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ON A NEW FAMILY OF
HOMOGENEOUS EINSTEIN MANIFOLDS

E. D. RobioNov

ABSTRACT. We show that there exists exactly one homothety class of invariant
Einstein metrics on each space [SU(2)]°+1 /T defined below.

In this paper we study a special family of homogeneous spaces MZ2°+3 =
SU(2) x -+ x SU(2)/T*(s > 1), where a maximal torus Tyay of SU(2) x -+ - x
SU(2)(S + 1 times) is decomposed into the direct product Tiax = T x St with
S1 as the subgroup of all product matrices of the form:

eZﬂ'it 0 y eZﬂ'ith 0 y y eZﬂ'iLSt 0
0 e—2mt 0 —27iiqt 0 —27iist

[ [

teR, v=(1,t1,...,08): t1,...,t5 €EQ

We prove the existence, up to a homothety, of a unique invariant Einstein metric
on each M253(|;] #£0,1;i € {1,...,5}).

Let us remark that every space MZ2%3 appears naturally as the underlying
manifold of a globally ¢-symmetric Sasakian structure (M, g, ¢, &, n) which fibers
over a Hermitian symmetric space [SU(2)]°+! /Tinax = CPY(A1) x - - x CPY(As41)
with the convenient holomorphic curvatures Ay, ..., Agyy (cf. [T],[K - W][T - K]).

Here 7 : M25+3 5, CPYA1) x -+ x CPYAs41) is a Riemannian submersion.

Nevertheles, the corresponding Riemannian-Sasaki metric g is always different
from the Einstein metric constructed in this paper.
The author is grateful to O. Kowalski for his criticism and useful discussions.
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1. PRELIMINARIES

Let su(2) denote the Lie algebra of SU(2) provided by the scalar product
B(z,y) = —1/2Retr zy. We consider an orthonormal basis {e, ez, e3} of su(2)
such that [eq, 2] = e3, [e1, 3] = —ea, [e2, €3] = e1. The Lie algebra st of St is of the
forms! = R-W = R-(e1,t1€1,...,15e1). Put G = SU(2)x---x SU(2)(S+1 times).
Consider the scalar product on g = SU(2) & --- & SU(2) given by B/g x g =
Bsu(2) + - -+ + Bsy(2). Then the Lie algebra h of the Lie group T% = H has the
following form:

h:{Y:(BOelaﬁlela“'aﬁSel)Eg: B(YaW) :Oaﬁoa"'aﬁs ER},OI’
h={Y = (Boe1,Bre1,...,Bse1) €Eg: Bo+ufr+...t58s =0,00,...,0s € R}.

Further, we have a B-orthogonal decomposition g = hGpoEp1 P - - Ppsy1, where
po=R-W,pi=R-(0,...,¢5,...,00+R-(0,....¢5,...,0), i=1,...,5+1.
Morever, po,p1,...,ps+1 are irreducible invariant subspaces w. r. to the adjoint

representation adh on p = po @ p1 ® - D ps41 and pp E pi, i€ {1,..., 5+ 1}
w.r. to this representation.

Lemma 1.1. Under the assumption || # 0,1, [ € {1,...,s}, we have p; % p;
for i £ j with respect to the adjoint representation of h on p.

Proof. Suppose that there exists an isomorphism ¢ : p; — p; such that ad V op =
poadV for every V € h. Put A = (0,...,622,...,0), B = (0,...,623,...,0) € p;.
Then we can write ¢(A) :(0,...,3]6,...,0), w(B) = (0,...,@,...,0),Where r,y €
span(es, e3). For V = (foer, fre1, ..., Bge1) € h we have :

[V, o(A)] = ¢([V, A]) = Bip(B), and also
[V, o(B)] = @([V, B]) = =Bip(A).

Hence we get f§;[e1, 2] = Biy, filer, y] = Biz. Further, since the Lie bracket [z, y]
on SU(2) coincides with the usual vector cross-product, we obtain immediately;

1551 - [lell = 18] - lyll and | - |lyll = 18] - [l||. Hence the equality |;] = [5;]
holds. But |¢| # 0,1 for { € {1°,..., s}, therefore there exists an element V =
(Boer, Brer, ..., Bses) € h such that By + 1/ + -+ 1sfs = 0 and |5;] # |5,

a

which is a contradiction.

