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PRINCIPAL SOLUTIONS AND TRANSFORMATIONS
OF LINEAR HAMILTONIAN SYSTEMS

ONDREJ DoSLY
Dedicated to Professor M. Novotny on the occasion of his seventieth birthday

ABsTRACT. Sufficient conditions are given which guarantee that the linear trans-
formation converting a given linear Hamiltonian system into another system of the
same form transforms principal (antiprincipal) solutions into principal (antiprinci-
pal) solutions.

1. Introduction.
Consider a linear Hamiltonian system

(1.1) Y' = AQ)Y +B(t)Z, 7' =-Ct)Y —AT(1)Z,

where A, B, C' are n X n matrices of continuous, real valued functions, t € [ =
[a,00), B, C are symmetric,i.e., B = B, CT = C,and Y, Z are n x n matrices. If
the matrices B, C' are nonnegative definite, it is known that (1.1) is nonoscillatory
at oo (for terminology see Section 2) if and only if the so-called reciprocal system

(1.2) U =-ATU +C)V, V' =-BO)U + ALV

is nonoscillatory at oo, see [2,5,8,9].

Recently the author established a more general duality in oscillation behaviour
of various linear Hamiltonian systems which may be described in the following
way. If we set

(1.3) U=HUY +M1)Z, V=KUY +N{)Z,

where H, K, M, N are n x n matrices of continuously differentiable real-valued
functions such that M%) is nonsingular on I and the 2n x 2n matrix

H(t) M((t
o= (1) 4
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is J-unitary, i.e.,
(1.5) RT()JR() = J,

0 I,
where J = <_In 0
a solution of a linear Hamiltonian system which is under certain additional as-
sumptions (corresponding to nonnegativeness of B and C' in the case of reciprocal
systems) nonoscillatiory at co. Obviously, if H = 0 = N, M = I,, K = —I,,
the duality in oscillation behaviour of mutually reciprocal systems (1.1) and (1.2)
follows from this result.

Ahlbrandt derived in [1] conditions under which a principal (antiprincipal) so-
lution (Y, Z) of (1.1) at oo is also coprincipal (anticoprincipal) at oo, i. e., the
solution (U, V) = (Z,-Y) is a principal (antiprincipal) solution of (2.1) at oo.
Here we generalize this result giving conditions which quarantee that a principal
(antiprincipal) solution of (1.1) is transformed by (1.3) into a principal ( antiprin-
cipal ) solution of the new Hamiltonian system.

) , In being the n x n identity matrix, then (U, V) is also

2. Definitions and preliminary results.

Simultaneously with the matrix system (1.1) consider its vector modification
(2.1) y = Al)yy + B(t)z, 2 =-C(t)y— AT(1)z,

where y, z are n-dimensional vectors. Throughout the paper we shall suppose that
all differential systems are identically normal on I (a linear Hamiltonian system
of the form (2.1) is said to be identically normal on I whenever the trivial solution
(y, z) = (0,0) is the only solution for which y(¢) = 0 on a nondegenerate subinterval
of I).

Oscillation and nonoscillation of (2.1) are defined by means of the concept of
conjugate points. Two points t1,ts are said to be conjugate relative to (2.1) if
there exists a solution (y, z) of (2.1) such that y(t1) = 0 = y(t2) and y(¢) is not
identically zero between ¢; and ¢3. System (2.1) is said to be conjugate on an
interval I whenever there exist ¢1, t2 € I which are conjugate relative to (2.1), in
the opposite case (2.1) is said to be disconjugate on I. If there exists ¢ € I such
that (2.1) is disconjugate on (¢, 00) then (2.1) is said to be nonoscillatory at oo,
in the opposite case (2.1) is said to oscillatory at oo. In the sequel the concepts
oscillatory and nonoscillatory mean always oscillatory or nonoscillatory at oo.

