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ABSTRACT. Let X be the Banach space of C°-functions on (0,1) with the sup norm
and o, 8 € X — R be continuous increasing functionals, (0) = 3(0) = 0. This pa-
per deals with the functional differential equation (1) z'/(t) = Q[xz,z’,z"(¢)](t),
where Q : X2 x R — X is locally bounded continuous operator. Some theorems
about the existence of two different solutions of (1) satisfying the functional bound-
ary conditions a(z) = 0 = 3(z’), #”(1) — " (0) = 0 are given. The method of proof
makes use of Schauder linearizatin technique and the Schauder fixed point theorem.
The results are modified for 2nd order functional differential equations.

1. INTRODUCTION

There are many papers devoted to the existence of multiple solutions for or-
dinary and partial differential equations. We refer, for recent results on ordinary
differential equations, to the papers by Chiappinelli, Mawhin and Nugari [2], Ding
and Mawhin [4], Fabry, Mawhin and Nkashama [5], Gaete and Manasevich [6],
Kiguradze and Piza [9], Kiguradze [10], Nkashama [11], Mawhin [13], Rachinkova
[14], Ruf and Srikanth [15], Schmitt [18], Senkyiik [20] and Vidossich [21].

On the other hand, several authors have recently obtained results on the exis-
tence of nonnegative solutions for differential equations. We refer to Castro and
Shivaji [1], Danzer and Schmitt [3], Islamov and Shneiberg [7], Kolesov [8], San-
tanilla [16], Schaaf and Schmitt [17] and Smoller and Wasserman [19].

In the interesting paper [12], Nkashama and Santanilla consider first and sec-
ond order nonlinear ordinary differential equations when the nonlinearity is a
Carathéodory function and there are established criteria for the existence of non-
negative and nonpositive solutions for problems with periodic, Neumann and
Dirichlet boundary conditions.

The proofs of results in these papers are mostly based upon a priori estimates,
degree theory and the technique of lower and upper solutions.
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Let X be the Banach space of C°-functions on (0,1) with the sup norm || - ||.
In this paper we consider the 3rd order functional differential equation

(1) 2"(t) = Qlz, &', 2" (1)](1)

in which @ : X? x R — X is a locally bounded continuous operator. We see that
" = Q[p, ¢, 2"](t) is an ordinary differential equation for each (p,¢’) € X%, A
special case of (1) is the differential equation
x/// — q(t’x’x/’x//)’

where ¢ : (0,1) x R® — R is a continuous function.

Let , 3 : X — R be continuous increasing (i.e. u,v € X, u(t) < v(t) for
t€(0,1) = a(u) < a(v), flu) < B(v)) functionals, a(0) = 0 = 5(0).

The purpose of this paper is to obtain by the Schauder linearization technique
and the Schauder fixed point theorem sufficient conditions for the existence

(i)  at least one solution # of (1) with z(¢) > 0 on (0, 1},

(ii) at least one solution x of (1) with #”(¢) < 0 on {0, 1},

(iii) at least two different solutions x1, zs of (1) with

() <0 <25 (t) on (0,1),
satisfying the functional boundary conditions
(2) a(z)=0, B(z)=0, =z"(1)-=2"(0)=0.

Tt will be easily seen from the proofs of theorems for problem (1) - (2) that evident
modified results hold for the 2nd order functional differential equation

(3) 2(t) = Plw, 2'(1)](1),

where P : X x R — X is a locally bounded continuous operator and solution z of
(3) satisfies the functional boundary conditions

(4) a(z)=0, 2'(1)—2'(0)=0.

2. NOTATIONS, LEMMAS

Convention. If a € R, then Qa,a,a](t) and Pla,a](t) denotes Qw,w,a](t)
and P[w, a](t) with w(t) = a on {0, 1) , respectively.