Corollary 1.1. For || #0,1, L € {1,...,s}, every Ad(H )-invariant scalar prod-
uct {-,-) on p has, up to a constant factor, the following form:

(1.1) () exp=Blpo+wmBIpi+- - +yss1B [ psq1

where y1,...,ys41 € RT .
The proof follows from the Lemma 1.1 and the Schur’s lemma.
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We constract a scalar product (-,-) on g by setting (-,-) = {-,-)/pxp + B/nxh-
Further, we consider the following (-, -) -orthonormal basis of p:

Eo = W/IIWI| = 1/[[WIl- (er, er, .. 1s€1) € po,

Eoimi = 1/\/Y; (0, €2,...,0), Eoi = 1/\/5,(0,...,€5,...,0) € p;
i=1,...,5+1.

By the direct calculation we obtain

(1.2) { [Fo, Evi—1] = wu—1/[|W]| - Eai, [Eo, Eoi] = =i /[|W]] - Eoi—1,
. [Eoic1, Eo]l = tic1/ul|WI| - Eo + [Baiz1, E2iln

(13) {[pl’p]] :O’iij’ i’je{l""’S—i_l}
[Po,po] =0, [po,pil = pi, [pi,pi] SPo® R

2. THE SECTIONAL CURVATURES OF M2>5+3

In this part we shall use the notation of the previous part. First, we see that
every G-invariant Riemannian metric on M2%3 for |y| £ 0,1, [ € {1,...,S}, is
determined, up to a homothety, by an Ad(H )-invariant scalar product of the form
(1.1). Further, the sectional curvatures of such metric can be calculated by means
of the standard formula (see [B]):

(R(X,Y)X,Y) = =3/4]|[X, Y]p||2 - 1/2([X, [X, Y]g]p’ Y)-—

(2.1) —1/2([Y, [Y, XTglp, X) + || U X, V)P = (u(X, X),w(Y,Y))

where X|Y € p,{,-) is the corresponding scalar product on p and the mapping
u:p X p— pis defined by the formula:

(2.2) 2u(X,Y), Z) = ([Z, X, Y) +([Z, Y], X)

for all Z € p.
Lemma 2.1. For an Ad(H)-invariant scalar product {-,-) of the form (1.1), the
following formulas are true:
wX,Y) = (y; — 1)/24;[ X, Y], where X € pg, Y € p;,
U(POaPO) = u(plapl) = u(plap]) = Oa where Za.] € {1a .. ,S—|— 1}

Proof. We shall use Formula (1.3) and (2.2). Let X € pg,Y € p;. If Z € py, then
Z,X], =0, [Z,Y], € p; and hence (u(X,Y), Z) = 0. Further, if Z € p;, j # 1,
then [Z, X], € p;, [Z,Y], = 0 and also (u(X,Y), Z) = 0. Therefore u(X,Y) € p;.
Finally, let Z € p;, then [Z, X], € p;,[Z,Y], € po and we have

QyiB(u(X’Y)’Z) = yiB([Z’X]p’Y) + B([Zay]p’X)'
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But
vwB([Z,X],,Y)+ B([Z2,Y],, X) =
=uB([Z,X],Y)+ B([Z,Y], X) =
=y B([X,Y], Z) - B([X,Y], 2),
since B is Ad(G)-invariant. Hence u(X,Y) = (y; —1)/2y [ X, Y] for X € po,Y € p;.
The other formulas of Lemma 2.1 can be proved similarly. a

Lemma 2.2. For the sectional curvatures of ML25+3 we have

Ko(Eo, Eai—1) = Ko(Eo, Ea) = (tic1 /||W1)23:)7,
Ko(Faio1, Bai) = 1)y — 307_1 /497 | W%,
KU(X,Y):O, XEPZ',YEPJ', i;ﬁj, ,j€1,...,5+ 1.

Proof. Let us calculate K, (FEy, Fa;—1). From the formulas (2.1), (1.2) and Lemma
2.1 we get

i1 1 i1

[(U(EOaE2i—1) ||||W|| 2Z|| <[ 0, ||W||

EZZ]pa E2Z 1>+

+%<[E2i—1, m/VlHEzZ] Eqo) + ||( 22; D) |TW|| CEoi|]* =
31 b b By (wi—1 i
it At A G
The other sectional curvatures are calculated analogously. d
Corollary 2.1. For the Ricci curvatures of M2*3 we have
, 13 5 . . 1 oy
textrice(Ey) = 3 ;(W) ; rice(Faj_1) = rice(Fqy) = ; — W

The proof follows from Lemma 2.2 by a straightforward compatation.

