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THE STRUCTURE TENSOR AND FIRST ORDER
NATURAL DIFFERENTIAL OPERATORS

PioTr KOBAK

ABSTRACT. The notion of a structure tensor of section of first order natural bundles
with homogeneous standard fibre is introduced. Properties of the structure tensor
operator are studied. The universal factorization property of the structure tensor
operator is proved and used for classification of first order x-natural differential
operators D : T X T — T forn > 3.

INTRODUCTION

In this paper, in analogy to the structure tensor of a GG-structure, we introduce
the notion of a structure tensor for sections of first order natural bundles with
homogeneous standard fibre. In this approach, the structure tensor turns out to
be a natural differential operator of order < 1. We prove that it has the following
universal factorization property: first order natural differential operators D : FF —
G, where ord (F) = 1, ord (G)) < 1 and F' has homogeneous fibre, are compositions
of the structure tensor and natural transformations (that is, operators of order
zero). Therefore the classification of such n.d. operators can be reduced to the
classification of Ll-equivariant maps K : HFy — Go, where HF is the bundle of
structure tensors. We give explicit formulae for structure tensors of some natural
bundles. As an example of the application of this results, we give the classification
of first order #-n.d. operators D : T x T — T for n > 3. All facts conserning
natural bundles, needed in this paper, can be found in [12] (see also [4], [6], [11]).
Information on G-structures and the structure tensor can be found for example in
[1], [3]. Another approach to the structure tensor (of order k) and its relation to
natural bundles is presented in [8].
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1. PRELIMINARIES

We introduce here some basic notations and definitions. We will assume, if not
stated otherwise, that all manifolds, bundles and maps are smooth. For a category
C the class of morphism of C will be denoted by Mor(C) and the class of objects
of C by Ob(C). We will often write D € C instead of D €Ob(C). The identity
functor on C will be denoted by ¢¢ and ¢p will denote the identity morphism on
D (D €0b(C)). Home(D, E) or Hom(D, E) will denote the set of morphisms from
D to E, where D, E € Ob(C).

Let M,, denote the category of n-dimensional manifolds and embeddings, and
let F,, be the category of libre bundles over objects of M,, and fibred maps which
are diffeomorphisms on fibres and cover morphisms of M,,. The projection functor

Fn — M, will be denoted by .

1.1. Definition. A natural bundle is a covariant functor F : M,, — F,, such
that 7 o I/ = 1pq, and F is regular: if £ : R¥ x R® — R” is smooth, then
F(f) : R* x F(R") — F(R") is smooth, where F(f)(t,-) = F(f(t,")), t € R*.
For M € My, wp or m will denote the bundle projection F/(M) — M.

The category of natural bundles over n-dimensional manifolds with natural
transformation of functors as morphisms will be denoted by NF,,. Then f €
Homyr, (F,G) ift f={f(M)}srem, ,YM € M, f(M) € Mor(F,) and

(1.1)  ¥éeMor(M,), 6: M — N, G(¢)o f(M) = f(N)o F() .

Let ' € N'F,. The smallest integer k, such that F(f)(z) depends only on j*f,
for every f € Mor(N'F,,), is called the order of F'. We will write k = ord (F').

1.2. Remark. Tt is known (see for example [4], [12]), that every natural bundle
F has finite order and can be obtained as a bundle associated to the k-frame
bundle, with the standard fibre Fy = F(R")y. More precisely, let Lf = {j¥¢ :
¢ €DIff(R™, R"), p(0) = 0} be the k-th order differential group and let F*(M) =
{jkf|f €Diff(R", M)} denote the k-frame bundle on M € M,. Then F* is a
principal fibre bundle with the right action of LF given by composition of jets.
The functor F determines a left action p : LX x Fy — Fy, p(jEe, ) = F(p) (2).
Let F,(M) be the quotient (F* x Fy)/LY where LF acts on F'* x Fj on the right
in the following way:

(1.2) (F¥(M) x Fy) x LE 5 ((h,y),a) — (ha, p(a™t,y)) € F¥(M) x Fy .

Then F, is a natural functor, and is naturally equivalent (or isomorphic in the
category N'F,) to F'. Further on we will identify F, with F'.

Note that if f € Homyr, (F,G) then fo : Fo — Go, fo = f(R™)|p, is LE-
equivariant. On the other hand L*-equivariant maps between Lf-manifolds give
rise to natural transformations of associated functors (see [6]). One can prove that,
in fact, the category of LX-manifolds with Lf-equivariant maps is equivalent to
the full subcategory of N'F,, whose objects are functors of order < k.



THE STRUCTURE TENSOR 123

NATURAL DIFFERENTIAL OPERATORS

Let FF € NF,. F(M) will denote the set of local sections of F(M) — M,
and J"F € NF, the r-jet prolongation of F(J°F = F). If G € N'F, then the
formula D : F — G will mean that D = {D(M)}arem, is a family of maps
D(M): F(M)— G(M). For N € Hom(F,G),N : F' — G will be defined so that
N(M): E(M) 30— N oo e G(M).

