Archivum Mathematicum

Svatoslav Staněk

Existence of multiple solutions for some functional boundary value problems

Archivum Mathematicum, Vol. 28 (1992), No. 1-2, 57--65

Persistent URL: http://dml.cz/dmlcz/107436

Terms of use:

© Masaryk University, 1992

Institute of Mathematics of the Academy of Sciences of the Czech Republic provides access to digitized documents strictly for personal use. Each copy of any part of this document must contain these Terms of use.
This paper has been digitized, optimized for electronic delivery and stamped
with digital signature within the project DML-CZ: The Czech Digital Mathematics
Library http://project.dml.cz

EXISTENCE OF MULTIPLE SOLUTIONS FOR SOME FUNCTIONAL BOUNDARY VALUE PROBLEMS

Svatoslav Staněk
Dedicated to Professor M. Novotný on the occasion of his seventieth birthday

Abstract

Let \mathbf{X} be the Banach space of C^{0}-functions on $\langle 0,1\rangle$ with the sup norm and $\alpha, \beta \in \mathbf{X} \rightarrow \mathbf{R}$ be continuous increasing functionals, $\alpha(0)=\beta(0)=0$. This paper deals with the functional differential equation (1) $x^{\prime \prime \prime}(t)=Q\left[x, x^{\prime}, x^{\prime \prime}(t)\right](t)$, where $Q: \mathbf{X}^{2} \times \mathbf{R} \rightarrow \mathbf{X}$ is locally bounded continuous operator. Some theorems about the existence of two different solutions of (1) satisfying the functional boundary conditions $\alpha(x)=0=\beta\left(x^{\prime}\right), x^{\prime \prime}(1)-x^{\prime \prime}(0)=0$ are given. The method of proof makes use of Schauder linearizatin technique and the Schauder fixed point theorem. The results are modified for 2 nd order functional differential equations.

1. Introduction

There are many papers devoted to the existence of multiple solutions for ordinary and partial differential equations. We refer, for recent results on ordinary differential equations, to the papers by Chiappinelli, Mawhin and Nugari [2], Ding and Mawhin [4], Fabry, Mawhin and Nkashama [5], Gaete and Manasevich [6], Kiguradze and Půža [9], Kiguradze [10], Nkashama [11], Mawhin [13], Rachůnková [14], Ruf and Srikanth [15], Schmitt [18], Šenkyřik [20] and Vidossich [21].

On the other hand, several authors have recently obtained results on the existence of nonnegative solutions for differential equations. We refer to Castro and Shivaji [1], Danzer and Schmitt [3], Islamov and Shneiberg [7], Kolesov [8], Santanilla [16], Schaaf and Schmitt [17] and Smoller and Wasserman [19].

In the interesting paper [12], Nkashama and Santanilla consider first and second order nonlinear ordinary differential equations when the nonlinearity is a Carathéodory function and there are established criteria for the existence of nonnegative and nonpositive solutions for problems with periodic, Neumann and Dirichlet boundary conditions.

The proofs of results in these papers are mostly based upon a priori estimates, degree theory and the technique of lower and upper solutions.

[^0]Let \mathbf{X} be the Banach space of C^{0}-functions on $\langle 0,1\rangle$ with the sup norm $\|\cdot\|$. In this paper we consider the 3rd order functional differential equation

$$
\begin{equation*}
x^{\prime \prime \prime}(t)=Q\left[x, x^{\prime}, x^{\prime \prime}(t)\right](t) \tag{1}
\end{equation*}
$$

in which $Q: \mathbf{X}^{2} \times \mathbf{R} \rightarrow \mathbf{X}$ is a locally bounded continuous operator. We see that $x^{\prime \prime \prime}=Q\left[\varphi, \varphi^{\prime}, x^{\prime \prime}\right](t)$ is an ordinary differential equation for each $\left(\varphi, \varphi^{\prime}\right) \in \mathbf{X}^{2}$. A special case of (1) is the differential equation

$$
x^{\prime \prime \prime}=q\left(t, x, x^{\prime}, x^{\prime \prime}\right)
$$

where $q:\langle 0,1\rangle \times \mathbf{R}^{3} \rightarrow \mathbf{R}$ is a continuous function.
Let $\alpha, \beta: \mathbf{X} \rightarrow \mathbf{R}$ be continuous increasing (i.e. $u, v \in \mathbf{X}, u(t)<v(t)$ for $t \in\langle 0,1\rangle \Rightarrow \alpha(u)<\alpha(v), \beta(u)<\beta(v))$ functionals, $\alpha(0)=0=\beta(0)$.