A solution (Y, 7) of (1.1) is said to be self-conjugate (another terminology is pre-
pared [7], self-conjoined [9], isotropic [4]) if YT (¢)Z(t) = ZT ()Y (t). Two solutions
(Y1, 71), (Ya, Z3) are said to be linearly independent if any solution (Y, 7) of (2.1)
can be expressed in the form (Y, 7) = (Y1C1 + Y2C4, Z1C1 + Z2C5), where C,Cs
are constant n x n matrices. If (Y1, Z1), (Y2, Z2) are self-conjugate then they are
linearly independent if and only if the (constant) matrix YT (¢)Z2(t) — ZT (t)Ya (1)
is nonsingular. A self-conjugate solution (Yp, Zp) is said to be principal at oo if
Y5(?) is nonsingular for large ¢ and for any solution (Y, Z), linearly idependent of
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(Yo, Zo), with Y nonsingular for large ¢, we have lim;_., Y ~!1(¢)Yy(¢) = 0. Any
solution linearly idependent of (Yy, Zy) is said to be antiprincipal at b (another
terminology is nonprincial, see [7]). Equivalently, the solutions (Y, Zy), (Y1, Z1)
are principal resp. antiprincipal at oo if Yy, Y7 are nonsingular for large ¢ and

t—o0

lim (/tYo_l(s)B(s)YOT_l(s)ds) B =0
resp.

lim (/t Yfl(s)B(s)YlT_l(s)ds) B =1,

t—o0

L being a nonsingular n x n matrix.

Recall that a principal resp. nonprincipal solution of (1.1) at oo exist whenever
(2.1) is nonoscillatory at oo and the principal solution is determined uniquely up
to a right multiple by a constant nonsingular n x n matrix.

Lemma 1. Let (Y, 7) be a self-conjugate solution of (1.1) such that Y (1) is non-
singular on Iy C I. Then

Y(t) = Y(t)/ Y=Us)B(s)Y T~ Y(s)ds, ¢ € Iy
Z(t) = Z(t)/ Y= Us)B(s)Y T (s)ds + YT =1(t)

is also a self-conjugate solution of (1.1) which is linearly independent of (Y, 7). If
(Y, 7) is antiprincipal at oo then

Yo(t) =Y (1) /too Y_l(S)B(S)YT_l(S)dS
2oty = 200) [ Y BT s T 1)

is the principal solution at .
Proof. [4, Chap. IT]

Let (Y, Z) be a solution of (1.1) such that ¥ is nonsingular on I then W = ZY =1
is a solution of the Riccati equation

(2.2) W'+ WBOW + WA() + ATOW + C(t) = 0.

If (Y, Z) is principal at oo then W is said to be distinquished solution of (2.2)
at oo, this solution is determined uniquely. If W is another solution of (2.2)
which exists on the whole interval [¢, 00), ¢ > a, then W(t) > W(t) on [c,00) (this
inequality means that the matrix W(t) — W(t) is nonnegative definite).
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Lemma 2. Let Wy and W be distinquished solutions at co of (2.2) and
(2.3) W'+ WBHW + WA() + AT &)W + C(t) = 0,

respectively. If é’(t) > C(t) on I then W(t) > Wo(t) on L
Proof. [4, Chap. IT]

Now recall some results concerning transformations of linear Hamiltonian sys-
tems. Let R(t) be a 2n X 2n J-unitary matrix of the form (1.4), then substituting
into (1.5) and the equivalent relation RJRY = J we get

H'K =K"H, M'N=N"M, H'N-K"M=1,,

2.4
@4) HMT =mHT, KNT =NET HNT -MKT=1,.

The transformation (1.3) transforms (1.1) into the system

—~

(2.5) U =AU + B@t)V, V' =-Ct)U - AT 1)V

and the matrices A, B, C' are related to A, B, C' by the equalities

A=N'(-H +AH + BK)+ MT(K' + CH + ATK),
(2.6) B=N'(—M'+ AM + BN) 4+ MT(N' + CM + AT N),
C=H"(K'+CH+ ATK)+ K" (-H' + AH + BK),

see, e.g., [3].
The main results of [6] are summarized in the next theorem.

Theorem A. Suppose that the matrix R(t) given by (1.4) is J-unitary, the matrix
M is nonsingular on I and the matrices B(t), B(t) are nonnegative definite on I.
Then system (1.1) is nonoscillatory if and only (2.5) is nonoscillatory.

Finally, for the later comparison, recall the results of [1] which were the main
motivation for our investigation.