1.3. Definition. D : F' — G is a natural differential operator if and only if
(1.3) 3k € NID* € Hom(J*F,G): D = D* o j*

where j* : F — J*F j*(M)(c) = j*o. The smallest k satisfying (1.3) will be
called the order of D (we will write & = ord (D)).

1.4. Remark. Let ¢ € Homay, (M, N),0 € F(M). We put
puo=F(p)ogop™t € F(N).

It is not difficult to check that if D : F' — G is a n.d. operator, then

(1.4) Vo € Mor(M,,), ¢ M — N Vo € F(M), D(g.0) =¢.D(0).

Natural differential operators are often defined as families D : F' — G which sat-
isfy (1.4) (throughout this paper such families will be called *-natural differential
operators). If D : I — (@ is a *-n.d. operator then for ¢ € F(M) and # € dom(s),
D(o) depends only on j ¢ (see [12]). If k = ord (D) < oo then D = D* o j* where
D¥ . J¥F — @ fulfils the condition (1.1) but D* (M) is not necessarily continuous

(see[2]).
NATURAL AFFINE BUNDLES

Some natural bundles (for example jet bundles) have an additional affine struc-
ture. We use them often in this paper, and to give our statements in a more
compact form, we introduce the notion of a natural affine bundle.

We will denote by AF, (resp. V Fp) the category of affine (vector) bundles over
objects of F, and affine (vector) bundle homomorphisms which cover morphisms
of F,. The projection functor from AF,(VF,) to F, will be denoted by p.

For A € AF,, LA will denote the vector bundle corresponding to A. If y € p(A)
then LA, is the vector space of translations in A, and we have the maps

Ay x LA, 5 (a,v) — (a+v) € 4y
Ay x Ay 3 (a,b) = (b—a)e LA, .

For f € Homar, (A, B), Lf € Homys, (LA, LB) will denote the linear part of f,
ie. fla+v) = f(a)+ Lf(v). Then L is a covariant functor from AF, to VF,. We
will regard VF,, as a subcategory of AF, so L restricted to VF, is the identity
functor.
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1.5. Definition. Let F € N'F,. A natural bundle G : M,, — AF, (G : M, —
VF,) will be called a natural affine (vector) bundle over F' if and only if poG = F.

The category N AF of natural affine bundles over a functor F will be defined
so that f = {f(M)}amem, € Mor(NAF)ifand only if f € Mor(NF,), VM € M,,,
f(M) € Mor(AF,) and p(f(M)) = tpar). In a similar way one can define the
category N'VF of natural vector bundles over F'. In the case F' = iy, NAF(NVF)
will be denoted by N A (NV) and called the category of natural affine (vector)
bundles.

The functor L : AF, — VF, induces a covariant functor from N AF to NVF
which will be also denoted by L.

1.6. Examples. Fix F' € NF,.
1. Let T denote the tangent bundle functor. Then T'€ NV and TF € NVF.

2. Let K € NA. We define K x F € NAF in the following way: K x F(M) =
K(M) xy F(M), K x F(¢) = K(¢) x F(®)|kxr(s)

3. Let K € NV,G € NVF. We define K ® G € NVF so that K @ G(M) =
K x F(M)® G(M), K @ F(¢)® G(¢).

4. T*@TF € NVF. Let j € Homyx, (J1F, T* @ TF) be such that
(1.5) J(MY : J'F(M) 3 jlo —deo €T x TF(M) .

Since j(M) is an immersion we can identify J'F(M) with im j(M) C T*@TF(M).
Then

(1.6) JYE(M) = (ep @ drp) ™ erm) -

Therefore J1F € NAF and LJ'F(M) = (17 @ dap)™t (Orpr) = T @ VF(M),
where VF(M) denotes the vertical bundle of F(M), VF € NVF, so LJ'F =
™o VF.

1.7. Remark. If W € NVF and ord (W) = k, then Wy is an L%-vector bundle
over [y, l.e. LZ acts on Wy so that for a € LZ, pa : Wo — Wy is a vector
bundle homomorphism and the bundle projection p : Wy — Fy is LF-equivariant.
If f € Hompyyp(G, H) then fo : Go — Hp is an LE-equivariant homomorphism
of vector bundles over tf,. Similarly, as in remark (1.2), this can be expressed as
equivalence of suitable categories. An analogous statement is true for N AF.

1.8. Definition. Let G, H, K € NAF, o € Hom(G, H), 3 € Hom(H, K).

1. The sequence G =~ H P K is exact if and only if YM € M,, the sequence
LG 2 Ly P20 LR () is exact.

2. We say that « is a monomorphism (an epimorphism) if and only if YM € M,,,



THE STRUCTURE TENSOR 125

a(M) is a monomorphism (an epimorphism). In the language of exact sequences
we will express this fact by saying that the sequence 0 — G = H (G 2 H— 0)
is exact.

