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ARCHIVUM MATHEMATICUM (BRNO)Tomus 28 (1992), 205 { 213EXISTENCE OF SOLUTIONS FOR HYPERBOLICDIFFERENTIAL INCLUSIONS IN BANACH SPACESNikolaos S. PapageorgiouAbstract. In this paper we examine nonlinear hyperbolic inclusions in Banachspaces. With the aid of a compactness condition involving the ball measure of non-compactness we prove two existence theorems. The �rst for problems with convexvalued orientor �elds and the second for problems with nonconvex valued ones.1. IntroductionIn this paper we study the existence of solutions for hyperbolic di�erentialinclusions (Darboux problems) de�ned in a separable Banach space. Using a com-pactness type condition involving the ball (Hausdor�) measure of noncompactness,we are able to obtain two existence theorems. One when the orientor �eld is con-vex valued and the other when it is nonconvex valued. The single valued �nitedimensional version of the problem was considered by DeBlasi-Myjak [4], who alsoestablished the topological regularity of the solutions set. The single valued, in-�nite dimensional version of the problem was examined by Kubiaczyk [9], whoproved a Kneser-type theorem for the solution set.2. PreliminariesLet (
;�) be a measurable space and V a separable Banach space. Throughoutthis paper we will be using the following notations:Pf(c)(V ) = fA � V : nonempty, closed, (convex)gand P(w)k(c)(V ) = fA � V : nonempty, (weakly-) compact, (convex)g :A multifunction F : 
 ! Pf (V ) is said to be measurable if for all y 2 V , theR+-valued function ! ! d(y; F (!)) = inffky � xk : x 2 F (!)g is measurable. Infact this de�nition of measurability of multifunctions is equivalent to saying that1991 Mathematics Subject Classi�cation : 34G20.Key words and phrases: hyperbolic inclusion, measure of noncompactness, measurable mul-tifunction, upper and lower semicontinuous multifunctions, �xed point.Received August 27, 1991. 205



206 NIKOLAOS S. PAPAGEORGIOUthere exists a sequence fn : 
 ! V , n � 1, of measurable functions s.t. for all! 2 
, F (!) = ffn(!)gn�1 (see Wagner [14], theorem 4.2). The multifunctionF (�) is said to be weakly (or scalarly) measurable, if for every x� 2 V �, the�R = R [ f+1g-valued function ! ! �(x�; F (!)) = supf(x�; x) : x 2 F (!)gis measurable. It is clear from the above de�nitions that measurability impliesweak measurability. Indeed let fn : 
 ! V , n � 1, be measurable functions s.t.F (!) = ffn(!)gn�1. Then �(x�; F (!)) = supn�1(x�; fn(!)) ) ! ! �(x�; F (!))is measurable ) F (�) is weakly measurable. The converse is not in general true.However, if there is a �-�nite measure �(�) de�ned on �; � is �-complete and F (�)is Pwkc(V )-valued, then weak measurability implies measurability. To see this, letfx�ngn�1 be a sequence which is dense in V � for the Mackey topology m(V �; V ).Such a sequence exists since V is separable (see Wilansky [15], p. 144). BecauseF (�) is Pwkc(V )-valued �(�; F (!)) is m(V �; V )-continuous and so we haveF (!) = \n�1fy 2 V : (x�n; y) � �(x�n; F (!))g) GrF = f(!; y) 2 