3. INVARIANT EINSTEIN METRICS ON M2°+3
We start with

Lemma 3.1. Let {-,-) be an Ad(H) -invariant scalar product on p of the form
(1.1). Then the invariant Einstein metrics on M25+t3(|y| # 0,1, L € 1,...,9) are
defined by the following system of quadratic equations

OziZZ»Z—ZZ' —Oz]Z —Z
(3.1)

SitlwiZ? =Zj—opZF, ijEl.. S+]1
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where a; = 71 [2||W|%, Zi = 1/y:.

Proof. Since H = T acts transitively on po, p1, ..., ps41 and preserves the Ricci
curvature, then (- -} is Einsteinian iff ricc(Ey) = rice(Ey;) = rice(Ey;) for all
1,7 € 1,...,5. Our lemma follows immediately from this fact and Corollary 2.1.
O

Further, it is obvious that (3.1) is equivalent to the formulas

{a»Zz—Z»—i—A:O, icl,...,S+1,

itz = A (a; >0, Z; >0, A>0)
or
(3.2) Z# = (1 £ VT—da;A)/2a; | i=1,...,5+1,
. Zf;f ;77 = A 0O<a;, 0<7Z;, 0<A<]/404)

where A is an auxiliary parameter.
But a;(Z;)? > Afor alli € 1,...,5+1, under the assumption 0 < a;, 0 <
A < 1/4«;. In fact, we have the folowing sequence of inequalities:

VI—4a;A> 0> 400 A -1,
1421 =4 A+ (1 — 4o A) > 4oy A
(1+/1—4a;4)" > 40,4 > 0,
1+ /1= dai A > 204\/AJA;

I.e., ZZ»‘" > /A/a; and hence o;(7;
all  =1,...,5+ 1. Because S + 1
no ZZT" can be a part of any solution
reduces to the formulas

33) {Zi:(l—\/l—élaiA)/?ai, i=1,...,5+1,
' SO Zi = (S+2)A, (0<a;, 0< Z;, 0< A<1/4ay)

)2 > A. On the other hand, a;(Z ; 7)? >0 for
> 2, the second equality of (3.2) shows that
(Z1,...,Zs41) of (3.1). Hence (3.1), or (3.2),

Finally, from (3.3) we see that the problem to find all invariant Einstein metrics
of M25+3 is equivalent to the problem of finding all positive zeros of the function:

S+1
F(A) = (1= V1 —40;4)/20; — (S +2)A

under the assumptions 0 < «;, 0 < A < 1/4amax, where

Qmax = Mmax{ay, ..., o541}
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Lemma 3.2. The function f(A) has exactly one zero in the interval |0, 1/4omax].

Proof. In the first place we have

S+1

=Y 1/V/1—4da;A— (S +2),

i=1
S+1

= Z 20; /7/(1 —4a; A)2 >0 for A €]0,1/4amax[-
i=1
Further, f/(A) = —1 and also
lim  f(A)=  lim (e
A—1/40max—0 T A—1/40max—0 /1 — damax A

Finally, f(0) = 0. Let us prove that f(1/4amax) > 0. Indeed, we have

—(S42)) = 4.

s — V1= &/ Omax
F(1/4amax) = Z ! ! / (5+2) —

p 20 4ovmax
_SZ-I—:l 1_1+ai/amax (S+2)_
o1 20[2'(1—1— \/1_ai/amax) 4ormax
SZ:“ C(5+2)
204max 1 + / 1-— az/amax 40Zmax

S L s

QOzmax(l + \/ 1-— ai/amax) 2amax 40Zmax 2amax

S S

i;églax

=0.

4amax 4amax

The assertion of our Lemma follows now from the above fact above the behavior

of f(A), f'(A), f’(A) in the segment [0, 1/4omax]- O
Hence we obtain the folowing.

Theorem 3.1. For each ¢ = (1,¢1,...,t5) (t; € Q, || #0,1, i €1,...,5) there
exists, up to a homothety, a unique invariant Einstein metric on M*5+3 (S > 1).

Remark. For S = 1 the solution can be calculated from a cubic equation (see
the previous paper [R], which was devoted to this special case).
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