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ARCHIVUM MATHEMATICUM (BRNO)Tomus 28 (1992), 57 { 65EXISTENCE OF MULTIPLE SOLUTIONS FOR SOMEFUNCTIONAL BOUNDARY VALUE PROBLEMSSvatoslav Stan�ekDedicated to Professor M. Novotn�y on the occasion of his seventieth birthdayAbstract. LetX be the Banach space of C0-functions on h0;1i with the sup normand �; � 2 X! R be continuous increasing functionals, �(0) = �(0) = 0. This pa-per deals with the functional di�erential equation (1) x000(t) = Q[x;x0; x00(t)](t),where Q : X2 � R ! X is locally bounded continuous operator. Some theoremsabout the existence of two di�erent solutions of (1) satisfying the functional bound-ary conditions �(x) = 0 = �(x0), x00(1)� x00(0) = 0 are given. The method of proofmakes use of Schauder linearizatin technique and the Schauder �xed point theorem.The results are modi�ed for 2nd order functional di�erential equations.1. IntroductionThere are many papers devoted to the existence of multiple solutions for or-dinary and partial di�erential equations. We refer, for recent results on ordinarydi�erential equations, to the papers by Chiappinelli, Mawhin and Nugari [2], Dingand Mawhin [4], Fabry, Mawhin and Nkashama [5], Gaete and Manasevich [6],Kiguradze and P�u�za [9], Kiguradze [10], Nkashama [11], Mawhin [13], Rach�unkov�a[14], Ruf and Srikanth [15], Schmitt [18], �Senky�r��k [20] and Vidossich [21].On the other hand, several authors have recently obtained results on the exis-tence of nonnegative solutions for di�erential equations. We refer to Castro andShivaji [1], Danzer and Schmitt [3], Islamov and Shneiberg [7], Kolesov [8], San-tanilla [16], Schaaf and Schmitt [17] and Smoller and Wasserman [19].In the interesting paper [12], Nkashama and Santanilla consider �rst and sec-ond order nonlinear ordinary di�erential equations when the nonlinearity is aCarath�eodory function and there are established criteria for the existence of non-negative and nonpositive solutions for problems with periodic, Neumann andDirichlet boundary conditions.The proofs of results in these papers are mostly based upon a priori estimates,degree theory and the technique of lower and upper solutions.1991 Mathematics Subject Classi�cation : 34K10, 34B15, 34B10.Key words and phrases: Schauder linearization technique, Schauder di�erential equation,functional boundary conditions, boundary value problem.Received October 2, 1991. 57



58 SVATOSLAV STAN�EKLet X be the Banach space of C0-functions on h0; 1i with the sup norm k � k.In this paper we consider the 3rd order functional di�erential equation(1) x000(t) = Q[x; x0; x00(t)](t)in which Q : X2 �R! X is a locally bounded continuous operator. We see thatx000 = Q['; '0; x00](t) is an ordinary di�erential equation for each ('; '0) 2 X2. Aspecial case of (1) is the di�erential equationx000 = q(t; x; x0; x00);where q : h0; 1i �R3 ! R is a continuous function.Let �; � : X ! R be continuous increasing (i.e. u; v 2 X, u(t) < v(t) fort 2 h0; 1i ) �(u) < �(v), �(u) < �(v)) functionals, �(0) = 0 = �(0).The purpose of this paper is to obtain by the Schauder linearization techniqueand the Schauder �xed point theorem su�cient