� V : y 2 F (!)g = \n�1f(!; y) : (x�n; y) � �(x�n; F (!))g2 �� B(V )with B(V ) being the Borel �-�eld of V . Since � is �-complete, from theorem 4.2of Wagner [4], we deduce that F (�) is indeed measurable.Let B be the family of bounded subsets of V . Then the ball (Hausdor�) measureof noncompactness � : B ! R+ is de�ned by�(B) = inffr > 0 : B can be covered �nitely many balls of radius rg :So a set A 2 B is relatively compact if and only if �(A) = 0. For a detailedanalysis of the properties of �(�) (and of more general measures of noncompact-ness), we refer to the book of Banas-Goebel [1].Let Y; Z be Hausdor� topological spaces and G : Y ! 2Zrf;g a multifunction.We say that G(�) is upper semicontinuous (u.s.c.) (resp. lower semicontinuous(l.s.c.)) if for every open set U � Z, we have G+(U ) = fy 2 Y : G(y) � Ug (resp.G�(U ) = fy 2 Y : G(y) \ U 6= ;g) is open in Y . For other equivalent de�nitionsand for further properties we refer to the book by Klein-Thompson [8].3. Existence theoremsLet Q = [0; r]� [0; r] and X a separable Banach space. Let B be the Banachspace de�ned by B = f(�; �) 2 C(T;X)�C(T;X) : �(0) = �(0)g, where T = [0; r]and with norm k(�; �)k = k�kC(T;X) + k�kC(T;X).Given (�; �) 2 B, consider the following multivalued hyperbolic Cauchy problem(Darboux problem):(�) � @2v(x;y)@x@y 2 F (x; y; v(x; y))a:ev(x; 0) = �(x); v(0; y) = �(y) : �



HYPERBOLIC INCLUSIONS 207By a solution of (�), we mean a function v(�; �) 2 C(Q;X) s.t. there existsf 2 L1(Q;X) for which we havev(x; y) = z0(x; y) + Z z0 Z y0 f(t; s) dt dsfor all (x; y) 2 Q and with f(t; s) 2 F (t; s; v(t; s))a:e: and z0(x; y) = �(x) + �(y)��(0).Our �rst existence result deals with the case where the orientor �eld F (t; x) isconvex valued. So our hypothesis on F (t; x) is the following:H(F )1: F : Q�X ! Pfc(X) is a multifunction s.t.(1) (x; y; v) ! F (x; y; v) is weakly measurable,(2) v ! F (x; y; v) is u.s.c. fromX intoXw (here Xw denotes the Banachspace X equipped with the weak topology)(3) jF (x; y; v)j = supfkzk : z 2 F (x; y; v)j] � a(x; y) + b(x; y)kvk a:e:,with a; b 2 L1+(Q),(4) for every B � X nonempty and bounded set we have�(F (x; y; B)) � k(x; y)�(B) a:e:with k 2 L1+ (Q),(5) for all (x; y) 2 Q, F (x; y; �) maps bounded sets into relatively weaklycompact sets.Remark. Note that hypothesis H(F )1 (4) implies that the orientor �eld F (x; y; �)is Pkc(X)-valued for almost all (x; y) 2 Q. To see this, let B = fvg. Then �(B) = 0and so �(F (x; y; v)) = 0 for almost all (x; y) 2 Q) F (x; y; v) 2 Pkc(X) for almostall (x; y) 2 Q. Also note that hypothesis H(F )1 (5) is automatically satis�ed if Xis re
exive.Theorem 3.1. If hypothesis H(F )1 holds, then (�) admits a solution.Proof. First we will obtain an a priori bound for the solutions of problem (�). Solet v(�; �) 2 C(Q;X) be such a solution. We havev(x; y) = z0(x; y) + Z x0 Z y0 f(t; s) dt dsfor all (x; y) 2 Q and with f 2 L1(Q;X), f(t; s) 2 F (t; s; v(t; s)) a:e: Hencekv(x; y)k � kz0(x; y)k + Z x0 Z y0 kf(t; s)k dt ds� kz0(x; y)k+ Z x0 Z y0 (a(t; x) + b(t; s)kv(t; s)k) dt ds� kz0kC(Q;X) + kakL1(Q) + Z x0 Z y0 b(t; s)kv(t; s)k dt ds :