3. We say that the morphism « has constant rank if and only if 3K € N, VM €
My, rank (La(M)) = k.

1.9. Proposition. Let F' € N'F,, ord (F) = k. If F' is homogeneous, that is , LX
acts transitively on Fy, then rank(«) = const for every a € Mor(N AF).

Proof. Let a € F(M), b € F(N). F is homogeneous, so there exists
¢ € Hom(M, N) such that F'(¢)a = b. Let @« € Hompyap (G, H. Then (1.1) implies
that H(¢)oa(M), = a(N)y o G(¢). Since H(¢), G(¢) are isomorphisms on fibres,
rank (a(M)y) = rank (B(N)s). a

Morphisms of constant rank can be used to define new natural affine bundles.
Let G,H € NAF, o« € Hom(G, H) and rank (o) =const. Then we can define
ima € NAF, (ima)(M) =imao(M), (ima)(¢) = H(¢)|ima(M). We also have
coker v € NVF where (coker «)(M) = H(M)/ima(M) and coker a(¢) is defined

by the commutative diagram

o) ——2 )
Js) Jotv)
coker a(M) coker a(¢) coker a(N),

(¢(M) and q(N) are the canonical projections). If o : G — H is such that a(M)
is an inclusion for every M € M, then G will be called a natural affine (vector,
in the case G, H € NVF) subbundle of H and coker « will be denoted by H/G.
If H € NVF then one can define ker « € N AF in the obvious way.

1.10. Remark. It is easy to see that L(ima) = imL(«), L( ker o) = ker L(«),
L( coker o) = coker L(«) and ¢, from the diagram above, is in Mor(N AF).

NATURAL VECTOR BUNDLES

Let W € N'V. Then J*W (M) has the structure of a vector bundle:ajlo+bjln =
ji(ac + bn), a,b € R. Therefore J¥W € N'V. Note that J'W can be regarded as
an element of N AW or of A'V. This will not, however, lead to confusion because
we will consider the category N AF only for fixed F € N'F,.

For W € N'V we define ek, € Hompry (S¥T* @ W, JEW) linearly extending the
formula

(1.7) ey (M)W oot es) =5t )

where fi € C°(M), fi(z) = 0,d,fl =wifori=1,....k; n € W(M),n(z) = s. It
is not difficult to check in coordinates that ef;, (M) is well defined and the following
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sequence of natural vector bundles is exact:

ek x 1
(1.8) 0— SFT* @ w 2% gk 22t k=l o
where for F' € N'F,, and r > kp}, € Hom(J"F, J¥F) denotes the canonical projec-
tion, p (M) : J'F(M) 2 jho — jko € J*F(M). T,J*T € NV and pf : J*T — T
has constant rank. We define (J*7)° = ker pf € A'V. Then we have the following
exact sequence:

k
(1.9) 0— (J*T) — Jhr Lo — 0

2. THE ACTION OF S*T1T* x T(M) oN JLF(M)

In order to study this action we will introduce, following [12], the notion of a
connection of order k. Let FF € NF,, M € M,,, X € T(M). F(X) € TF(M) will
denote the infinitesimal lifting of X. Locally, F'(X) is generated by (F'(¢:)) where
(1) is the local 1-parameter group of diffeomorphisms of X. If ord (F') = k then
for every y € F(M), F/(X), depends only on j¥X and we have a map

F(M): K*T < F(M) 3 (j¥X,y) — F(X), € TF(M) .

Then fM is a homomorphism of vector bundles and covers ¢p(M) (see lemma
2.4 in [12]). Tt is also possible to prove that f = {f(M)}rrem, is a natural
transformation of the functor J¥T x F to T'F (proof of prop. 2.9 in [12]). Using the
terminology introduced in section 1, one can say that f € Hompryp(J5T x F, TF).

If W is a natural bundle then W(R") = Wy x R™. This implies that (TF), =
T(Fy x R")g = TFy x R™. we can identify (J*T x F)o with (*R" x F, where (¥
denotes the Lie algebra of LX. Then from the formulae in [12] p.24 one can get an
explicit formula for fy:

(2.1) Jo il x R* x Fy 3 (&, 0,y) — (p,(£),v) € TFy x R”

n

where p; o Ty fo is the differential of the orbital projection p, : ¥ 5a—
pla,y) € Fy in the neutral element of LE. If F' is homogeneous, then p, is a
submersion, so p; is an epimorphism. Therefore we have the following

2.1. Proposition. f € Hompyp(J¥T x F,TF). If F is homogeneous, then F is
an epimorphism.
BUNDLE OF CONNECTIONS
Let k > 1, M € M,,. Then
(2.2 CHM) = iz © b) " (orar) € T* © TT(M)

is a bundle of connections of order k. C* is an affine subbundle of 7% @ J*T
Ct e NA LC* =T* @ (J*T)® and ord (C*) = k + 1.
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COVARIANT DERIVATIVE

If A is a global section of C*(M) then it is called a connection on M. For
X e T(M),c € F(M) (ord (F') = k) the covariant derivative of ¢ is defined in
the following way:

(2.3) (Vxo)(x) = deo(X) = Foey)(MX)) € VF(M)
C* x F is an affine subbundle of T* @ J*T x F. we will prove that .7~ ® F(C* x
F(M))C J'F(M) (k= ord (F)).