conditions for the existence(i) at least one solution x of (1) with x00(t) � 0 on h0; 1i,(ii) at least one solution x of (1) with x00(t) � 0 on h0; 1i,(iii) at least two di�erent solutions x1; x2 of (1) withx001(t) � 0 � x002(t) on h0; 1i;satisfying the functional boundary conditions(2) �(x) = 0; �(x0) = 0; x00(1)� x00(0) = 0:It will be easily seen from the proofs of theorems for problem (1) - (2) that evidentmodi�ed results hold for the 2nd order functional di�erential equation(3) x00(t) = P [x; x0(t)](t);where P : X�R! X is a locally bounded continuous operator and solution x of(3) satis�es the functional boundary conditions(4) �(x) = 0; x0(1) � x0(0) = 0:2. Notations, lemmasConvention. If a 2 R, then Q[a; a; a](t) and P [a; a](t) denotes Q[w;w; a](t)and P [w; a](t) with w(t) � a on h0; 1i , respectively.Let c1; c2 2 R, c1 < c2 and let A = maxfjc1j; jc2jg, D = f(x; x0);x0 2 X; kxk �A; kx0k � Ag, D1 = fx;x 2 X; kxk � Ag, H = fx;x 2 X; c1 � x(t) � c2 for t 2h0; 1ig.In this paper we shall assume that some of the following assumptions areful�lled:



MULTIPLE SOLUTIONS FOR SOME BOUNDARY VALUE PROBLEMS 59(H1) Q['; '0; c1](t) � 0 , Q['; '0; c2](t) � 0 for all ('; '0) 2 D, t 2 h0; 1i;(H2) Either(Q['; '0; u](t)� Q['; '0; v](t))(u � v) < 0 for all ('; '0) 2 D;u; v 2 hc1; c2i; u 6= v ; t 2 (0; 1)(5)or (Q['; '0; u](t)� Q['; '0; v](t))(u� v) � h0(t)(u� v)2 for all(6) ('; '0) 2 D; u; v 2 hc1; c2i; t 2 h0; 1i;where h0 2 C0(h0; 1i); Z 10 h0(t) dt < 0;(H3) Q['; '0; c1](t) � 0; Q['; '0; c2](t) � 0 for all ('; '0) 2 D; t 2 h0; 1i ;(H4) Either(Q['; '0; u](t)� Q['; '0; v](t))(u � v) > 0 for all ('; '0) 2 D;u; v 2 hc1; c2i; u 6= v ; t 2 (0; 1)or (Q['; '0; u](t)� Q['; '0; v](t))(u� v) � h1(t)(u� v)2 for all('; '0) 2 D; u; v 2 hc1; c2i; t 2 h0; 1i; where h1 2 C0(h0; 1i); Z 10 h1(t) dt > 0;(S1) P ['; c1](t) � 0, P ['; c2](t) � 0 for all ' 2 D1, t 2 h0; 1i ;(S2) Either(P ['; u](t)� P ['; v](t))(u� v) < 0 for all ' 2 D1; u; v 2 hc1; c2i;u 6= v; t 2 (0; 1)or (P ['; u](t)� P ['; v](t))(u� v) � k0(t)(u� v)2 for all ' 2 D1;u; v 2 hc1; c2i; t 2 h0; 1i; where k0 2 C0(h0; 1i); Z 10 k0(t) dt < 0;(S3) P ['; c1](t) � 0; P ['; c2](t) � 0 for all ' 2 D1, t 2 h0; 1i ;(S4) Either(P ['; u](t)� P ['; v](t))(u� v) > 0 for all ' 2 D1; u; v 2 hc1; c2i;u 6= v; t 2 (0; 1)



60 SVATOSLAV STAN�EKor (P ['; u](t)� P ['; v](t))(u� v) � k1(t)(u� v)2 for all ' 2 D1;u; v 2 hc1; c2i; t 2 h0; 1i; where k1 2 C0(h0; 1i); Z 10 k1(t) dt > 0:Remark 1. Let Q[x; y; z] = g(z)Q1[x; y] for [x; y; z] 2 X2 �R, where Q1 : X2 !X is a locally bounded continuous operator, g : R ! R is a continuous functionand Q1[x; y] � 0 for [x; y] 2 X2. Then assumption (H1) ((H2); (H3); (H4)) isful�lled for example if g(c1) � 0, g(c2) � 0 (g is decreasing on hc1; c2i andQ1['; '0](t) > 0 for ('; '0) 2 D, t 2 (0; 1); g(c1) � 0, g(c2) � 0; g is increasingon hc1; c2i and Q1['; '0](t) > 0 for ('; '0) 2 D, t 2 (0; 1)).Remark 2. Let P [x; y] = g(y)P1[x] for [x; y] 2 X � R, where P1 : X ! X islocally bounded continuous operator, g : R ! R is a continuous function andP1[x] � 0 for x 2 X. Then assumption (S1) ((S2); (S3); (S4)) is ful�lled forexample if g(c1) � 0, g(c2) � 0 (g is decreasing