Let ¢1,03 € R, ¢1 < ¢z and let A = max{|e1], |ea|}, D = {(z,2); 2" € X, ||z]] <
A 2| < A}, Dy ={xse e X ||z|| < A}, H ={x;e € X,e1 < z(t) <cafor t €
(0, 1)}

In this paper we shall assume that some of the following assumptions are

fulfilled:
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) Qle, ¢, alt) >0, Qlp, ¢’ e2](t) <0 forall (p,¢") € D, t€(0,1);
(Hz) Either

(Qle, ¢ ul(t) = Qy, ¢, v](1)(u — v) < 0 for all (¢, ¢') € D,
(5) u,v € {c1,ea),uzv, te(0,1)

(6) (Qle, ¢, ul(t) — Qlp, ¢, v](1))(u — v) < ho(t)(u — v)? for all
(QD,QD/)ED, U,UE<61,62>, tE<0,1>,

1
where ho € C°({0,1)), / ho(t) dt < 0;
0

) Qe ¢ alt) <0, Qlp, ¢, cal(t) > 0 for all (¢, ¢") € D, te(0,1);
(Hy) Either

(Qle, @', u](t) — Qly, ¢, v](1))(u — v) > 0 for all (¢, ¢’) € D,
u,v € {c1,c2), u#v, te(0,1)

(Qle, ¢, ul(t) — Qlp, ¢, v](1))(w — v) > hi(t)(u — v)? for all

1
(p,¢") €D, u,v € (cy,cq), t €(0,1), where hy € C°({(0, 1)), / hi(t)dt > 0;
0

(Sl) P[gpacl](t) >0, P[@,Cz](t) <0 for all RS Dy, te <0a 1> ;
(S2)  Either

(Ple, u](t) — Ple,v](t)) (v —v) < 0 for all ¢ € Dy, u,v € {¢1,¢3),
u#v, te(0,1)

(P, ul(t) — Plo,o)(1))(u — v) < ko(t)(u — v)” for all ¢ € D,

1
w,v € (c1,c9), t€(0,1), where ko € C°({(0, 1)),/ ko(t) dt < 0;
0

(83) P[gpacl](t) <0, P[@,Cz](t) >0 for all S Dy, te <0a 1> ;
(S4) Either

(Ple,u](t) — Ple,v]())(w—v) >0 forall ¢ € Dy, u,v € {1, ca),
u#v, te(0,1)
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or

(Ple, u](t) — Ple, v]())(w— v) > k1 () (u — v)2 for all ¢ € Dy,

1
w,v € (c1, ), t€{0,1), where k; € C°((0,1)), / ki(t)dt > 0.
0

Remark 1. Let Q[z,y, 2] = g(2)Q1[z,y] for [z,y,2] € X? x R, where @ : X? —
X 1s a locally bounded continuous operator, ¢ : R — R is a continuous function
and Q1[z,y] > 0 for [z,y] € X?. Then assumption (Hy) ((Hs); (Hz); (Ha)) is
fulfilled for example if g(cy) > 0, g(e2) < 0 (g is decreasing on {c1,c2) and
Qilp, ¢'1(t) > 0 for (p,¢") € D, t €(0,1); g(e1) <0, g(cz) > 0; g is increasing
on {e1,¢e3) and Q1[p, ¢'1(t) > 0 for (¢, ¢') € D, t € (0,1)).

Remark 2. Let Plz,y] = g(y)Pi[z] for [x,y] € X x R, where P, : X — X is
locally bounded continuous operator, ¢ : R — R is a continuous function and
Pilz] > 0 for # € X. Then assumption (S1) ((S2); (S3); (S4)) is fulfilled for
example if g(e1) > 0, g(c2) < 0 (g is decreasing on {c1, ¢2) and Pi[p](t) > 0 for
pe Dy, t€(0,1); g(c1) <0, g(ea) > 0; ¢ is increasing on {1, ca) and Pi[p] > 0
for ¢ € Dy, t € (0,1)).