208 NIKOLAOS S. PAPAGEORGIOUInvoking the Wendro�-Gronwall inequality (see for example Beckenback-Bellman[2]), we get thatkv(x; y)k � [kz0kC(Q;X) + kakL1(Q)] exp kbkL1(Q) = M1 :Then let F̂ : Q�X ! Pfc(X) be de�ned byF̂ (x; y; v) = ( F (x; y; v) if kvk � M1;F (x; y; M1vkvk ) if kvk > M1 :Note that F̂ (x; y; v) = F (x; y; pM1(v)), where pM1(�) is the M1-radial retractionin X. Recalling that pM1(�) is Lipschitz continuous, we deduce that (x; y; v) !F̂ (x; y; v) is weakly measurable (see hypothesis H(F )1(1) and the de�nition of F̂ ),while theorem 7.3.11, p. 87 of Klein-Thompson [8] tells us that v ! F̂ (x; y; v) isu.s.c. from X into Xw. Also if B � X is nonempty and bounded, then by usinghypothesis H(F )1 (4) we have�(F̂ (x; y; B)) = �(F (x; y; pM1(B))) � k(x; y)�(pM1 (B))a.e.Note that pM1(B) � conv (B [ f0g). Using the properties of �(�), we get:�(pM1 (B)) � �(conv (B [ f0g)) � �(B):Hence we have �(F̂ (x; y; B)) � k(x; y)�(B) a:e:Finally note thatjF̂ (x; y; v) = supfkzk : z 2 F̂ (x; y; v)g � a(x; y) + b(x; y)M1 = '(x; y) a:e:with '(�; �) 2 L1+(Q). Let W = fv 2 C(Q;X) : v(x; y) = z0(x; y)+R x0 R y0 g(t; s) dt ds,kg(t; s)k � '(t; s) a:eg. Then let T : W ! 2W be the multifunction de�ned byT (v) = fw 2 C(Q;X) : w(x; y) = z0(x; y) + Z x0 Z y0 f(t; s) dt ds;f 2 L1(Q;X); f(t; s) 2 F̂ (t; s; v(t; s)) a:e:g:Note that since F̂ (t; s; v) is weakly measurable, (t; s) ! F̂ (t; s; v(t; s)) is weaklymeasurable on O; T �T with the Lebesgue �-�eld, which is complete with respectto the Lebesgue measure on Q. So (t; s) ! F̂ (t; s; v(t; s)) is measurable (see section2) and thus by Aumann's selection theorem (see Wagner [14], theorem 5.10) weget that there exist f 2 L1(Q;X)s:t: f(t; s) 2 F̂ (t; s; v(t; s)) a:e: ) T (�) hasnonempty values. Furthermore since the set S1̂F (�;�;v(�;�)) = fg 2 L1(Q;X) : g(t; s) 2



HYPERBOLIC INCLUSIONS 209F̂ (t; s; v(t; s))g 2 Pwkc(L1(Q;X)) (see [11], proposition 3.1), we can easily checkthat T (�; �) has values in Pfc(C(Q;X)). Let B � W be a nonempty set. We have:�(T (B)(x; y)) � �[Z x0 Z y0 f(t; s) dt ds : f 2 S1̂F (�;�;v(�;�)); v 2 B]� �[Z x0 Z y0 F̂ (t; s; B(t; s)) dt ds]where B(t; s) = fv(t; s) : v 2 Bg and R x0 R y0 F̂ (t; s; B(t; s) dt ds == fR x0 R y0 h(t; s) dt ds : h 2  L1(Q;X), h(t; s) 2 F̂ (t; s; B(t; s)) a:e:g. For every x� 2X�, we have�(x�; F̂ (t; s; B(t:s)) = �(x�; [w2B(t;s) F̂ (t; s; w)) = supw2B(t;s)�(x�; F̂ (t; s; w)):Observe (t; s; v) ! �(x�; F̂ (t; s; v)) is measurable and clearly (t; s) ! B(t; s) isa graph measurable (i.e. GrB(�; �) = f(t; s; w) 2 Q � X : w 2 B(t; s)g 2 B(Q) �B(X)), with B(Q) being the Borel �-�eld of Q (note that B(Q) = B(T )�B(T ))and B(X) the Borel �-�eld of X. So from theorem 6.1 of Kandilakis-Papageorgiou[7], we deduce that (t; s) ! sup[�(x�; F̂ (t; s; w)) : w 2 B(t; s)] is Lebesgue mea-surable on Q (i.e. measurable for the completion of B(Q) = B(T ) � B(T ) withrespect to the Lebesgue measure on Q � R2, which incidentally is bigger thanB(T )�B(T ), where B(T ) =Lebesgue completion of B(T ); see Hewitt-Stromberg[5], p. 392). Hence (t; s) ! convF̂ (t; s; B(t; s)) = H(t; s) 2 Pwkc(X) (see hypothe-sis H(F )1(5)) is Lebesgue measurable on Q. Let hn : Q! X;n � 1, be Lebesguemeasurable functions s.t. H(t; s) = fhn(t; s)gn�1 for all (t; s) 2 Q (see section 2).Then we have �[Z x0 Z y0 F̂ (t; s)) dt ds]� �[Z x0 Z y0 fhn(t; s)gn�1 dt ds]= �[Z x0 Z y0 fhn(t; s)gn�1 dt ds](see Kandilakis-Papageorgiou [6], theorem 3.1 and recall the properties of�(�))� Z x0 Z y0 �[hn(t; s) : n � 1] dt ds (see M�onch [10], proposition 1.6)� Z x0 Z y0 k(t; s)�(B(t; s)) dt ds = Z x0 Z y0 k(t; s)�(B(t; s)) dt ds:So we have�(T (B))(x; y)) � Z x0 Z y0 k(t; s)�(B(t; s)) dt ds � Z x0 Z y0 kkk1�(B(t; s)) dt ds:



210 NIKOLAOS S. PAPAGEORGIOUSet  (B) = sup(x;y)2Q[e��kkk1=21 (t+s)�(B(t; s))] for every B � W and with � > 0.Since W � C(T;X) is equicontinuous, bounded and exploiting the properties of�(�) and the Arzela-Ascoli theorem, we can easily check that  (�) is a sublinearmeasure of noncompactness in the sense of Banas-Goebel [1]. Then we have�(T (B)(x; y)) � Z x0 Z y0 kkk1e�kkk1=21 (t+s)e��kkk1=21 (t+s)�(B(t; s)) dt ds� Z x0 Z y0 kkk1e�kkk1=21 (t+s) (B) dt ds) �(T (B)(x; y)) �  (�)�2 e�kkk1=21 (x+y))  (T (B)) � 1�2 (B):Let � > 1. Then we have that T (�) is a  (�)-contraction.Next we will show that the multifunction T (�) has a closed graph (i.e. GrT =f(v; w) 2 W � W : w 2 T (v)g is closed in C(Q;X) � C(Q;X)). To this endlet (vn; wn) 2 GrT , n � 1 and assume that (vn; wn) ! (v; w) in W � W �C(Q;X)� C(Q;X). Then by de�nition, we havewn(x; y) = z0(x; y) + Z x0 Z y0 gn(t; s) dt dsfor all (x; y) 2 Q and with gn 2 L1(Q;X),gn(t; s) 2 F̂ (t; s; vn(t; s)) a:e: SinceF̂ (t; s; �) is u:s:c: fromX into Xw, with values in Pkc(X), using theorem 7.4.2, p. 90of Klein-Thompson [8], we get that (t:s) ! conv Sn�1F̂ (t; s; vn(t; s)) = G(t; s), is ameasurable, Pwkc(X)-valued multifunction s:t: jG(t; s)j = supfkyk : y 2 G(t; s)g �'(t; s) a:e: So from proposition 3.1 of [11], we have that S1G = fg 2 L1(Q;X) :g(t; s) 2 G(t; s) a:e:g is weakly compact in the Lebesgue-Bochner space L1(Q;X).Thus by passing to a subsequence if necessary, we may assume that gn w! g inL1(Q;X). Invoking theorem 3.1 of [12], we getg(t; s) 2 conv w-limfgn(t; s)gn�1� conv w-limF̂ (t; s; vn(t; s))� F̂ (t; s; v(t; s)) a:e:the last inclusion following from the fact that F̂ (t; s; �) is u.s.c. from X into Xwwith values in Pfc(X), and since vn ! v in C(Q;X). So in the limit as n ! 1,we have for all (x; y) 2 Qw(x; y) = z0(x; y) + Z x0 Z y0 g(t; s) dt ds



HYPERBOLIC INCLUSIONS 211with g 2 L1(Q;X), g(t; s) 2 F̂ (t; s; v(t; s)) a:e: So (v; w) 2 GrT ) T (�) has aclosed graph in W � W � C(Q;X) � C(Q;X). Apply theorem 4.1 of Tarafdar-Vyborny [13], to get v 2 T (v). As in the beginning of the proof using the de�nitionof F̂ (x; y; v) and the Wendro�-Gronwall inequality, we can check that kvkC(Q;X) �M1 ) F̂ (x; y; v(x; y)) = F (x; y; v(x; y)); (x; y) 2 Q) v 2 C(Q;X) is the desiredsolution of (�). �We can also prove a \nonconvex" analog of theorem 3.1. For this we will needthe following hypothesis on the orientor �eld F (x; y; v):H(F )2: F : Q�X ! Pf (X) is a multifunction s.t.(1) (x; y; v) ! F (x; y; v) is measurable,(2) v ! F (x; y; v) is l.s.c.,(3) jF (x; y; v)j = supfkzk : z 2 F (x; y; v)g � a(x; y) + b(x; y)kvk a:e:with a; b 2 L1+(Q),(4) for all B � X nonempty, bounded, we have�(F (x; y; B)) � k(x; y)�(B) a:e:with k(�; �) 2 L1+ (Q),(5) for all (x; y) 2 Q;F (x; y; �) maps bounded sets into relatively weaklycompact sets.Remark. Again hypothesis H(F )2(4) above implies that for almost all (x; y) 2Q;F (x; y; �) is Pk(X)-valued. Also hypothesis H(F )2(5) is satis�es if X is re
