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EXISTENCE OF SOLUTIONS FOR HYPERBOLIC
DIFFERENTIAL INCLUSIONS IN BANACH SPACES

NIKoLAOS S. PAPAGEORGIOU

ABSTRACT. In this paper we examine nonlinear hyperbolic inclusions in Banach
spaces. With the aid of a compactness condition involving the ball measure of non-
compactness we prove two existence theorems. The first for problems with convex
valued orientor fields and the second for problems with nonconvex valued ones.

1. INTRODUCTION

In this paper we study the existence of solutions for hyperbolic differential
inclusions (Darboux problems) defined in a separable Banach space. Using a com-
pactness type condition involving the ball (Hausdorff) measure of noncompactness,
we are able to obtain two existence theorems. One when the orientor field is con-
vex valued and the other when it is nonconvex valued. The single valued finite
dimensional version of the problem was considered by DeBlasi-Myjak [4], who also
established the topological regularity of the solutions set. The single valued, in-
finite dimensional version of the problem was examined by Kubiaczyk [9], who
proved a Kneser-type theorem for the solution set.

2. PRELIMINARIES

Let (2, ) be a measurable space and V' a separable Banach space. Throughout
this paper we will be using the following notations:

Piy(V) = {A CV : nonempty, closed, (convex)}
and  Pre(e)(V) = {A CV : nonempty, (weakly-) compact, (convex)} .
A multifunction F' : Q@ — P¢(V) is said to be measurable if for all y € V| the
R -valued function w — d(y, F'(w)) = inf{||y — z|| : « € F(w)} is measurable. In
fact this definition of measurability of multifunctions is equivalent to saying that
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there exists a sequence f, : & — V, n > 1, of measurable functions s.t. for all
w e Q Flw) = {falw)},>, (see Wagner [14], theorem 4.2). The multifunction
F(-) is said to be weakly (or scalarly) measurable, if for every z* € V*, the
R = R U {+oo}-valued function w — o(z*, F(w)) = sup{(z*,z) : = € F(w)}
is measurable. It is clear from the above definitions that measurability implies
weak measurability. Indeed let f, : Q@ — V, n > 1, be measurable functions s.t.
F(@) = al) psr. Then a(z”, F()) = stz (2%, fa()) = w0 — (2", F(w))
is measurable = F(-) is weakly measurable. The converse is not in general true.
However, if there is a o-finite measure u(-) defined on X, ¥ is g-complete and F'(-)
is Pyic(V)-valued, then weak measurability implies measurability. To see this, let
{2} }n>1 be a sequence which is dense in V* for the Mackey topology m(V*,V).
Such a sequence exists since V is separable (see Wilansky [15], p. 144). Because
F()is Pype(V)-valued o(-, F'(w)) is m(V*, V)-continuous and so we have

F)= [y eV : (a9 <ol), Fw))}

=>GrF ={(w,y) €A xV yeFlw)} = ﬂ{(w,y) Han,y) < oan, F(w))}
€EXx B(V_)

with B(V) being the Borel o-field of V. Since X is p-complete, from theorem 4.2
of Wagner [4], we deduce that F(-) is indeed measurable.

Let B be the family of bounded subsets of V. Then the ball (Hausdorff) measure
of noncompactness 7 : B — Ry is defined by

B(B) = inf{r > 0 : B can be covered finitely many balls of radius r}.

So a set A € B is relatively compact if and only if 3(A) = 0. For a detailed
analysis of the properties of 3(-) (and of more general measures of noncompact-
ness), we refer to the book of Banas-Goebel [1].

Let Y, Z be Hausdorff topological spaces and G : Y — 2%~ {0} a multifunction.
We say that G(-) is upper semicontinuous (u.s.c.) (resp. lower semicontinuous
(1.s.c.)) if for every open set U C Z, we have GT(U) ={y €Y : G(y) C U} (resp.
G (U)={y €Y :G(yynU # }) is open in Y. For other equivalent definitions
and for further properties we refer to the book by Klein-Thompson [8].

