for m € P, X € T,, P if and only if
Ype(m)X = X, and X € TL P if and only if ¥ p(m)X = —X. Hence we have for
alme P, all X €T,,Pandall Y € TP,

(19) (X, 0Y) = g(¥pe X, phpsY) = g(X, —pY) = —g(X, pY').

So, g(X,9Y) = 0forall X € T,,P and all Y € T:: P and consequently, (7, P) C
T P.
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Further, (8) implies that

g(Vpi&, opY) = g(&, Y ) =0

for all Y € T,, M and all m € P. Hence, ¥p & ~ £ and since 1/)%* = I, we see
that ¥p,& = ££. Consequently, at every point m, the characteristic vector field &
is either tangent to P or orthogonal to P. The differentiability of & then implies
that ¢ is either tangent to P at every point, or normal to P at every point. This
proves the theorem. a

In what follows, we will use the power series expansion (18) to derive addi-
tional information concerning the submanifold P. Therefore, we choose a Fermi
coordinate system (z!,... z?"%1) as described in Section 3. (Note that, for such
a coordinate system 1/)p*(%)(p) = %(1/}1:(1))) for all ¢ = 1,...,¢.) Since ¢p is
¢-preserving, this implies that

¢i5(p) = ¢ij(¥p(p))
forall 4, =1,...,¢ and the power series (18) then yields

9(Ei, (V) Ej) + Y T(w)rig(Er, o ;)

k=1
2n
(20) +ZT Wi g pB) = 3 L (w)iag(Fa, 0 Fj)
a=gq+1
2n
= Y L (Wiag(Fi pFa) =0
a=gq+1

forallu € TP andalli,j = 1,...,q. As we know from Theorem 5 that ¢ (7}, P) C
TP, g(Eq, F;) = 0 and (20) yields

q q
(21) 9B, (Vu@)Ej) + Y T(w)kig(Br, 9Ej) = > T(u)rjg(Ex, oEi) = 0.
k=1

k=1
Hence, for all X,Y € T, P and all u € T}- P, we must have
9(X, (Vup)Y) + g(T(0) X, 9Y) = g(T(0)Y, pX) = 0
and substituting X by ¢ X, this yields

9 X, (Vup)Y) + g(T(u)p X, oY)

(22)
+9(T(w)X,Y) = n(X)g(T(w)Y, &) = 0.

We will now consider the consequences of (22) in the two occurring cases: ¢
normal to P and ¢ tangent to P.
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Case 1: ¢ is normal to P
In this case, n(X) = 0 for all X € T, P and (22) becomes

(23) 9(pX, (Vup)Y) + g(T(u)pX, 9Y) + g(T(w)X,Y) = 0.
Putting X =Y in (23), we get
(24) 9(pX, (Vup)X) + g(T(u)pX, X) + g(T(u)X, X) =0

and since

9(pX, (Vup)X) =0,
(24) yields

(25) g(T(u)eX, o X) + g(T(u) X, X) =0

forall me€ P and all X €7, P.

Finally, we choose a basis for T,, P of the form Ey,oF1, Fs, oFE>, ..

where 2s = dim P. Then one sees from (25) that, for all i =1,... s,
g(T(w)Es, Ei) + g(T(u)p By, pEi) = 0
and, after summation over all i,

(26) 7' (u) = 0

51

"ES’SDES’

for all w € T P and for all m € P. Hence, P is a minimal submanifold.

Case 2 : £ is tangent to P

In this case,

(27) g(T(u) X, X) + g(T(u)p X, 0X) =0

for all X € T,, P orthogonal to ¢. Taking an orthonormal basis for 7;, P of the
form &, By, ¢F1, ..., Es, pF;, where dimP = 2s + 1, it is easy to see from (27)

that
(28) trT(u) = g(Veu, &) = —g(Ve&, u)

which 1s not necessarily zero. Hence, P 1s not necessarily minimal.

However, if M carries a contact metric structure or, more generally, an almost
contact metric structure such that the integral curves of ¢ are geodesics, it is
obvious that V£ = 0, and in this case P is again a minimal submanifold.

Hence, we proved
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Theorem 6. Let M be an almost contact metric manifold with structure tensors
(&,m,,9) and suppose that the integral curves of the characteristic vector field
are geodesics. If the reflection ©¥p with respect to a submanifold P in M is ¢-
preserving, then P is a minimal submanifold.

We remark that, if M carries a K-contact structure, Lemma 1 implies that &
must be tangent to P at every point. Indeed, if & is normal to P at every point,
the submanifold P is anti-invariant, which contradicts the theorem. Hence, we can
state the following

Corollary 7. Let M be a K-contact manifold with structure tensors (£,1, ¢, ¢)
and Sasaki form ¢. If the reflection v¥p with respect to a submanifold P in M is
¢-preserving, then P is an invariant minimal submanifold of M.