Let A€ T* @ J*T(M), y € F(M),. From (2.2) and (1.6) we have:

Ny ECF x F(M) <= VYX € T, M pi(M(X)) =X
(2.4)
i © f(Ay) € J'F(M) <= VX € T, M drp(f(MX),y) = X .

Since drp o f = pk drp(f(MX),y)) = pE(A(X)), and (2.4) implies
(2.5) (N y) € CF x F(M) < vpe @ f(\y) € JTF(M) .

Therefore one can define h : C* x F' — J'F so, that the diagram

0 Crx F— T J*Tx F
Jh JLT*®f
0 JF T™TF

commutes. Then, as a consequence of proposition 2.1, we get the following
2.2. Proposition. h € Hompyap(C* x F, J'F). If F is homogeneous then h is

an epimorphism.

2.3. Remark. Let A be a connection on M, p € F(M). Then from (1.5) and (2.3)
we have:

(2.6) Vo(x) = jlo —h(Ag,0.) ET* @ VF(M) .
Therefore, X is a o-connection (i.e. Vo = 0) if and only if ko (A, o) = jlo.
2.4. Definition. Let B* € N'F, be such, that for M, N € M,,, ¢ € hom(M, N)
B*(M) = {jk4 o € Diff( M), jE " iar, 2 € M}
V(@) ir¥) = Jz(6 o067
Bt is a subgroup of LX and it can be identified with S*(R")* @ R™:
o

al‘jl...al‘]’k¢)65( ) ©

1By 23556 — (t,. 4.) = (
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is an isomorphism of groups. L¥ acts on BE by the transformation L* x B 3
(a,b) — aba=! € BY and I : BY — S*(R")* @ R" is LE-equivariant. Therefore
natural bundles B* and S*t* are isomorphic and we will identify them.

Let AMF denote the canonical monomorphism S*+t17™* @ T — T* @ S*T* @ T.
We define €% = (LT* @ eF) o AY* Then % € Hompy (S*HT* @ T, t* @ (J*T)?)
is a monomorphism. By using the formula [12]p. 42, which describes the rule of
transformation of a connection under the action of a diffeomorphism, we obtain
the formula for the action of S¥**17™ @ T(M) on C*(M):

2.5. Lemma. If ) € C*(M,), j5*1¢ SEHITTRT(M) thep
(2.7) CH@)IA = A4 ME(jE gy

Now we will describe the action of S¥+17T* ¢ T(M) on JLF(M).

2.6. Theorem. Let FF € NF,, ord (F)=k,z € J'F(M),
and j¥tl¢ € S¥H1T*@ T(M). Then

(2.8) JF(9)z = 2+ x(jET 6, y)
where Y = Lh o ¢VF € Homparyp(S*TIT* @ T, T* @ VF),y — pi(2).

Proof. Let A € C*(M),. Since z — h(),y) € T* @ VF(M) is an element of a k-th
order bundle,

—h(Xy) =T @ VF(6)(z — h(},y)) =

= JUF(@) — TP y) =

= J'F(¢)z — h(C*(9)A, y) =
= J'F(¢)z — h(A+ " (jit1 ), y) =
= J'F(¢)z = h(Xy) = Lho e " (ji*1¢,y) .O

3. THE STRUCTURE TENSOR

We will assume that F' € A'F,, ord (F) = 1 and F' is homogeneous. T* @ T can
be identified with im et = (J1T)? (see 1.8, 1.9). Then LCt = T* @ (J1T)° = T34.
Let t : C1 — A?T*@T denote the torsion transformation: for M € M,,, A € C1(M)
t(M)(X) € A*T™* @ T(M) is a torsion tensor of the connection A.

3.1. Lemma. Lt € Hom™ (t1, A2T* @T) is equal to —A where A(N) is the skew

symmetrization: for XY € T(M),, C € T+(M), A(M)(C)(X,Y) = C(X,Y) —
C(Y, X).