3. EXISTENCE THEOREMS

Let @ = [0,7] x [0,7] and X a separable Banach space. Let B be the Banach
space defined by B ={(n,0) € C(T,X) x C(T, X) : n(0) = 6(0)}, where T' = [0, r]
and with norm ||(n, )| = l[nllccz,x) + [10llc(r,x)-

Given (n,0) € B, consider the following multivalued hyperbolic Cauchy problem
(Darboux problem):

* 321;(72;/) € F(l‘,y,v(l‘,y))a,e
) { v(z,0) = n(x), v(0,y) = 6(y) . }
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By a solution of (%), we mean a function u(-,-) € C(Q,X) s.t. there exists
f € LY(Q, X) for which we have

v(r,y)IZo(x,y)Jr/oz /Oy f(t,s)dtds

for all (#,y) € @ and with f(¢,s) € F(t,s,v(t,s))a.e. and zo(x,y) = n(z) +0(y) —
n(0).
Our first existence result deals with the case where the orientor field F'(¢, z) is
convex valued. So our hypothesis on F'(¢, x) is the following:
H(F)1:  F:Qx X — Pj(x)is a multifunction s.t.
(1) (z,y,v) = F(x,y,v) is weakly measurable,
(2) v — F(z,y,v)isus.c. from X into Xy, (here X, denotes the Banach
space X equipped with the weak topology)
(3) 1F(z,9,0)] = sup{ 2] : = € F(z,y,0)[] < ae, ) + e, o]l ae.,
with a,b € L}I_(Q),
(4) for every B C X nonempty and bounded set we have

B(F(x,y,B)) < k(z,y)3(B) a.e.
with k € LY(Q),

(5) forall (x,y) € Q, F(x,y,-) maps bounded sets into relatively weakly
compact sets.

Remark. Note that hypothesis H(F); (4) implies that the orientor field F'(z,y, )
is Ppo(X)-valued for almost all (#,y) € Q. To see this, let B = {v}. Then 3(B) =0
and so B(F(x,y,v)) = 0 for almost all (z,y) € Q@ = F(z,y,v) € Pi(X) for almost
all (x,y) € Q. Also note that hypothesis H(F'); (5) is automatically satisfied if X
1s reflexive.

Theorem 3.1. If hypothesis H(F'); holds, then (%) admits a solution.

Proof. First we will obtain an a priori bound for the solutions of problem (x). So

let v(-,-) € C(Q, X) be such a solution. We have
ey
v(e,y) = zo(z, y) —1—/0 /0 f(t,s)dtds
for all (z,y) € @ and with f € LY(Q, X), f(t,s) € F(t,s,v(t,s))a.e. Hence
ey
< t dtd
ool < lzote il + [ [ W) auds
ey
< i b(t i dtd
<l + [ [ (et + 50 lote ) deds

Ty
gmm@m+wm@wA Abwwwmmww.
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Invoking the Wendroff-Gronwall inequality (see for example Beckenback-Bellman
[2]), we get that

oz, y)ll < lllzolle@,x) + llallLy gyl exp [1bllLr @) = Ma -
Then let F: Q x X — P;o(X) be defined by

7 Fa,y,v)if ||v]| < My,
S I Ly f ol > M, .

Note that F(x, y,v) = F(x,y,pum, (v)), where pyr, () is the M;-radial retraction
in X. Recalling that pas, (-) is Lipschitz continuous, we deduce that (z,y,v) —
F(x, y, v) is weakly measurable (see hypothesis H(F);(1) and the definition of F),
while theorem 7.3.11, p. 87 of Klein-Thompson [8] tells us that v — F(x, y,v) is
u.s.c. from X into X,,. Also if B C X is nonempty and bounded, then by using
hypothesis H(F'); (4) we have

ﬁ(ﬁ(r,y, B)) = ﬁ(F(x,y,le(B))) < k(x,y)ﬁ(le(B))a.e.

Note that par, (B) C tonv (B U {0}). Using the properties of §(-), we get:

B(pm, (B)) < B(conv (BU{0})) < B(B).
Hence we have R
B(F(z,y, B)) < k(z,y)B(B) a.c.
Finally note that

[P, y,0) = sup{|lz]] - 2 € F(2,y,0)} < ale,y) +b(x, y) My = o(x,y) a.e.

with (-, ) € LL(Q). Let W = {v € C(Q, X) : v(x,y) = zo(x, y)+ [y [ 9(t,s)dtds,
llg(t, 5)|| < e(t,s) a.e}. Then let T : W — 2% be the multifunction defined by

T(w) ={w e C(Q,X) : w(z,y) = zo(x,y) -I-/Ox /0?/ f(t,s)dtds,

FeLXQ,X), f(t,s) € F(t,s,v(t,s)) a.e.}.