Finally, we will now consider the case where the ambient manifold is a Sasakian
space form. In this case, one can explicitly solve the Jacobi differential equation
(see for example [2]), and hence compute explicit expressions for the basic vector
fields of a Fermi coordinate system. Using this, one can give complete expressions
for the components of the Sasaki form ¢ and prove the following

Theorem 8. Let M?"*(¢) be a Sasakian space form with structure tensors
(&,m, ¢, 9) and Sasaki form ¢. Then the reflection ¢p with respect to an invariant
(minimal) submanifold P in M is always ¢-preserving.

Proof. Let P be a g-dimensional invariant submanifold in M and let m be a point
in P. (We note that an invariant submanifold in a Sasakian manifold is automati-
cally minimal [15].) Further, let ¥ be a geodesic orthogonal to P, emanating from
m with unit velocity vector field u. Finally, we choose an orthonormal frame field
at m adapted to our constructions:

Ela"'aEq—laEq :€E TmPaEq-l-l = gpu’Eq-l-Za"'aEZnaEZn-l—l =uc TnJ»;Pa

and we may always suppose that Fyyq1,..., Fa,4q are parallel with respect to
V+ at the fixed point m, i.e. L= 0 at m. Next, we construct the frame field
{F1,..., Fany1} along v by parallel translation of {E1(m),..., Fapy1(m)} with
respect to V. Following the technique described in Section 3, we now compute the
Jacobi vector fields Y7, ..., Ya, along v, satisfying the following initial conditions:

Y:(0) = E;i(m),

Y/(0) = ZT(U)jiEy’(m),

Ya(0) =0,
Ya(0) = Eq(m),

fori=1,...,gand a=q+1,...,2n. As in [2], we have to perform the compu-
tations in three different cases, namely c¢4+3 > 0, ¢4+ 3 =0and ¢+ 3 < 0. In
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what follows, we describe the results of these long computations and refer to [2]

for more details.
Casel:c+3=0

p—1

Vi(s) =Y T(u)ijsFi(s)+ Fi(s), j=1,...,¢—1;

Y,(s) = (éq(s) sin s + v4(s) cos ) Fy(s) + (B4(s) cos s — v4(s) sin s) Fyp1(s),

where 3,(s) =5, 7,(s) =1—s%

Vyr1(5) = (B ()50 + 7441(5) <05 5) Fy )
+ (Bg41(s) cos s — ygq1(s)sin s) Fyy1(s),

where 311(5) =5, Y441(5) = —s7;

Ya(s) = sFu(s), a=q+2,...,2n.

Case 2:¢c+3>0
Putting & = v/c + 3, we obtain

-1

)

<
o~
V5]
S—
[l
EM N

k k
T'(u);; sin ;Fl(s) + cos ;Fj(s), j=1,...,9—-1;

i=1
Y, (s) = (B4(s)sins 4 v4(s) cos s)Fy(s) + (Bq(s) cos s — v4(s) sin s) Fyy1(s),
where ,(s) = %sin ks, y.(s) = lz—z(cos ks—1)+1;

Vyr1(5) = (B ()50 + 7441(5) <05 5) Fy )
+ (Bg41(s) cos s — ygq1(s)sin s) Fyy1(s),

where B,41(s) = %sin ks, ve1(s) = %(cos ks —1);

el

2 .k
Ya(s) = Zsin ;Fa(s), a=q+2,...,2n.

Case 3:¢c+3<0
Putting k = \/—(c + 3), we obtain

-1

)

<
o~
V5]
S—
[l
EM N

1
-

k k
T'(u);; sinh ;Fl(s) + cosh ;Fj(s), j=1...,9—1;

=
—~

o
~—

(l
—~

Bg(s)sin s + v4(s) cos 8)Fy(s) + (Bq(s) cos s — v4(s) sin s) Fyy1(s),
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—k%(cosh ks—1)+1;

(Bg+1(s)sin s + vg41(s) cos s)Fy(s)

+ (Bg41(s) cos s — ygq1(s)sin s) Fyy1(s),

54

where ,(s) = %sinh ks, v4(s)
Yopa(s) =

where B,41(s) = %sinh ks,

2

Yg+1(8)

= —k%(cosh ks —1);

k
Ya(s) = % sinh ?5

2n.

Fo(s), a=qg+2,...,

Using these solutions of the Jacobi differential equation, (12) and (13) immedi-
ately yield expressions for the basic vector fields of the Fermi coordinate system

along v with respect to the chosen frame field {E1, .. .,

Esny1} at m. With these

expressions it is then possible to compute the components of the Sasaki form ¢.

Taking into account that

Iy
Fotr
ply
el

together with the fact that

Vu{g(FZ’, @Fa)} =

(cos )€ + (sin s)pu,
—(sin s)& + (cos s)pu,
—(sin s)u,

—(cos s)u,

0,

and hence g(F;, ¢F,) = 0 everywhere along 7, the computed expressions are easily

seen to satisfy

(

$ja(=3),

$ji(s) = ¢ji(—s),

Gjq(s) = ¢] (—s
Pjg+1(s) = —0jq41

$jals) =

Pgq(5) =

Pqq(=5),

everywhere along ~. Since m and u are arbitrary, this proves the theorem.