exive.Theorem 3.2. If hypothesis H(F )2 holds, then (�) admits a solution.Proof. As in the proof of theorem 3.1, if v 2 C(Q;X) is a solution of (�), thenkv(x; y)k � M1for all (x; y) 2 Q. Again introduce F̂ (x; y; v) = F (x; y; pM1(v)) (note that theorem7.3.11, p. 87 of Klein-Thompson [8] guarantees that F̂ (x; y; �) is l.s.c.) and letW = fw 2 C(Q;X) : w(x; y) = z0(x; y) + Z x0 Z y0 g(t; s) dt ds; (x; y) 2 Q;kg(t; s)k � '(t; s) a:e:g :This is a nonempty, closed, bounded and equicontinuous subset of C(Q;X). Let� : W ! Pf (L1(Q;X)) be the multifunction de�ned by�(w) = S1̂F (�;�;w(�;�)) :From theorem 4.1 of [12], we know that �(�) is l.s.c. So we can apply theorem 3of Bressan-Colombo [3] and get a continuous map 
 : W ! l1(X) s.t. 
(w) 2 �(w)for all w 2W . Set�(W )(x; y) = z0(x; y) + Z x0 Z y0 
(w)(t; s) dt ds :



212 NIKOLAOS S. PAPAGEORGIOUThen � : W ! W and is clearly continuous since 
(�) is. Let B � C(Q;X)be nonempty, bounded and closed and let fvngn�1 � B s.t. fvngC(Q;X)n�1 = B. Wehave �(�(B)(x; y)) � �[Z x0 Z y0 
(B)(t; s) dt ds]� �[Z x0 Z y0 
(fvngn�1)(t; s) dt ds]= �[Z x0 Z y0 
(fvngn�1)(t; s) dt ds](as before by theorem 3.1 of [6] and the properties of �(�))� Z x0 Z y0 kkk1�(fvn(t; s)gn�1) dt ds (using proposition 1.6 of M�onch [10])= Z x0 Z y0 kkk1�(B(t; s)) dt ds:As in the proof of theorem 3.1, introduce the sublinear measure of noncompactness (B) = sup(x;y)2Q [e��kkk1=21 (t+s)�(B(t; s))g and establish that  (�(B)) � 1� (B),� > 0. So if we choose � > 1, then �(�) is a  -contraction. Apply theorem 4.1 ofTarafdar-Vyborny [13] to get v = �(v) for some v 2 W . Then, through the de�-nition of F̂ and the Wendro�-Gronwall inequality, we can show that kvkC(Q;X) �M1 ) F̂ (x; y; v(x; y)) = F (x; y; v(x; y)) ) v 2 C(Q;X) solves problem (�). �References[1] Banas, J., Goebel, K., Measures of Noncompactness in Banach Spaces, Marcel-Dekker, NewYork, 1980.[2] Beckenback, E., Bellman, R., Inequalities, Springer, Berlin, 1961.[3] Bressan, A., Colombo, G., Extensions and selections of maps with decomposable values,Studia Math. 90 (1988), 69-86.[4] De Blasi, F., Myjak, J., On the Structure of the set of solutions of the Darboux problem forhyperbolic equations, Proc. Edinburgh Math. Soc. 29 (1986), 7-14.[5] Hewitt, E., Stromberg, K., Real and Abstract Analysis, Springer, New York, 1965.[6] Kandilakis, D., Papageorgiou, N.S., On the properties of the Aumann integral with appli-cations to di�erential inclusions and optimal control, Czechoslovak Math. Jour. 39 (1989),1-15.[7] Kandilakis, D., Papageorgiou, N.S., Properties of measurable multifunctions with stochasticdomain and their applications, Math. Japonica 35 (1990), 629-643.[8] Klein, E., Thompson, A., Theory of Correspondences, Wiley, New York, 1984.[9] Kubiaczyk, I., Kneser's theorem for hyperbolic equations, Functiones et Approximatio 14(1984), 183-196.[10] M�onch, H., Boundary value problems for nonlinear ordinary di�erential equations of secondorder in Banach spaces, Nonlin. Anal-TMA 4 (1980), 985-999.
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