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ARCHIVUM MATHEMATICUM (BRNO)Tomus 28 (1992), 83 { 84DIRECT FACTORS OF MULTILATTICE GROUPS, IIMilan KolibiarDedicated to Professor F. �Sik on the occasion of his seventieth birthdayAbstract. Subgroups of a directed distributive multilattice group G are charac-terized which are direct factors of G. The main result is formulated in Theorem2. 1. Basic notions and informationsThis note is a supplement to the paper [1]. Its result is a corollary of Theorem1.1 [1].Let P = (P ;5) be a partially ordered set (p. o. set), A subset A � P is said tobe convex if a; b 2 A, c 2 P and a 5 c 5 b imply c 2 A. A is connected if for eacha; b 2 A there is a sequence a = x0,x1; : : : ; xn = b,xi 2 A, such that xi and xi+1are comparable for each i 2 f0; 1; : : :; n� 1g.Given a; b 2 P , denote (a] = fx 2 P : x 5 ag, [a) = fx 2 P : a = xg, [a; b] == (a] \ (b], 1(a; b) = (a] \ (b] and u(a; b) = [a) \ [b). P is said to be directed iffor any a; b 2 P the sets 1(a; b) and u(a; b) are not empty. Call P a multilattice[2] if for any a; b; c 2 P such that c 2 u(a; b) the set u(a; b) \ (c] has a minimalelement and dually for c 2 1(a; b). Denote by a_ b the set of all minimal elementsof u(a; b); a ^ b has dual meaning.A multilattice P is said to be distributive [3] if for each a; b; c 2 P the relations(a _ b) \ (a _ c) 6= 0, (a ^ b) \ (a ^ c) 6= 0 together imply b = c.A partially ordered group [4] (p.o. group) G = (G; +;5) is said to be a multi-lattice group if the p. o. set (G;5) is a multilattice. G is called distributive if themultilattice (G;5) is.Let G be a p.o. group. We say that a subset C of G forms a direct factorof G whenever a direct product decomposition f : G �= A � B exists such thatf�1(f(a; 0) : a 2 Ag) = C. A map f : G ! G is called a retract mapping if it isan isomorphism and f(x) = x for each x 2 f(G). The set f(G) is called a retract.In [1] the following theorem was proved (1.1 Theorem in [1]).1991 Mathematics Subject Classi�cation : 06F15.Key words and phrases: partially ordered group, multilattice group, distributivity, retract,direct product.Recieved January 20, 1992. 83



84 MILAN KOLIBIARTheorem 1. Let G be a directed distributive multilattice group. A subset C � Gforms a direct factor of G i� it satis�es the following conditions(1) (C; +) is a subgroup of (G; +).(2) C is convex and directed in (G; +).(3) for each a 2 G+ the set C \ [0; a] has a greatest element.2 Main theoremTheorem 2. A subset C of a directed distributive multilattice group G forms adirect factor of G i� it ful�ls the following conditions(i) C is a retract of G(ii) for each a 2 G+ the set C \ [0; a] has a greatest element.Proof. 1. Suppose C is a direct factor of G. Then C forms a multilattice subgroupof G and there is a multilattice group D such that there is an isomorphismf : G ! C � D:Given x 2 G, f(x) = (x1; x2) where x1 2 C, x2 2 D. It is easy to verify that themap x 7! x1 is a retraction map and C is a corresponding retract of G.2. Conversely, let C satisfy the conditions (i) and (ii). Then C trivially ful�lsthe conditions (1), (2), (3) of Theorem 1. Hence it is a direct factor of G.References[1] KolibiarM.,Direct factors of multilattice groups, ArchivumMath. (Brno) 26 (1990), 121-128.[2] Benado M., Sur la th�eorie de la divisibilit�e, Bull. Sti. Sect. Sti. Mat. - Fiz. 6 (1954), 263-270,Acad. R. P. Romîne.[3] McAlister D. B., On multilattice groups, Proc. Cambridge Philos. Soc. 61 (1965), 621-638.[4] Birkho� G., Lattice Theory, Amer. Math. Soc. Colloquium . XXV (1948), Publ. revisededition,, New York.Milan KolibiarFaculty of Mathematics and PhysicsComenius UniversityMlynska dolina842 15 Bratislava, Czechosloslovakia
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