Note that since F(t, s,v) is weakly measurable, (¢,s) — F(t, s,v(t, s)) is weakly
measurable on O, T x T with the Lebesgue o-field, which is complete with respect
to the Lebesgue measure on Q. So (¢, s) — F(t, s,v(t, s)) is measurable (see section
2) and thus by Aumann’s selection theorem (see Wagner [14], theorem 5.10) we
get that there exist f € LY(Q,X)s.t. f(t,s) € F(t,s,v(t,s)) a.e. = T(-) has
nonempty values. Furthermore since the set Sllf‘(~,~,v(~,~)) ={ge LNQ,X):g(t,s) e
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F(t,s,v(t,s))} € Pur(LY(Q, X)) (see [11], proposition 3.1), we can easily check
that 7'(-, -) has values in P;.(c(g,x))- Let B C W be a nonempty set. We have:

Ty
s <ol [ aeoaasiress . ven)

<5// (1,5, B(l,3))dt ds]

where B(t,s) = {v(t,s) :v € B} and [ [/ F (t, s, B(t,s)dt ds =
= {fo fo (t,s)dtds: h € LHQ, X), h(t,s) € F(t,s,B( ,8))a.e.}. For every z* €

X*, we have

o(z*, F(t,s, B(t.s)) = o(x", U F(t,s,w)) = supwema(x*, F(t,s,w)).
weB(t,s)

Observe (t,s,v) — o(z*, F(t, s,v)) is measurable and clearly (¢,s) — B(t,s) is
a graph measurable (i.e. GrB(-,-) = {(t,s,w) € @ x X : w € B(t,s)} € B(Q) %
B(X)), with B(Q) being the Borel o-field of @) (note that B(Q) = B(T) x B(T))
and B(X) the Borel o-field of X. So from theorem 6.1 of Kandilakis-Papageorgiou
[7], we deduce that (¢,s) — sup[a(x*,ﬁ(t,s,w)) s w € B(t,s)] is Lebesgue mea-
surable on @ (i.e. measurable for the completion of B(Q) = B(T) x B(T) with
respect to the Lebesgue measure on @ C R?, which incidentally is bigger than
B(T) x B(T), where B(T) =Lebesgue completion of B(T'); see Hewitt-Stromberg
[5], p- 392). Hence (t,s) — convF(t, s, B(t,s)) = H(t,s) € Pype(X) (see hypothe-
sis H(F)1(b)) is Lebesgue measurable on Q. Let h, : @ — X, n > 1, be Lebesgue
measurable functions s.t. H(t,s) = {hn(¢,5)},»; for all (¢,s) € Q (see section 2).

Then we have
T oy
r dt d
af [ rasaas

A [ Tl dra
Al [ttt s ara

(see Kandilakis-Papageorgiou [6], theorem 3.1 and recall the properties of 3(-))

ey
< / / Blhn(t,s) : n > 1]dt ds (see Monch [10], proposition 1.6)

// (t,s)3(B(t,s)) dtds_// (t,5)B(B(t,s)) dt ds.

So we have

AT (B // (t,5)3 ts))dtds<//||k||ooﬁ( (t,5)) dt ds.
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Set (B) = sup [e‘AHk”gQ(t"’s)ﬁ(B(t,5))] for every B C W and with A > 0.
(z,9)€Q
Since W C C(T, X) is equicontinuous, bounded and exploiting the properties of
B(-) and the Arzela-Ascoli theorem, we can easily check that ¢(-) is a sublinear
measure of noncompactness in the sense of Banas-Goebel [1]. Then we have

B(T(B)(z,y)) < / / oo IR0 NI 5 B4 501 it ds
S/ / ||| oo MENLC+) 5 BY dit ds
= BT e ) < 2L
= Y(T(B)) < 350(B

) MIEILE )

Let A > 1. Then we have that T(-) is a ¢(-)-contraction.

Next we will show that the multifunction 7'(-) has a closed graph (i.e. GrT =
{(v,w) € Wx W :w e T()} is closed in C(Q, X) x C(Q, X)). To this end
let (vp,wy) € GrT, n > 1 and assume that (v,,w,) — (v,w) in W x W C
C(Q,X) x C(Q, X). Then by definition, we have

ey
wp (2, y) = zo(2,y) —1—/ / gn(t,s)dt ds
0o Jo

for all (z,y) € @ and with g, € LYQ, X),gn(t,s) € F(t,s,v,(t,s)) a.e. Since

F(t,s,)is u.s.c. from X into X,,, with values in Py.(X), using theorem 7.4.2,p. 90

of Klein-Thompson [8], we get that (t.s) — conv |J F'(¢, s, v, (¢, s)) = G(i,s), is a
>1

measurable, Py (X )-valued multifunction s.z. |G(t_, s)|=sup{|lyll :y € G(t, s)} <
©(t,s) a.e. So from proposition 3.1 of [11], we have that S& = {g € L! (Q, X) :
g(t,s) € G(t,s) a.e.} is weakly compact in the Lebesgue-Bochner space L*(Q, X).