Paq+1(5) = —gq41(—5),
$qa(s) = —0ga(—3),
5),  Pg+1g+1(8) = Pgr1g41(—5),
Pg+1a(5) = Pgt1a(—5),
Pas(s) = Par(—s),

5. @-PRESERVING REFLECTIONS

In this section we will study the submanifolds of almost contact metric manifolds
admitting e-preserving reflections. Again, we will start our study by constructing
a list of necessary conditions for the submanifold P in order to admit ¢-preserving
reflections. Using the same technique as in the previous section, we prove the

following
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Theorem 9. Let M be an almost contact metric manifold and suppose P is a
submanifold in M. If the reflection ¢p with respect to P in M is yp-preserving,
then

1. ¢ is everywhere tangent to P or everywhere normal to P;

2. o(TP) C T, P for allm € P.

Proof. Take m € P and choose X € T, P. Since ¥p is p-preserving, we get

(29) Vpe(pX) = X

and hence X € T, P. On the other hand, if Y € T/- P, then

(30) Up(pY) = p(=Y) = —¢Y,

and so Y € T P. Finally, putting X = ¢ in (9) yields

(31) o(pi&) =0,

showing that ¢ € 1;, P for all m € P or ¢ € Tt P for all m € P. This proves the
theorem. d

As before, we note that if M carries a K-contact metric structure, £ is necessarily
tangent to P.

Next, suppose that M carries a contact metric structure (£,7,¢,¢g) and let ¢p
be a ¢-preserving reflection. Then we know from Lemma 2 that there exists a
positive constant « such that

vpil = al, Ypn=an, (Ppg)(X,Y) = ag(X,Y) + ala — Dp(X)n(Y).

As ¢% = I and as o must be positive, o = 1. Consequently, ¢p is isometric
and ¢-preserving, and £ is tangent to P (¢pi & = &). Because ¢p is isometric,
the submanifold P must be a totally geodesic submanifold (see for example [8]).
Hence, we can state the following

Theorem 10. Let M be a contact metric manifold and P a submanifold in M
such that the reflection ¥ p is p-preserving. Then P is a totally geodesic invariant
submanifold of M and vp is isometric and ¢-preserving.

Asin the case of ¢-preserving reflections, we are again able to prove the following
converse of Theorem 10 in the case where M is a Sasakian space form.

Theorem 11. Let M be a Sasakian space form and suppose that P is a totally
geodesic, invariant submanifold in M. Then the reflection ¥ p with respect to P is
p-preserving.

Proof. Let P be a submanifold satisfying the hypothesis. Then Theorem 8 implies
that the reflection ¢¥p with respect to P must be ¢-preserving. Further, from
Lemma 3 and Lemma 4 we see that ©p must be isometric. Combining these two
facts yields that @ p is ¢-preserving. a
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6. A SPECIAL EXAMPLE

In this last section, we describe a special example of a submanifold in an almost
contact metric space: a certain two-dimensional unit sphere in a five-dimensional
unit sphere, equipped with its non-standard structure (see for example [1], [10]).
This example shows that Lemma 1 cannot be generalized to almost contact metric
manifolds, and it will also provide an example of the case “¢ orthogonal to P”
arising in the proof of Theorem 5 and Theorem 6.

First, we describe the non-standard structure on the five-dimensional unit sphe-
re S°(1). Therefore, we consider R7 with its Euclidean metric, and we identify all
tangent spaces with the space of imaginary Cayley numbers. We can then define
a two-fold vector cross-product x: the product of two vectors X and Y 1s the
imaginary part of their product as Cayley numbers (see for example [7]). On the
six-dimensional unit sphere S°(1), (with equation ijl(xi)z = 1) we denote by
Ni(z) = ZZ:I z;F; the unit outer normal to S°(1). Then we define an almost
complex structure J on S°(1) by

(32) JX =Ny x X

for all X tangent to S°(1). The induced metric is compatible with J and makes
S into a (nearly Kahler) almost Hermitian manifold. Now, consider S®(1) as the
totally geodesic hypersurface of S%(1) given by z7 = 0. We take No = E7 as unit
normal and define an almost contact metric structure by

(33) £=—JNy, JX =X +n(X)No,

together with the induced metric g. Finally, let S?(1) be the submanifold of S®(1)
defined by #; = 23 = 25 = 0. Then ¢ is normal to S?(1) everywhere. Moreover,
it can be shown that ¢(7,,5%(1)) C T,,S%*(1) for all m € S%(1). Further, the
reflection tg2(1) with respect to S%(1) (in S3(1)) is p-preserving (see for example
[5]). As S?(1) is a totally geodesic submanifold in a space of constant curvature,
we know from Lemma 4 that the reflection tgz(1) is isometric, and hence also
@-preserving.
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