Proof. Let ¢ : U C M — R"™ be a coordinate system. Then C*(¢) : C1(U) —
CL(R") = R?® x R" is a coordinate system on CY(U). It is proved in [12] that
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C’l(qb)(/\j»k = —F;k) where F;k are the Christoffel symbols of A, and if one calculates
in coordinates, one can easily see that Lt = —A. a

SC' will denote the natural bundle of torsion-free connections:SC!' = ker ¢.
Then we have the following exact sequence of natural affine bundles:

(3.1) 0—SC"—=C'" = AT*®T —0
and L(SCY) = L( ker t) = ker (—A) = S?T* @ T. We will prove the following:

3.2. Theorem. The following diagram is exact and commutative:

0
2T QT x F S2T* QT x F———0
X
(3.2) 0 ker Lh Thxp—Lh  prgyp
J—a —A LS
0 im @ ANT* 9T x F g HF 0
0 0 0

where § denotes A restricted to ker Lh, HF = N?T* @ T x F/imd, q denotes the
canonical projection and S1 € Homprap(J1F, HF') is defined so that S'oh = qot:

C'x F JIF

(3.3) Jt Jsl

NT*oTxF—L . pgF

Proof. It is clear that the diagram (3.2) without the arrow LS! is exact and
commutative. Therefore ker Lh C ker (go(—.A)). Since £ in (3.3) is an epimorphism,
there exists a unique S* such that (3.3) is commutative. Now we will prove that the
third column in (3.2) is exact. We will use (3.2) with the LS!-arrow missing. Let
peT* @ VF(M), LS*(p) = 0. There exists | € T3 x F'(M) such that Lh(l) = p.
Then q o (—=A)() = 0 and —A(l) €ker ¢ = im 9. Let b € ker Lh(M),—0(b) =
—A(l). Then [ —b € ker (—=A) = S?T* @ T x F(M), and p = Lh(l —b) = £(I —
b) €im&(M). Therefore ker LST(M) Cim&(M). 1t is easy to see that LS o & =0
and consequently ker LS =im¢. |
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3.3. Definition. S = S' o j' : F — HF will be called the structure tensor
operator. For o € F(M)S, = S(M)(c) € HF(M) will be called the structure

tensor of o.

3.4. Remark. HF is a natural bundle of order < 1 and S is a natural differential
operator of order < 1.

Now we will examine how S is related to the structure tensor of a G-structure.
Since ord (F) =1, F(M) = (FY{(M) x Fy)/L., where the action of L} is given by
formula (1.2). Let ® denote the canonical projection F1(M) x Fy — F(M). For a
global section ¢ € F(M), ¢ : FY(M) — fo will denote the tensorial 0-form of o :
fze M, he Fgl(M) then &h = @;1(0(1‘)). Let y € Fy and Gy be the isotropy
group of y. If ¢ € F(M) is a global section, then Qy(c) = ¢~ (y) C FY(M) is
a Gy-structure (see [12], prop. 2.20). Replacing every bundle W by its standard
fibre Wy and every morphism f by fu we obtain from the diagram (3.2) an exact
and commutative diagram of Ll-vector bundles over Fy and L} -equivariant vector
bundle homomorphisms over ¢p, (see remark 1.7). Then taking fibres over fixed
Yy € Fy we get an exact and commutative diagram of Gy-vector spaces and Gy-
equivariant linear maps (V = R” and g, is the Lie algebra of Gy):

ty= @ pl
0V og——Vavev Ly o F 0

J_ay A JLs;
0 im 9, ANV OV — (HFy), ———0
0 0 0

Therefore (HFy), = A*V* @V /imd, = H%*(g,) is the Spencer cohomology
group. Let ¢ € F(M) be a global section, A € C'(M) be a g—connection. We will
denote by ¢, : Qy (o) — H*?(g,) the structure tensor of the Gy —structure Q,(c).
Then ¢y = ¢, @ T, where T = t(A), T is the tensorial O0-form of 7. From remark
2.3 and diagram (3.3) we get:

Sy (x) = S*(jio) = SH(h(As, 02)) = q(t(Ne), 00) = q(T, 00).

If I € Qy(0), then (1) = y, and

Therefore we have the following



THE STRUCTURE TENSOR 131

3.5. Proposition. If o € F'(M) is a global section then §U|Qy(0) is the structure
tensor of Qy (o).

Now we will give an interpretation of the functor HF. In J1F (M) we have the
following relation

2] = 29 & pé(zl) = pé(zz) and z1 — z9 € im y(M).
The theorem 2.6 implies that J'F(M),/imx(M),/ = is the set of orbits of
S*1* @ T(M)p(x = w(y)) in JLF(M),. Since ker LS' =imy, S' induces a bi-
jection JLF(M)/imx(M) — HF(M):
S'(M)

N 7

JUF(M)/im x(M)

JYF(M)

HF(M)

where JLF(M) — JYF(M)/im y(M) is the canonical projection. Since L(ker S1) =
ker L(S1) = imx, from (3.3) we get the exact commutative diagram (hg = h|scixr)

0 SC x F ClxF—t A2 o7 xF— .0
Jho Jh Jq
1
0 ker 1 JUF S HF 0
0 0 0

Let FI(M) denote the set of first jets of 1-flat sections of F/(M), i.e. jlo € FI(M)
if and only if there exists a map ¢ : U — R” such that ji¢.o = jlog where o¢ €
F(R") is a constant section. Then (2.8) implies that imy = Lker S' = S?7T* ®
T C L(FI(M)). But since 1-flat sections locally admit torsion-free connections,
FI(M) C imhg = ker S*, so FI(M) = ker SY(M). Therefore one can introduce a
vector bundle structure on the affine bundle J*F/(M)/imé&(M) so that FI(M) is
the 0 of J1F'(M)/imé&(M), and then the functors J* F//im¢ and H F are isomorphic
(in the category AV ). Since the theorem 2.6 was proved for arbitrary k € N, one
can define HF = J'F/im¢ and the structure tensor operator S : F — HF also
when & > 1. Then HF may have only an affine structure.