Thus by passing to a subsequence if necessary, we may assume that g, — ¢ in

LY@, X). Invoking theorem 3.1 of [12], we get

g(t,s) € conv w—ﬁ{gn(t, 5)n>1
C conv w—ﬁﬁ(t, s, v (2, 8))
C F(t, s,0(t, ) a.e.
the last inclusion following from the fact that F(t, s,+) is w.s.c. from X into Xy,

with values in P;.(X), and since v, — v in C(Q, X). So in the limit as n — oo,
we have for all (z,y) € Q

w(ﬂﬁ,y):Zo(x,y)Jr/ox /Oy g(t,s)dt ds
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with ¢ € LY (Q, X), g(t,s) € F(t,s,v(t,s)) a.e. So (v,w) € GrT = T(-) has a
closed graph in W x W C C(Q, X) x C(Q, X). Apply theorem 4.1 of Tarafdar-
Vyborny [13], to get v € T'(v). As in the beginning of the proof using the definition
of F(x, y,v) and the Wendroff-Gronwall inequality, we can check that [Jv]|¢(g,x) <
M, = F(x,y,v(x,y)) = F(x,y,v(z,y)), (r,y) € @ => v € C(Q, X) is the desired
solution of (*). O
We can also prove a “nonconvex” analog of theorem 3.1. For this we will need

the following hypothesis on the orientor field F'(x,y, v):
H(F)y: F:@Qx X — P¢(X) is a multifunction s.1.

(1) (z,y,v) — F(z,y,v) is measurable,

(2) v— F(x,y,v)is Ls.c.,

(3) 1P, 5,0)] = sup{ll) < = € Fe,5,0)} < ale, ) + b, pllel] ace

with a,b € L1(Q),
(4) for all B C X nonempty, bounded, we have

B(F(x,y,B)) < k(x,y)8(B) a.e.

with k(-,-) € L2(Q),
(5) for all (z,y) € Q, F(x,y,-) maps bounded sets into relatively weakly
compact sets.

Remark. Again hypothesis H([")2(4) above implies that for almost all (z,y) €
Q, F(z,y,-)is Py(X)-valued. Also hypothesis H (F)(5) is satisfies if X is reflexive.

Theorem 3.2. If hypothesis H(F')2 holds, then (%) admits a solution.
Proof. As in the proof of theorem 3.1, if v € C(Q, X) is a solution of (%), then
lv(z, y)l| < M,

for all (z,y) € Q. Again introduce F(x, y,v) = F(z,y, pa, (v)) (note that theorem
7.3.11, p. 87 of Klein-Thompson [8] guarantees that F(z,y,-) is l.s.c.) and let

W={wel(@,X): wle,y) = z(z,y) —1—/0x /0?/ g(t,s)dtds, (z,y) € Q,
lg(t, s)l| < (t,5) ae.} .

This is a nonempty, closed, bounded and equicontinuous subset of C(Q, X). Let
[:W — P;(LY(Q, X)) be the multifunction defined by

1
L) = Spe iy

From theorem 4.1 of [12], we know that T'(+) is l.s.c. So we can apply theorem 3
of Bressan-Colombo [3] and get a continuous map v : W — (X)) s.t. y(w) € ['(w)
for all w € W. Set

p(W)(z,y) = zo(z,y) + // )t,s)dtds .
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Then g : W — W and is clearly continuous since y(-) is. Let B C C(Q, X)

be nonempty, bounded and closed and let {v,}n>1 € B s.t. {v,},5, = = B. We
have N

s <o [ i
<ot [Tt
ol [ st sy deas

(as before by theorem 3.1 of [6] and the properties of 3(-))

T gy
S// [|k||co B({vn (T, 8)}n>1) dt ds (using proposition 1.6 of Ménch [10])
o Jo
T gy
= [ [ Wl sy aras.
o Jo

As in the proof of theorem 3.1, introduce the sublinear measure of noncompactness
1/2

W(B) = sup [e"MEILTE+)3(B(2,5))} and establish that (u(B)) < %1/)(3),
(z,9)€Q

A > 0. So if we choose A > 1, then pu(-) is a ¢-contraction. Apply theorem 4.1 of

Tarafdar-Vyborny [13] to get v = pu(v) for some v € W. Then, through the defi-

nition of F and the Wendroff-Gronwall inequality, we can show that lvllcx) <
My = F(x, y,v(x,y) = F(z,y,v(x,y)) = v € C(Q, X) solves problem (). d
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