on hc1; c2i and P1['](t) > 0 for' 2 D1, t 2 (0; 1); g(c1) � 0, g(c2) � 0; g is increasing on hc1; c2i and P1['] > 0for ' 2 D1, t 2 (0; 1)).Lemma 1. Let h 2 C0(h0; 1i). If there exists �j 2 C1(h0; 1i) (j = 1; 2), �1(t) ��2(t) for t 2 h0; 1i and a number " 2 f�1; 1g such that"(�1(0) � �1(1)) � 0; "(�2(0)� �2(1)) � 0;"(h(t; �1(t)) � �01(t)) � 0; "(h(t; �2(t)) � �02(t)) � 0 for t 2 h0; 1i;then the problem u0 = h(t; u); u(0)� u(1) = 0has at least one solution u(t) satisfying�1(t) � u(t) � �2(t) for t 2 h0; 1i:Proof. Lemma 1 follows from Corollary 2 in [9] and also from Theorem 4.1 in[10]. �Lemma 2. Let either (H1), (H2) or (H3), (H4) be ful�lled with constants c1 < c2and let ('; '0) 2 D. Then the di�erential equation(7) u0 = Q['; '0; u](t)admits a unique solution u satisfying(8) c1 � u(t) � c2 for t 2 h0; 1i; u(1)� u(0) = 0:



MULTIPLE SOLUTIONS FOR SOME BOUNDARY VALUE PROBLEMS 61Proof. Let assumption (H1) ((H3)) be ful�lled with constants c1 < c2. Settingh(t; u) = Q['; '0; u](t), �j(t) = cj for (t; u) 2 h0; 1i � hc1; c2i, j = 1; 2; thenequation (7) admits a solution u satisfying (8) by Lemma 1 with " = 1 (= �1).Let (H2) be satis�ed and let u1; u2 be solutions of (7) satisfying (8) with u = ujj = 1; 2, u1 6= u2. If (5) is satis�ed, then 0 6� (u2(t)�u1(t))0 = (Q['; '0; u2(t)](t)�Q['; '0; u1(t)](t)) (u2(t) � u1(t)) � 0 for t 2 h0; 1i and with regard to u2(0) �u1(0) = u2(1)� u1(t) we have u1 = u2, a contrary. If (6) is satis�ed, thenddt(u2(t)� u1(t))2 � 2h0(t)(u2(t)� u1(t))2 for t 2 h0; 1i;hence (u2(t) � u1(t))2 � (u2(0) � u1(0))2 exp(2 Z t0 h0(s) ds) for t 2 h0; 1i:In the case u2(0) = u1(0) we obtain u2 = u1, a contrary. In the case u2(0) 6= u1(0)we have(u2(1)� u1(1))2 � (u2(0)� u1(0))2 exp(2 Z t0 h0(s) ds) < (u2(0) � u1(0))2;which contradicts u2(0)� u1(0) = u2(1)� u1(1).We can similarly prove that assumption (H4) guarantees the uniqueness of prob-lem (7) - (8).Lemma 3. Assume either assumptions (H1), (H2) or assumptions (H3), (H4) areful�lled with constants c1 < c2, and assume ('; '0) 2 D.Then the equation(9) x000 = Q['; '0; x00](t)admits a unique solution x satisfying (2) and(10) (x; x0) 2 D; x00 2 H:Proof. We can rewrite equation (9) in the form (7) with u = x00. With respectto Lemma 2 there exists a unique solution u of (7) satisfying (8). Setting p(b) =�(b + R t0 u(s) ds) for b 2 R, p is continuous increasing on R, limb!�1 p(b) < 0,limb!1 p(b) > 0, hence p(b) = 0 for a unique b = b0. Set r(c) = �(c + b0t +R t0 R s0 u(� ) d� ds) for c 2 R. Then r is continuous increasing on R and sincelimc!�1 r(c) < 0, limc!1 r(c) > 0 there exists a unique solution of the equationr(c) = 0, say c0. We see x(t) = c0 + b0t + R t0 R s0 u(� ) d� ds is a unique solutionof (9) satisfying (2). Next x(�) = 0 = x0(�) for some �; � 2 h0; 1i because on theopposite case �(x) 6= 0, �(x0) 6= 0. Using the equalities x0(t) = R t� u(s) ds andx(t) = R t� x0(s) ds, we get kx0k � A, kxk � A, consequently (x; x0) 2 D. �



62 SVATOSLAV STAN�EK3. Multiple solutions for BVP (1) - (2)Theorem 1. Assume either assumptions (H1), (H2) or assumptions (H3), (H4)are ful�lled with constants c1 < c2. Then there exists a solution x of (1) satisfying(2) and kxk � A, kx0k � A, c1 � x00(t) � c2 for t 2 h0; 1i.Proof. Let Y be the Banach space of C2-functions on h0; 1i with the norm kxk2 =kxk+kx0k+kx00k for x 2 Y. Let � = fx; (x; x0) 2 D;x00 2 Hg. � is bounded convexclosed subset of Y. According to Lemma 3, to each ' 2 � there exists a uniquesolution x of (9) satisfying (2) and x 2 �. Setting T (') = x we obtain an operatorT : �! �. To prove Theorem 1 it is su�cient to show T has a �xed point.First we shall prove T is a continuous operator. Let f'ng � � be a convergentsequence, limn!1 'n = ' and let xn = T ('n), x = T ('). Thenx000n (t) = Q['n; '0n; x00n(t)](t) for t 2 h0; 1i and n 2N;x000(t) = Q['; '0; x00(t)](t) for t 2 h0; 1iand �(xn) = 0 = �(x0n); x00n(1) � x00n(0) = 0 for n 2 N;�(x) = 0 = �(x0); x00(1)� x00(0) = 0:Let f�xg be a subsequence of fxng. Since kxnk � A, kx0nk � A, c1 � x00n(t) � c2,kx000n k � L for t 2 h0; 1i and n 2 N, where L = supfkQ[x; x0; c]k; [x; x0; c] 2 D �hc1; c2ig(<1), due to the Ascoli-Arzela theorem exists a convergent subsequencef~xng of f�xg, limn!1 ~xn = z. One can realy verify z is a solution of the di�erentialequation y000 = Q['; '0; y00](t), z 2 �, �(z) = 0 = �(z0), z00(1) � z00(0) = 0. ByLemma 3 the above functional boundary value problem admits a unique solution,due to the de�nition of T necesarily equal to x. Hence fxng is convergent andlimn!1 xn = x.Next wee see T (�) � fx; x 2 C3(h0; 1i); kx(j)k � A for j = 0; 1; 2; kx000k � Lgwith the constant L as above, hence T (�) is a precompact subset of X.This proves T is a completely continuous operator and by Schauder �xed pointtheorem there exists a �xed point of T in �. �Example 1. Consider the functional di�erential equation(11) x000(t) = (t1=2 + x2(t2) � 2x00(t)) Z t0 cos2(x0(s)) ds:Assumptions (H1), (H2) are ful�lled with c1 = 0, c2 = 1, hence by Theorem 1with �(y) = y(0), �(y) = y(1) for y 2 X there exists a solution x of (11) satisfyingx(0) = 0; x0(1) = 0; x00(1)� x00(0) = 0; kxk � 1; kx0k � 1; 0 � x00(t) � 1for t 2 h0; 1i:



MULTIPLE SOLUTIONS FOR SOME BOUNDARY VALUE PROBLEMS 63Theorem 2. Let a1; a2 2 R, a1 < 0 < a2. Assume assumptions (H1), (H2) withc1 = 0, c2 = a2 and assumptions (H3), (H4) with c1 = a1, c2 = 0 are ful�lled. IfQ[0; 0; 0](t) 6� 0 on h0; 1i, then there exist at least two di�erent solutions x1, x2 of(1) satisfying (2) with x = xj andkxjk � jajj; kx0jk � jajj; a1 � x00(t) � 0 � x002(t) � a2(12) for t 2 h0; 1i (j = 1; 2):Proof. By Theorem 1 there exist solutions x1; x2 of (1) satisfying (2) and (12).If Q[0; 0; 0](t) 6� 0 then x = 0 is not a solution of (1), hence x1 6= x2. �Analogously using Theorem 1 we can prove the following theoremTheorem 3. Let a1; a2 2 R, a1 < 0 < a2. Assume assumptions (H3), (H4) withc1 = 0, c2 = a2 and assumptions (H1), (H2) with c1 = a1, c2 = 0 are fulfulled. IfQ[0; 0; 0] 6� 0 on h0; 1i, then there exist at least two di�erent solutions x1, x2 of(1) satisfying (2) with x = xj and (12).Remark 3. If equation (1) satis�es the asssumptions of Theorem 2, then equationx000 = �Q[x; x0; x00(t)](t) satis�es assumptions of Theorem 3 and also vice versa.Example 2. Consider the functional di�erential equation(13) x000(t) = " expftx0(t2)x(sin