Lemma 1. Let h € C°({0,1)). If there exists 3; € C1({0,1)) (j = 1,2), A1 (t) <
Ba(t) fort € (0,1) and a number ¢ € {—1, 1} such that

e(B1(0) = A1(1)) £ 0, &(B2(0) = P2(1)) 2 0
0

e(h(t, Bi(1)) = B1(1)) 2 0, e(h(t, Ba(1)) — P5(t)) < 0 for £ € (0, 1),

then the problem
u' = h(t,u), u(0)—u(l)=0

has at least one solution u(t) satisfying

B1(t) <u(t) < fBa(t) for t €{0,1).

Proof. Lemma 1 follows from Corollary 2 in [9] and also from Theorem 4.1 in

[10]. O

Lemma 2. Let either (Hy), (H2) or (Hs), (Hy) be fulfilled with constants ¢; < c¢s
and let (p,¢") € D. Then the differential equation

(7) v = Qle, ¢’ ul(t)
admits a unique solution u satisfying

(8) g <u(t)<ex for te€{0,1), u(l)—wu(0)=0.
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Proof. Let assumption (Hy) ((Hg)) be fulfilled with constants ¢; < co. Setting
h(t,u) = Qle, ¢, ul(t), B;(t) = ¢; for (t,u) € {(0,1) x {c1,¢2), j = 1,2, then
equation (7) admits a solution u satisfying (8) by Lemma 1 with ¢ =1 (= —1).

Let (Hs) be satisfied and let uq, us be solutions of (7) satisfying (8) with u = u;
J = 1,2, uy # ua. If (5) is satisfied, then 0 Z (ua(t) —u1(?)) = (Qly, ¢', ua(t)](2) —
Qle, ', u1 ()] (@) (ua2(t) — u1(t)) < 0 for ¢ € (0,1) and with regard to us(0) —
u1(0) = ua(1) — ui(t) we have uy = us, a contrary. If (6) is satisfied, then

%(uz(t) —uy (1)) < 2ho(t)(ua(t) — ui(t))? for t € (0, 1),

hence

(ua(t) — ul(t))2 < (u2(0) — ul(O))2 eXp(?/O ho(s)ds) for t € (0, 1).

In the case u2(0) = u;(0) we obtain ua = u3, a contrary. In the case us(0) # u1(0)
we have

(uz(1) = ur(1))? < (u2(0) = u1(0))* exp(2/0 ho(s) ds) < (u2(0) — u1(0))?,

which contradicts u2(0) — u1(0) = ua(1) — uy(1).
We can similarly prove that assumption (H4) guarantees the uniqueness of prob-

lem (7) - (8).

Lemma 3. Assume either assumptions (Hy ), (H2) or assumptions (Hs), (H,) are
fulfilled with constants ¢1 < ¢a, and assume (¢, ¢') € D.
Then the equation

(9) 2" = Qlp, ¢, 2"](1)
admits a unique solution x satisfying (2) and

(10) (z,2'ye D, 2" €H.

Proof. We can rewrite equation (9) in the form (7) with u = z”. With respect
to Lemma 2 there exists a unique solution u of (7) satisfying (8). Setting p(b) =

B+ fo s)ds) for b € R, p is continuous increasing on R, limy_ _ oo p(b) < 0,
hmb_,oop(b) > 0, hence p(b) = 0 for a unique b = bg. Set r(c) = alec + bt +
fo fo 7)drds) for ¢ € R. Then r is continuous increasing on R and since

lime—s — oo 7“( ) < 0 lime— oo 7(¢) > 0 there exists a unique solution of the equation
r(c) = 0, say cg. We see z(t) = g + bot + fo fo 7)d7 ds is a unique solution
of (9) satisfying (2). Next #(¢) = 0 = 2'(n) for somef n € {(0,1) because on the
opposite case a( ) # 0, B(x') # 0. Using the equalities 2/(t) = fnt u(s)ds and

fg s)ds, we get ||2']] < A, ||z|] < A, consequently (z,z") € D. d
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3. MULTIPLE SOLUTIONS FOR BVP (1) - (2)

Theorem 1. Assume either assumptions (Hy), (Hz) or assumptions (Hs), (Hy)
are fulfilled with constants ¢; < ca. Then there exists a solution x of (1) satisfying
(2) and ||z]| < A, ||2|| < A, 1 <a"(t) <eq fort €(0,1).