4. FIRST ORDER NATURAL DIFFERENTIAL OPERATORS

4.1. Theorem. Let F,G € N'F, and let F be homogeneous, ord (F) = 1, ord
(G) < 1. If D € Homysz, (J1F, G), then there exists exactly one morphism K €
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Homprz, HF,G such that D = K o S*:

Proof. Formula (1.1) implies that D(M) is constant on orbits of S?T* @ T(M) in
JYF(M). Therefore, from the remarks after proposition 3.5, it follows that there
exists a map K(M) : HF (M) — G(M) such that D(M) = K(M)o S*(M). St is
a epimorphism so K = {K(M)}sem, is unique and K € Mor(NF,). O

4.2. Corollary. Let F, G be asin theorem 4.1, D : ' — ( be a natural differential
operator, ord (D) = 1. Then there exists exactly one K € Hom(H F, i) such that
D=Kofs.

4.3. Remark. If we assume in 4.2 that D is a *-n.d.operator, then D can be
uniquely factorized by S, D = K o S, where K : HF' — ( satisfies the condition
(1.1) but it is possible that K(M) is not smooth.

We have assumed in sections 32 and 4 that F' is homogeneous. If this is not the
case, then Fjy decomposes under action of L% into a set of orbits: Fy = {F&}aea.
F§ are submanifolds (not necessarily regular) with an action of L% induced from
Fy. This gives a family of homogeneous natural functors {F*}yeca. Then F(M) C
F(M).

4.4 Remark. If F¢ is a regular submanifold of Fy, 0 € F(M), then o € F*(M)
if and only if o(M) C F*(M). In particular, if G is a real algebraic subgroup of
L} (for example when F' is a tensor bundle), then F is a regular submanifold of
Fy (see the remark after prop. IT 3.1 in [3]).

N.d. operators on F give n.d. operators on F'*, which can be described with use
of corollary 4.2. This could help to determine n.d. operators on F, but one should
keep in mind the fact that, in general, there are some operators on F* which do
not come from operators on F'.

EXAMPLES OF STRUCTURE TENSOR OPERATORS

4.5. Lemma. If K € NV, then V K is isomorphic to K x K.

Proof. The isomorphism is given by the following formula:

VEM) €t — ] — (&

71(0),70) € K x K(M) .0
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Let F be a tensor bundle functor. We will describe Lh : T3 x F — T* @ VF.
Lh = vy« @ (f o €r). It is easy to calculate f using (2.1). Here we will use the
formula for the Lie derivative from [12], def. 2.7: for X € T(M),0 € (M)

(4.1) Lxo=do(X)— fo(jiX, o).
fA=d,f®Zy, f€C®(M), f(x)=0,Z €T(M), then
(4.2) Fock(A 00) = F(ii(F7),00) = —(Lyz0)s -

1. Let FF=T. Then T*@VF =T} x T. Using (4.2) we get: (60 = X € T(M))
foer(A X)) = —(LizX)e =[X, [Z]e = do f(X)Z = A(X.)
and consequently

(4.3) Lh(M) : Ty x T(M) 3 (C,X) — (C(;X),X) €T} x T(M) .

2. F=T*T*QVF =Ty xT*. In (4.2) we take ¢ =w € T7(M) and we get:
(4.4) Lh(M) : Ty x T*(M) 3 (C,w) — (—w o C,w) € Ty x T*(M) .
3. Using the formula for the Lie derivative of a tensor product, one can

obtain the formula for Lh in any tensor bundle. In particular if F© = T} then
T* @ VF =T} x T} and we have:

(4.5)  Lh(M): Ty x THM) 3 (C,J) = (Co(J)—=JoC,JYeTY x THM),
where C'o (;J)(X,Y) = C(X,J(YV)) for X, Y € T(M).

ALMOST COMPLEX AND ALMOST PRODUCT STRUCTURES

Let F' = T} and let F§ denote the orbit of some yo € Fy = (R™)* @ R".
Then F§ is a regular submanifold of Fy (remark 4.4). Let P = A*T* @ T. we
define a natural differential operator N : FF — P x F' by the formula N(M) :
THM)> J — (Ng,J)€ P = xTL(M), where Ny is the Nijenhuis tensor of J: for
X,Y € T(M),

(4.6) %NJ(X, V)= [JX,JY]+ J2X, Y] = J[X,JY] = J[JX,Y] .