Theorem B. Let D(t) be the fundamental matrix of the equation D' = A(t)D.
Suppose that the matrices B(t), C(t) are nonnegative definite in I, both systems
(1.1) and (1.2) are identically normal on this interval and

¢ -1
tlim [/ D=Y(s)B(s)DT=1 (s)ds =0.
If (Yy, Zy) is the principal solution of (1.1) at oo then (Uy,Vy) = (Zo, —Y0) Is
the principal solution of (1.2) at co. Moreover, a solution (Y1,71) of (1.1) is
antiprincipal at oo if and only if (U1,V1) = (71, —Y1) is an antiprincipal solution
of (1.2) at .
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3. Main results.

Our main results are based on the following lemma which generalizes a similar
result of [1].

Lemma 3. Let (Y, 7) and (U, V) be self-conjugate solutions of (1.1) and (1.2),
respectively, related by (1.3), such that Y and U are nonsingular. If M(t) is
nonsingular and (2.4) holds (i.e., R(t) given by (1.4) is J-unitary in I), then

[(YTM—lU)—l]/ — _Y—lByT—l 4 U—lBUT—l

Proof. We have

[(YTM—to)~Y) =

~(YTMOYT W MU YT MO MM U YT M U (YT M) =
~(YTM )TN AT - 2T BYM Y HY + MZ) - YT MMM~ (HY +
BZ)+YTM~ Y AU + BHIYTM~U) ! = (YT M U) Yy T AT M HY +
Y'ATZ + Z'BM~'HY + Z"BZ — YT M 'M'M~'HY —YT"M~*M'M~'BZ+
YIMYAHY + MZ)+YTM'B(KY + N2Z) = UTMT-'BM U+
UrMTIBMT (YT M) T = (YT M )T Yy T (AT M -
MMM H+ M "AH+ M 'BNH"M"=' — H'M"'BM~'H)Y +
YT(AT - MM+ M~YAM + M~'BN — H'M*"=1B)7 + 7" (-BM '+
BM~'H)Y + Z8(B-B)Z)YT MUYy - (YT MUy UT MT T BM T U~
YIMBMTIY)(YT M U) T = U (M AT — M+ AM + BN —
HB)HTUT=t - (MAT — M’ + AM 4+ BN — HB)ZY 'MTUuT-1—

y-lgyT-1 + U—lBUT—l’

where the relations (2.4) and the symmetry of the matrix YT M~1U = YT (M~1H+

ZY ~1)Y has been used. Computing the expression M AT — M’ + AM + BN — HB,
using (2.5) and (2.6), we get

MAT —M' + AM + BN — HB = M(-H"' + HTAT 4+ KTB)N + M(KT'+
HY'C 4+ KT AYM + AM 4+ BN — M’ — HNT(=M' + AM + BN) — HMT(N'+
CM 4+ ATNY= M(—HT' + HTAT + KTB)N + M(KT' + HTC+

K"AYM 4+ AM +BN —M' 4+ M' — MK"M' + MH"N' - MKTAM—
MEKTBN — HMTCM — HMTATN — AM — BN = M(—HT' 4+ HT AT+
K'B)N + M(K"' + HT'C+ KT A)M + M(-K"'N + H'N) - MKTAM —
MEKT"BN — HMT"CM — HMTATN = M(-H" + HT AT + KT B)N+
MK+ H'C + K" A)M — M(—HT' + HT AT + KT B)N+

M(KY + H'C+ KT A)M =0
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which completes the proof.

Theorem 1. Let D be the fundamental matrix of the equation
(3.2) D = (=BO)M~Y()H(t) + A@))D.

Suppose that the matrices B(t), B(t) are nonnegative definite,

-1

(3.3) lim [/t DY (s)B(s)D""(s)ds| =0

t—o0

and both systems (1.1) and (1.2) are identically normalon I. If (Y, Z) is a principal
solution of (1.1) at oo, then (U, V) given by (1.3) is a principal solution of (2.5)
at oo.