Proof. Let Y be the Banach space of C*-functions on {0, 1) with the norm ||z||, =
[|lz||+ ||| +]||="|| for € Y. Let k = {&;(x,2") € D, 2" € H}. k is bounded convex
closed subset of Y. According to Lemma 3, to each ¢ € k there exists a unique
solution z of (9) satisfying (2) and z € &. Setting T'(¢) = x we obtain an operator
T : k — k. To prove Theorem 1 it is sufficient to show T has a fixed point.

First we shall prove T is a continuous operator. Let {¢,} C & be a convergent
sequence, limy, oo ¢n = ¢ and let 2, = T(py), =T (p). Then

2, (1) = Qlpn, ¢, 2n(V)](t) for t € (0,1) and n €N,

2"(t) = Qlp, ¢, &"(1)](t) for ¢ € (0,1)

and

afa) = 0= Bat), #(1) = ali(0) = 0 for n € N,
a(z)=0=p(z"), 2"’(1) — 2"(0) = 0.

Let {z} be a subsequence of {z,}. Since [|zn|| < A, |Jzh|]| < A, a1 < 2(t) < o,
[lew'|| < L for t € (0,1) and n € N, where L = sup{||Q[z, ', c]||; [#,2',¢c] € D x
{e1, c2) }(< 00), due to the Ascoli-Arzela theorem exists a convergent subsequence
{Zp} of {Z}, limp .o £, = z. One can realy verify z is a solution of the differential
equation ¥ = Qlg, ¢, ¥"](t), z € k, a(z) = 0 = p(2'), 2"(1) — 2”(0) = 0. By
Lemma 3 the above functional boundary value problem admits a unique solution,
due to the definition of T' necesarily equal to . Hence {z,} is convergent and
lim,, oo &, = 2.

Next wee see T(k) C {z; « € C3((0,1)),]|2Y)]] < A for j = 0,1,2,|]«"|| < L}
with the constant L as above, hence T(x) is a precompact subset of X.

This proves 7' is a completely continuous operator and by Schauder fixed point
theorem there exists a fixed point of T in &. a

Example 1. Consider the functional differential equation

(11) "(t) = (tl/2 + xz(tz) — 21‘”(15))/0 cosz(x/(s)) ds.

Assumptions (Hy), (Hg) are fulfilled with ¢; = 0, ¢ = 1, hence by Theorem 1
with a(y) = y(0), B(y) = y(1) for y € X there exists a solution z of (11) satisfying

z(0)=0, 2'(1) =0, 2" (1) —2"(0) = 0, ||| < 1,||2| € 1,0 < 2"(t) < 1
fort € (0, 1).
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Theorem 2. Let aj,as € R, a1 < 0 < as. Assume assumptions (Hy), (H2) with
¢1 = 0, ¢ca = as and assumptions (Hz), (Hy) with ¢; = a1, ¢o = 0 are fulfilled. If
Q[0,0,0](¢) £ 0 on (0, 1), then there exist at least two different solutions x1, xs of
(1) satisfying (2) with « = z; and

<0< zh(t) <as

(12) ;1] < lagl, [J251] < lal, ar < 2"(1)
fort € (0,1) (j=1,2).

Proof. By Theorem 1 there exist solutions xy, 25 of (1) satisfying (2) and (12).
If Q[0,0,0](¢t) # 0 then # = 0 is not a solution of (1), hence z1 # 2. |

Analogously using Theorem 1 we can prove the following theorem

Theorem 3. Let aj,as € R, a1 < 0 < as. Assume assumptions (Hs), (Hy) with
¢1 =0, 3 = as and assumptions (Hy), (Ha) with ¢1 = ay, ca = 0 are fulfulled. If
Q[0,0,0] # 0 on (0, 1), then there exist at least two different solutions xz1, xo of
(1) satisfying (2) with « = z; and (12).

Remark 3. If equation (1) satisfies the asssumptions of Theorem 2, then equation

2" = —=Q[x, 2, 2" (1)](t) satisfies assumptions of Theorem 3 and also vice versa.