Then ord (N) = 1. Let N : J?1F — P x F satisfy N = N'oj'. We apply theorem
4.1 to N? restricted to JLF® and we get K : HF® — P x F® which makes the
following diagram commute:

JlFOz
(4.7) Jslw
HF* K pype

From the definition of the torsion tensor, we have the following:
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4.6. Lemma. If J € F(M), A € Ql(M) is a J-connection, T = t(A), then

(4.8) %NJ(X,Y) =—T(JX,JY) = J*T(X,Y)+ JT(X,JY)+ JT(JX,Y) .

Let p € Homparyp (A2T*@T x F, Px F') be such that, when restricted to the fibre
over J € Fy, it is given by the following formula (C' € A?T* @ T, X,Y € T(M),):
(4.9) p(C, )X, Y) = 2~C(JX,JY )= J2C(X,Y)+ JO(X, JY)+ JC(JX,Y)) .
Then lemma 4.6 implies that p(Ty,J.) = N(J).. But N(J), = N'(jiJ) =
NY(h(Xy, Jz)) so NYoh = pot and from (3.3), (4.7) we obtain the following

commutative diagram:

Clxpo_— N jipae
(4.10) NT* T x Fo— L ppe N1
P K

PxFe
Hence K € Mor(NVF), Nt € Mor(NVF).
4.7. Proposition. If there exist k € R\{0} such that y2 = kir~ then ker p =
imJ.
Proof. Tt follows from (4.10) that K o ¢ = p so im d = ker ¢ is a subbundle of
ker p. Let (C,J) € ker p(M). Then for X, Y € T(M) we have
(4.11) CUIX,JY)+ kC(X,) V)= JC(X,JY)—-JC(JX,Y)=0.
We define A € T} (M), by the following formula:

(4.12) AX,Y) = SO Y) 4 I (C1X,IY) + O, TX))
Then

1 1 1
AX,JY) = §C(X, JY) + ZJC’(X,Y) - EJC(JX, JY) =
1 1 1

= J(=— X, JY -C(X,)Y)—- — X, JY)) .

Computing C'(JX,JY) from (4.11) we obtain from the formula above:
1 1 1 1
AX,JY) = J(ﬁJC(X, JY) + §C(X,Y) - EJC(X’ JY) — EJC(JX,Y)) =
=JAX,)Y).

Then (4.5) implies that A € ker Lh(My). But 9(A4) = C so C' € im J(M). O

Since ker p = im 9 = ker ¢, we have (under the assumption of prop. 4.7) ker p =
ker ¢. Consequently K, in diagram (4.10) is a monomorphism and we can identify
HF% with im K, S" with N' and ¢ with p. In particular we have the following
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4.8. Corollary. If J € I%(M) is an almost complex or almost product structure
(J?2 = —uppr or J% = uppr) then its structure tensor Sy is equal to (Ny,J) €
AT* & T x T} (M).

4.9. Remark. If we identify im K =im p with HF'*, we can get from (4.9) HF'®
in the explicit form:

HFY(M)={(C,J)eNT*@T x F*(M):YX,Y e [(M)C(X,]Y) =
=—JCO(X,Y)}.
4.10. Definition. For W € NV F, k € N we define Hk WeNVFE :
TIF W(M) = W(M) xa - x3 W(M) .

k times

II SYSTEMS OF LINEARLY INDEPENDENT VECTOR FIELDS

Let F' = Hk T,k <n.Then Fy = (R")*. Let (e, ..., e,) denote the canonical
basis of (R") and let F§* be the orbit of (e1,...,e;) € Fy. Sections of FF¥(M) are
systems of k linearly independent vector fields. Taking suitable P € AV, a natural
differential operator N : F' — P x F and p € Homy V F(A*T* @ T x F, P x F),
one can see that the diagram (4.10) is commutative in this case. We take P =
[ r,m= @ For (Xi,...,X}) € F(M) we put:

(4.13) N(M)(X1,. ., Xe) = (X, XD 1<ici<i X1, o) Xi) .
For C € N*T* @ T x F(M), X1,..., X € T(M), we define
(414) p(M)(C, Xl, . ..,Xk) = ((_C(Xi,Xj)1§i<j§k Xl, . ,Xk))

Ifo=(X1,...,Xp) € FY(M), A € C(M)is a o-connection, T' = () is the torsion
tensor of ¢, then [X;, X;] = —T(X;, X;) and, just as in example I, we obtain the
diagram (4.10) (N! and K are defined in the same way as in I). As before, we
will prove that ker p = im 8. In this case 7* @ VV = [[* T} x [[* T. Then (4.3)
implies that Lh(M) : Ty x Hk T(M) — Hk T(M) is given by

(4.15) Lh(M)(C, X1, ..., X)) = (C(X1), .., CGXE),y X1, o s X)) -
If (CyX1,...,Xy) € ker p(M,;) then (4.14) gives
(4.16) C(Xi, X;)=0for 1<i<j<k.