t)g ln� t+ 12 + (x00(t))2� ;where " = �1. If " = �1 (" = 1), then assumptions of Theorem 2 (Theorem 3) areful�lled with a1 = �21=2=2, a2 = 21=2=2. Since Q[0; 0; 0](t) = " ln((t+1)=2) 6� 0 onh0; 1i, there exist solutions x1; x2 of (13), x� 1 6= x2 such that �(xj) = 0 = �(x0j),x00j (1)� x00j (0) = 0, kxjk � 21=2=2, kx0jk � 21=2=2, �21=2=2 � x001(t) � 0 � x002(t) �21=2=2 for t 2 h0; 1i and j = 1; 2. If for example �(x) = R 10 x(s) ds = �(x) forx 2 X, then there exist solutions y1; y2 of (13), y1 6= y2 satisfying (j = 1; 2)Z 10 yj (s) ds = 0; yj(1) � yj(0) = 0; y00j (1) � y00j (0) = 0and kyjk � 21=2=2; ky0jk � 21=2=2; �21=2=2 � y001 (t) � 0 � y002 (t) � 21=2=2for t 2 h0; 1i:From Remark 3, Theorem 2 and Theorem 3 it follows the followingCorollary 1. Assume equation (1) satis�es assumptions of Theorem 2 andQ[0; 0; 0] (t) 6� 0 on h0; 1i. Then the equationx000(t) = �Q[x; x0; x00(t)](t); � 2 R;admits for each � 6= 0 at least two di�erent solutions x1; x2, satisfying (2) withx = xj and (12).



64 SVATOSLAV STAN�EK4. Multiple solutions for BVP (3) - (4)Since the proofs of results for BVP (3) - (4) are evident analogous to the onesfor BVP (1) - (2), we state them without proofs.Theorem 4. Assume either (S1), (S2) or assumptions (S3), (S4) are ful�lled withconstants c1 < c2. Then there exists a solution x of (3) satisfying (4) and kxk � A,c1 � x0(t) � c2 for t 2 h0; 1i.Theorem 5. Let a1; a2 2 R, a1 < a2. Assume assumptions (S1), (S2) with c1=0 ,c2 = a2 and assumptions (S3), (S4) with c1 = a1, c2 = 0 are ful�lled. If P [0; 0](t) 6�0 on h0; 1i, then there exist at least two di�erent solutions x1; x2 of (3) satisfying(4) with x = xj and(14) kxjk � jajj; a1 � x01(t) � 0 � x02(t) � a2 for t 2 h0; 1i; (j = 1; 2):Corollary 2. Assume equation (3) satis�es assumptions of Theorem 5 andP [0; 0](t) 6� 0 on h0; 1i. Then the equationx00(t) = �P [x; x0(t)](t); � 2 R;admits for each � 6= 0 at least two di�erent solutions x1, x2 satisfying (4) (withx = xj) and (14).Example 3. Consider the functional di�erential equation(15) x00(t) = �(t� (x0(t))2) Z t1=20 (es + x4(s2)) ds; � 2 R� f0g:The assumptions of Corollary 2 are satis�ed with a1 = �1, a2 = 1, and sinceP [0; 0](t) = t R t1=20 es ds 6� 0 on h0; 1i, there exist solutions x1; x2 of (15), x1 6= x2,such that �(xj) = 0, x0j(1)�x0j(0) = 0; kxjk � 1, �1 � x01(t) � 0 � x02(t) �1 for t 2 h0; 1i and j = 1; 2.If for example �(x) = Pnj=1 ajx(tj) where aj are positive constants (j =1; 2; : : : ; n) and 0 � t1 < t2 < � � � < tn�1 < tn � 1, then there exist two dif-ferent solutions y1, y2 of (15) satisfying Pnj=1 ajyi(tj) = 0, y0i(1) � y0i(0) = 0,kyik � 1 and �1 � y01(t) � 0 � y02(t) � 1 for t 2 h0; 1i and i = 1; 2.Acknowledgement. The author is grateful to the refree for his useful sugge-tions, in particular for Lemma 1 and Lemma 2 and the associated references.References[1] Castro A., and Shivaji R., Nonnegative solutions for a class of radially symmetric non-positone problems, Proc. Amer. Math. Soc., in press.[2] Chiappinelli R., Mawhin J. and Nugari R., Generalized Ambrosetti - Prodi conditions fornonlinear two-point boundary value problems, J. Di�erential Equations 69 (1987), 422-434.