Example 2. Consider the functional differential equation

(13) 2" (t) = eexp{ta’(t?)z(sint)} In (t 1 + (2" (¢ ))2) ,

where ¢ = F1. If ¢ = —1 (¢ = 1), then assumptions of Theorem 2 (Theorem 3) are
fulfilled with a; = —2/2/2, a5 = 2'/2/2. Since Q[0,0,0](t) = e In((t+1)/2) Z 0 on
(0, 1), there exist solutions @1, x2 of (13), # — 1 # 3 such that a(z;) = 0 = B(z}),
21— a(0) = 0, [l < 2272, [l < 212/, 21/2/2 < al(t) <0 < a4(0) <
217272 for t € (0,1) and j = 1,2. If for example o fo z(s)ds = p(x) for
=12

z € X, then there exist solutlons y1,y2 of (13), 11 # yo satlsfymg
/01 yi (s)ds =0, (1) —y;(0) =0, (1) —yj'(0) =0
and
lysll < 2172/2, gl < 2'72/2, =212/2 <yf{(1) <O < yg() < 2'/2/2
for t € (0,1).

From Remark 3, Theorem 2 and Theorem 3 it follows the following

Corollary 1. Assume equation (1) satisfies assumptions of Theorem 2 and

Q[0,0,0] (¢) £ 0 on (0,1). Then the equation
2"(t) = AQ[x, 2’ 2" (D)](t), X eR,

admits for each A # 0 at least two different solutions x1, ®2, satisfying (2) with
z=uz; and (12).
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4. MULTIPLE SOLUTIONS FOR BVP (3) - (4)

Since the proofs of results for BVP (3) - (4) are evident analogous to the ones
for BVP (1) - (2), we state them without proofs.

Theorem 4. Assume either (S;), (S2) or assumptions (Ss), (S4) are fulfilled with
constants ¢ < cz. Then there exists a solution x of (3) satisfying (4) and ||z|| < A,
g <a'(t) <eqforte(0,1).

Theorem 5. Let a1,a2 € R, a1 < az. Assume assumptions (51 ), (S2) with e1=0,
¢o = ag and assumptions (Ss), (S4) with ¢1 = a1, eo = 0 are fulfilled. If P[0, 0](¢) #
0 on {0, 1), then there exist at least two different solutions 1, x2 of (3) satisfying
(4) with z = »; and

(14)  lzjll < lagl,  ar < 23(1) SO < wy(t) < ap for £(0,1), (j=1,2).

Corollary 2. Assume equation (3) satisfies assumptions of Theorem 5 and

P[0,0](t) # 0 on {0,1). Then the equation
2" (t) = AP[z,'(1)](t), AeR,

admits for each A # 0 at least two different solutions 1, xo satisfying (4) (with
¢ =ux;)and (14).

Example 3. Consider the functional differential equation

$1/2

(15) 2"(t) = A(t — (x’(t))z)/o (e' +2%(s?))ds, € R —{0}.

The assumptions of Corollary 2 are satisfied with a3 = —1, a» = 1, and since

1/2
P[0,0](t) = tfot e®ds # 0 on {0, 1), there exist solutions x1, #2 of (15), z1 # a2,
such that a(z;) =0, zj(1)—23(0) =0, [lz;|| <1, —1<2(t) <0< ay(t) <
1forte{0,1)and j =1,2.

If for example o(z) = Z?Il a;jx(t;) where a; are positive constants (j =
1,2,...,n)and 0 < &) < ta < -+ < tpo1 < t, < 1, then there exist two dif-
ferent solutions y1, ya of (15) satisfying Z?Il a;jyi(t;) = 0, yi(l) — yi(0) = 0,

[lgs]] < 1and =1 < y1(¢) <0< yh(t) < 1fort e (0,1) and i = 1,2.

Acknowledgement. The author is grateful to the refree for his useful sugge-
tions, in particular for Lemma 1 and Lemma 2 and the associated references.
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