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CONTINUITY OF MONOTONE FUNCTIONS

Boris LavRiC

ABSTRACT. It is shown that a monotone function acting between euclidean spaces
R™ and R™ is continuous almost everywhere with respect to the Lebesgue measure
on R™.

As well known the set of all points of discontinuity of a real monotone function
1s at most countable. The paper deals with the set of all discontinuity points of
a monotone function acting between euclidean spaces. We shall be concerned in
order theoretic monotonicity, so let us agree that < denotes the componentwise
ordering of R* (z < y means z; < y; for i = 1,2,--- k). If a,b € R*, a < b, the
set [a,b] = {x € R¥ : a < x < b} will be called a k-cell.

Let A be a nonempty subset of R™. Then A is said to be solid, if a,b € A and
a < z < bimplies # € A. The smallest solid set containing A is called the solid
cover of A and equals

S(A)={zeR":a <z <b for some a,be A}.
A function f: A — R is said to be nondecreasing (respectively nonincreasing) if

r,ye A, 2 <y = f(2) < f(y) (respectively f(y) < f(»)).

A function ¢ = (g1, ,gm) : A — R™ is called monotone if each of its compo-
nents g; : A — R is either nondecreasing or nonincreasing.

The set D of all points of discontinuity of a monotone function f : A — R™
is not necessarily countable if n > 1. By way of example take the characteristic
function h¢c : R” — R of the cone €' = {& € R" : # > 0}. However, D remains
small also for n > 1.

We need first a property of solid subsets of R”.
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Proposition. The boundary of a solid subset of R™ is of Lebesgue measure zero.
Proof. Let A be a solid subset of R"”. Denote by K the interior of the cone
C={zeR": x>0}, set
AT ={r e d(4): An(z - K)
At ={z e c(A): An(z+ K)

}’
}’

and note that A=, AT are closed subsets of the boundary bd(A4) of A. We claim
that bd(A) = A~ UAT. By way of contradiction suppose z € bd(A)\ (A~ UA™T).
Then there exists elements y,z € A such that y € x — K, z € x + K, hence =
is an interior point of the n-cell [y, z] which is contained in A. This contradicts
z € bd(A), therefore bd(A) C A~ U AT and the claim follows.

Thus, we have to prove that A~ and AT are of Lebesgue measure zero. To this
end suppose that A~ is nonempty, note that

0
0

(1) yed(x—K)U(x+K) for all z,ye A,

and denote by P the orthogonal projection of R™ onto the subspace F = {2 €
R™: 21+ 22+ -+ 2, = 0}. Since by (1) P is injective on A~, there exists a
function & : P(A~) — R such that

AT ={u+h(u)e: uweP(A7), e=(1,1,--- D}
An easy computation shows that (1) implies
[h(w) = h(v)] < lu = vfleo, w0 € P(AT),
hence h is continuous. It follows that A~ and similarly AT is of Lebesgue measure
zero, as desired. a

Corollary. Every bounded solid subset of R™ is Jordan measurable.

Proof. Tt is well known (see for example [1]) that a subset A of R is Jordan
measurable if and only if A is bounded and bd(A4) is of Lebesgue measure zero.O

We are now in a position to prove our main result.

Theorem. Let A be a nonempty subset of R” and let f : A — R™ be a
monotone function. Then the set of all points of discontinuity of f is of Lebesgue
measure zero.

Proof. The components f; of f = (f1, f2, -+, fm) are real-valued monotone func-
tions, f is continuous at x € A if and only if all f; are continuous at x, hence it
suffices to prove the theorem for m = 1. Furthermore, f can be extended on the

solid cover S(A) of A by

~

f(z)=sup{f(z): z€ A, :x <z}, z€5(4),
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so we may suppose that A is solid. Finally, since int(A) is a countable union of n-
cells, we may assume by Proposition and by a homothetic argument that A = [0, €],
e=(1,---,1), and that f:[0,e] — R is nondecreasing.

For every € U = int([0, €]) set

g(z) = inf{f(x +te) — f(x —te), 0<teER}.

Observe that for sufficiently small s > 0 f maps the neighborhood [z—se, +se] C
[0, €] of z into the real interval [f(z — se), f(x + se)] containing f(x). Therefore f
is continuous at # if and only if g(z) = 0. Put

1
DkI{IEU g($)zz}ak:1a2aa

and note that the set D of all discontinuity points of f satisfies DNU = |J Dj.
keN
Thus, we have to prove that each Dy is of Lebesgue measure zero.

We claim that Dy = cl(Dy) N U. Take any « € U \ Dy, and pick s > 0 such
that

[x —se,x+se] C[0,e], f(xz+se)— flx—se)< %

Note that every y € [x — (5/2)e, x + (s/2)e] satisfies

S S
[y = Syt 2 C o —se,a 4 se),

hence g(y) < f(y+ (s/2)e) — f(y — (s/2)e) < 1/k, and so y ¢ Dy,. Therefore,

[z — %e,x—l— %e]ﬁDk =0,
and the claim follows.

Assume now that Dy is nonempty and let ¢ > 0. For each fixed # € [0,¢]
consider the real function h : ¢t — f(x + te). Since h is nondecreasing and jumps
for at least 1/k at every t satisfying « + te € Dy, the set Dy N (z + Re) contains
finitely many elements or it is empty.

Remove from the line  + Re finitely many disjoint relatively open intervals of
common length less than € and containing cl(Dy) N (x +Re). Denote by R(x) the
remaining set, observe that d = dist(R(z), Dy) > 0 and put

T(z)={y € R": dist(y,z + Re) < d}.
From the open covering {T'(x) : z € [0,¢€]} of [0, €] extract a finite subcovering

T =T(x;): i=1, - ,p}. Accept Ty = and set

Uz'ITi\UTJ'a E={zeR" 21+ - +2z, =0}.
Jj<i
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By construction
/in(UZ' N Dk) < Eﬂn_l(UZ' N E)

holds for all ¢ (i, denotes the Lebesgue measure in R™). Tt follows from

P
pn (D) =Y pa(Us 0 Dy) <
i=1
P P
<€> pna(UiNE) = pns (U U; N E)
i=1 i=1
that p,(Dy) = 0, so the proof is complete. d

Applying the Lebesgue’s characterization of Riemann integrable functions (see
[1] or [2]) we get the folowing result.

Corollary. Let A be a nonempty Jordan measurable subset of R™ and let f :
A — R™ be a bounded monotone function. Then f is Riemann integrable.
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