Let Xgq1,..., Xy € T(My) be such that Xy,..., X, are linearly independent. We
define A € T3 (M) by the formula

C(X;,X;), fori<k,j>k
AX;, X;)=1¢ 0, for j <k;
$C0(Xi, X;), for i,j>k.
Then (4.15) implies that A € ker Lh(M ) and (4.16) gives C' = 9(A).
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4.11. Corollary. If o = (X1,...,X}) € Hk T(M) is a system of k linearly inde-
pendent vector fields then its structure tensor S, can be identified with

([X:, Xjli<ici<n, X1, Xg) € [I"7"T(M).

IIT SYSTEMS OF LINEARLY INDEPENDENT 1-FORMS

Let F' = Hk T* k < n. Then Fy = ((R")*)*. we will denote by F,0% the orbit
of (el,... e*). Sections of F*(M) are systems of k linearly independent 1-forms.

In this case we take P = Hk A2T* and we define a natural differential operator
N(M) : F(M) 3 (w!,...,w*) — (dw', ... dw* Wl ... w*) € Px F(M). Let
p € Hompyp (A?T* @ T x F, P x I') be defined so that

1 1
(4.17) p(M)(C, Wt .. WF) = (§w1 oC,...,iwkoC’,wl,...,wk).

Ifo=(w!,... W € F(M)and A € C(M) is a o-connection, then dw’(X,Y) =
%wioT(X, Y),i=1,..., k. This implies that diagram (4.10) is commutative in this
case. T*QVF = Hk Ty x Hk T* and (4.4) implies that LA(M) : T} x Hk (M) —
Hk Ty x Hk T*(M) is given by

(4.18) Lh(M)(C,wt) .. WF) = (—wloC,..., —wFoCw!,. .. WF).

It follows immediately from (4.17) that ker p = im 0 and we get the following

4.12. Corollary. Ifo = (v!,... w¥) € Hk T*(M) is a system of linearly indepen-
dent 1-forms, then its structure tensor S, is equal to (dw',... dw* Wl ... w*) e

TF A2 < T1° T+ (M).

Let F,G € NF,, ord (F) =1, ord (G) < 1. owing to corollary 4.2, the classi-
fication of first order natural differential operators D : F© — G, for homogeneous
F, can be reduced to the classification of L -equivariant maps from H Fy to Go.

Example. We will find all *-n.d. operators D : T x T — T of order 1 for n >
3. Let W C (R™)® be an orbit of e = (e1,€e2,e3) and K : W — R™ be L.-
equivariant. Then G. C Gg(e) (G denotes the isotropy group of x). Therefore
K(e) € span {e1,e2,e3}, so K(e) = Are; + Asea + Ages, for some A; € R.If
y = (y1,92,y3) € W then y = p(a,e) for some a € L., and K(y) = K(p(a,e)) =
pla, K(e)) = pla, Ad1e1 + Azea + Azes) = Ary1 + Aayz + Asys. Then remark 4.3 and
corollary 4.11 imply that, if D : T x T — T is a *-n.d. operator, ord (D) = 1
then there exist A1, A2, Az € R such that if XY € T(M), + € dom XN dom
Y, Xy, Yy, [X, Y], are linearly independent , then D(X,Y)(x) = M X, + A2V, +
As[X, Y], If X, Y,[X, Y], are not linearly independent, we use the following
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4.13. Lemma. There exist X,Y € T (M) defined on some neighbourhood U of »
such that j1X = j1X,jlY = jlY and there exists a sequence {am }men, dm € U
Y, [X,Y]

Am

such that m,,_. @, = x and X are linearly independent for

every m € N.

G s am

Since ord (D) = 1, we have:
D(X,Y)(z) = D(X,Y)(z) = lim D(X,Y)(ay)=
= lim (M Xa,, + AaYa,, + A3[XY]

m—00

)= X +AYe + A3[ XY,

am

and we get the following

4.14. Theorem. Let D : T x T — T be a *-n.d. operator, ord D = 1,n > 3.
Then exist Ay, Az, A3 € R such that for every XY € T(M)

D(X,Y) = M X + AY 4 A[X, V],

4.15. Corollary. If n > 3 then the Lie bracket is the only bilinear first order
x-n.d. operator from T x T to T, up to a constant factor.

In fact the assumption of bilinearity is very strong, and more general result can

be obtained (see [7], [5]).
Proof. of lemma 4.13. It is sufficient to take M = R”,z = 0. we define

X=X+ ZZj:l(xj% X'lz=o)ei + (¢)%es,
Y=Y+ Z?j:l(xj% Yi|e=o)ei + (21)%er + ' a?es.

Let y = (y1,...,¥n) € R”. we will denote by , a matrix 3 x 3 such that
(M), = X0, (M)} = Vi, (My)3[X,V]}, i = 1...3. Then det M, = —(y1)" +
{terms of degree < 6}. Therefore, it is possible to find a sequence {a,,} converg-

ing to « with det M, _# 0 for m € N, and then X, _,V,, ,[X,Y],, are linearly
independent. a

G s
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