MULTIPLE SOLUTIONS FOR SOME BOUNDARY VALUE PROBLEMS 65[3] Dancer E.N. and Schmitt K., On positive solutions of semilinear elliptic equations, Proc.Amer. Soc. 101 (1987), 445-452.[4] Ding S.H. andMawhim J., A multiplicity result for periodic solutions of higher order ordinarydi�erential equations, Di�erential and Integral Equations 1, 1 (1988), 31-39.[5] Fabry C., Mawhin J. and Nkashama M.N., A multiplicity result for periodic solutions offorced nonlinear second order ordinary di�erential equations, Bull. London Math. Soc. 18(1986), 173-180.[6] Gaete S. and Manasevich R.F., Existence of a pair of periodic solutions of an O.D.E. gener-alizing a problem in nonlinear elasticity, via variational method, J. Math. Anal. Appl. 134(1988), 257-271.[7] Islamov G. and Shneiberg I., Existence of nonnegative solutions for linear di�erential equa-tions, J. Di�erential Equations 16 (1980), 237-242.[8] Kolesov J., Positive periodic solutions of a class of di�erential equations of the second order,Soviet Math. Dokl. 8 (1967), 68-79.[9] Kiguradze I.T. and P�u�za B., Some boundary-value problems for a system of ordinary di�er-ential equation, Di�erentsial'nye Uravneniya 12, 12 (1976), 2139-2148. (Russian)[10] Kiguradze I.T., Boundary Problems for Systems of Ordinary Di�erential Equations, Itoginauki i tech. Sovr. problemy mat. 30 (1987), Moscow. (Russian)[11] Nkashama M.N., A generalized upper and lower solutions method and multiplicity resultsfor nonlinear �rst-order ordinary di�erential equations, J. Math. Anal. Appl. 140 (1989),381-395.[12] NkashamaM.N. and Santanilla J., Existence of multiple solutions for some nonlinear bound-ary value problems, J. Di�erential Equations 84 (1990), 148-164.[13] Mawhin J., First order ordinary di�erential equations with several solutions, Z. Angew.Math. Phys. 38 (1987), 257-265.[14] Rach�unkov�a I., Multiplicity results for four-point boundary value problems, Nonlinear Anal-ysis, TMA 18 5 (1992), 497-505.[15] Ruf B. and Srikanth P.N., Multiplicity results for ODE's with nonlinearities crossing all buta �nite number of eigenvalues, Nonlinear Analysis, TMA 10 2 (1986), 157-163.[16] Santanilla J., Nonnegative solutions to boundary value problems for nonlinear �rst andsecond order di�erential equations, J. Math. Anal. Appl. 126 (1987), 397-408.[17] Schaaf R. and Schmitt K., A class of nonlinear Sturm-Liouville problems with in�nitelymany solutions, Trans. Amer. Math. Soc. 306 (1988), 853-859.[18] SchmittK., Boundary value problems with jumping nonlinearities, RockyMountain J. Math.16 (1986), 481-496.[19] Smoller J. and Wasserman A., Existence of positive solutions for semimilear elliptic equa-tions in general domains, Arch. Rational Mech. Anal. 98 (1987), 229-249.[20] �Senky�r�ik M., Existence of multiple solutions for a third-order three-point regular boundaryvalue problem, preprint.[21] Vidossich G., Multiple periodic solutions for �rst-order ordinary di�erential equations, J.Math. Anal. Appl. 127 (1987), 459-469.Svatoslav Stan�ekDepartment of Mathematical AnalysisFaculty of Science, Palack�y UniversityTomkova 38779 06 Olomouc, Czechoslovakia
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