Proof. By Lemma 3
(3.4) / YHs)B(s)Y T (s)ds + (YT ()M~ (s)U(s)) '] =
/t U='B(s)UT=1(s) ds

If (Y, Z) is a principal solution, by definition

t —1
Jlim (/ Y—lBYT—lds) =0,

hence all eigenvalues of the matrix fat Y~1BYT=1ds tend to oo as t — oo. Conse-
quently, to prove the theorem it suffices to show that the (symmetric) matrix

Y=t M L (6)U (1)

is nonnegative definite for large ¢, i. e., the matrix M 'H+2ZY ' = M~ 'H4+ Wy,
Wy being the distinquished solution of (2.2) at oo, has this property. Since the
matrix B is nonnegative definite, by (2.6) MCMT > —HMT'+ HAMT —HBNT +
MHT'+MATNT hence C > —M"HMT' M7 "+ M "HA-M-"HBNTMT-14
HTMT=1 4 ATNT YT = C. Using the symmetry of the matrix M ~'H, one
can directly verify that W = —M~'H is a solution of (2.3). Let D be a so-
lution of (3.2) and F' = WD. Then (F,D) is a solution of (1.1) with C in-
stead of C' and (3.3) implies that this solution is principal at co. Consequently,
W = FD~! = —M~1H is the distinquished solution of (2.3) at 0o and by Lemma
2 Wy > —M~YH, i. e., the matrix Y7 M ~'U is nonnegative definite for large ¢
and the proof is complete.
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Lemma 4. Let the assumptions of Theorem 1 hold. If (Y, Z) is an antiprincipal
solution of (1.1) and U is given by (1.3), then

(3.5) Jlim U Y OM@O)YT=Yt) =0
Proof. Let
Yo(t) = Y (t) /too YY) B(s)Y T 1(s) ds,
Zo(t) = Z(t) /too Y=Y s)B(s)Y T (s)ds — YT=1(1).

According to Lemma 1 (Y2, Z3) is the principal solution of (1.1) at oo and by
Theorem 1 (U, Va) = (HY24+ M Zs, KY2+ N Z3) is the principal solution of (2.5).
It follows limy—oo U~1(t)Us(t) = 0. Substituting for Us, we have

U-lu, =
U—lHY/ Y—lBYT—lds—U—lMYT—l+U—1MZ/ Yy 1BYT-1ds,
1 1
hence

UMY T=! = U~ U, + UTH(HY + MZ)/ Y IBYT-1ds =
13

-Utu, +/ y=tBYT-1ds,
3

i. e, (3.5) holds.

Theorem 2. Suppose that the assumptions of Theorem 1 hold. A solution (Y, Z)
of (1.1) is antiprincipal at oo if and only if the solution (U, V) of (2.5) given by
(1.3) is antiprincipal at co.

Proof. The statement follows immediately from (3.4), the previous lemma and
the definition of the antiprincipal solution.

4. Remarks. i) If H(#) = 0 in Theorems 1,2, then the statements of these
theorems comply with the results of Ahlbrandt [1] given in Theorem B.
i) Consider the second order system

(4.1) (R(OY")' + P(t)Y =0,

where R, P are symmetric n X n matrices, R 1s positive definite and let T' be a
constant symmetric n x n matrix such that P(¢) + TR(H)T =: Q(t) is positive
definite. Then the combination I/ = RY' + I'Y is a solution of the system

[Q™'U +Q 'PRT'ITQ™'U) — Q7' TR™'PQ~'U'+

QPR P-T(RYP—-PR YT +TR PRI+ PRT'I(P'+
FRYTQ™ +Q (P +T(R™YT)PR™'T—

(TR™'P — PRT'DQ(PR™'T = TR™'P)Q™'U =0

(4.2)
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which is nonoscillatory if and only if (4.1) is nonoscillatory, see [6]. If Y is the
principal solution of (4.1) and T is such that Wy = —T is the distinquished
solution of the Riccati equation W/ + WR™'W —TR™'I' = 0 then U = RY'4+TY
is the principal solution of (4.2).

iii) Let (Y, Z) be the principal solution of (1.1) at oo, i. e., all eigenvalues of the
matrix ft Y~1(5)B(s)YT71(s) ds tend to oo as t — oco. In order to show that the
matrix ft U~Y(s)B(s)UT~1(s)ds also has this property (i. e., that (U, V) given
by (1.3) is the principal solution of (2.5)), we used the idea suggested in [1], we
proved that under the assumptions of Theorem 1 the matrix U~ (#)M (¢)YT=1(¢)
is nonnegative definite for large ¢. To the same end it suffices to prove that the last
matrix is “bounded below”, i. e., cTU~L(#)M(t)YT~1(¢)c is bounded from bellow
for every ¢ € R™. We hope to follow this more general (but also more difficult)
idea elsewhere.
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