The purpose of this paper is to obtain by the Schauder linearization technique and the Schauder fixed point theorem sufficient conditions for the existence
(i) at least one solution x of (1) with $x^{\prime \prime}(t) \geq 0$ on $\langle 0,1\rangle$,
(ii) at least one solution x of (1) with $x^{\prime \prime}(t) \leq 0$ on $\langle 0,1\rangle$,
(iii) at least two different solutions x_{1}, x_{2} of (1) with

$$
x_{1}^{\prime \prime}(t) \leq 0 \leq x_{2}^{\prime \prime}(t) \text { on }\langle 0,1\rangle,
$$

satisfying the functional boundary conditions

$$
\begin{equation*}
\alpha(x)=0, \quad \beta\left(x^{\prime}\right)=0, \quad x^{\prime \prime}(1)-x^{\prime \prime}(0)=0 \tag{2}
\end{equation*}
$$

It will be easily seen from the proofs of theorems for problem (1) - (2) that evident modified results hold for the 2 nd order functional differential equation

$$
\begin{equation*}
x^{\prime \prime}(t)=P\left[x, x^{\prime}(t)\right](t) \tag{3}
\end{equation*}
$$

where $P: \mathbf{X} \times \mathbf{R} \rightarrow \mathbf{X}$ is a locally bounded continuous operator and solution x of (3) satisfies the functional boundary conditions

$$
\begin{equation*}
\alpha(x)=0, \quad x^{\prime}(1)-x^{\prime}(0)=0 \tag{4}
\end{equation*}
$$

2. Notations, lemmas

Convention. If $a \in \mathbf{R}$, then $Q[a, a, a](t)$ and $P[a, a](t)$ denotes $Q[w, w, a](t)$ and $P[w, a](t)$ with $w(t) \equiv a$ on $\langle 0,1\rangle$, respectively.

Let $c_{1}, c_{2} \in \mathbf{R}, c_{1}<c_{2}$ and let $A=\max \left\{\left|c_{1}\right|,\left|c_{2}\right|\right\}, D=\left\{\left(x, x^{\prime}\right) ; x^{\prime} \in \mathbf{X},\|x\| \leq\right.$ $\left.A,\left\|x^{\prime}\right\| \leq A\right\}, D_{1}=\{x ; x \in \mathbf{X},\|x\| \leq A\}, H=\left\{x ; x \in \mathbf{X}, c_{1} \leq x(t) \leq c_{2}\right.$ for $t \in$ $\langle 0,1\rangle\}$.

In this paper we shall assume that some of the following assumptions are fulfilled:
$\left(\mathrm{H}_{1}\right) \quad Q\left[\varphi, \varphi^{\prime}, c_{1}\right](t) \geq 0, Q\left[\varphi, \varphi^{\prime}, c_{2}\right](t) \leq 0$ for all $\left(\varphi, \varphi^{\prime}\right) \in D, t \in\langle 0,1\rangle ;$
$\left(\mathrm{H}_{2}\right) \quad$ Either

$$
\begin{gather*}
\left(Q\left[\varphi, \varphi^{\prime}, u\right](t)-Q\left[\varphi, \varphi^{\prime}, v\right](t)\right)(u-v)<0 \text { for all }\left(\varphi, \varphi^{\prime}\right) \in D, \\
u, v \in\left\langle c_{1}, c_{2}\right\rangle, u \neq v, \quad t \in(0,1) \tag{5}
\end{gather*}
$$

or

$$
\begin{gather*}
\left(Q\left[\varphi, \varphi^{\prime}, u\right](t)-Q\left[\varphi, \varphi^{\prime}, v\right](t)\right)(u-v) \leq h_{0}(t)(u-v)^{2} \text { for all } \tag{6}\\
\left(\varphi, \varphi^{\prime}\right) \in D, \quad u, v \in\left\langle c_{1}, c_{2}\right\rangle, \quad t \in\langle 0,1\rangle \\
\text { where } h_{0} \in C^{0}(\langle 0,1\rangle), \int_{0}^{1} h_{0}(t) d t<0
\end{gather*}
$$

$\left(\mathrm{H}_{3}\right) \quad Q\left[\varphi, \varphi^{\prime}, c_{1}\right](t) \leq 0, \quad Q\left[\varphi, \varphi^{\prime}, c_{2}\right](t) \geq 0$ for all $\left(\varphi, \varphi^{\prime}\right) \in D, \quad t \in\langle 0,1\rangle ;$
$\left(\mathrm{H}_{4}\right) \quad$ Either

$$
\begin{gathered}
\left(Q\left[\varphi, \varphi^{\prime}, u\right](t)-Q\left[\varphi, \varphi^{\prime}, v\right](t)\right)(u-v)>0 \text { for all }\left(\varphi, \varphi^{\prime}\right) \in D, \\
u, v \in\left\langle c_{1}, c_{2}\right\rangle, \quad u \neq v, \quad t \in(0,1)
\end{gathered}
$$

or

$$
\left(Q\left[\varphi, \varphi^{\prime}, u\right](t)-Q\left[\varphi, \varphi^{\prime}, v\right](t)\right)(u-v) \geq h_{1}(t)(u-v)^{2} \text { for all }
$$

$\left(\varphi, \varphi^{\prime}\right) \in D, u, v \in\left\langle c_{1}, c_{2}\right\rangle, t \in\langle 0,1\rangle$, where $h_{1} \in C^{0}(\langle 0,1\rangle), \int_{0}^{1} h_{1}(t) d t>0 ;$
($\left.\mathrm{S}_{1}\right) \quad P\left[\varphi, c_{1}\right](t) \geq 0, P\left[\varphi, c_{2}\right](t) \leq 0$ for all $\varphi \in D_{1}, t \in\langle 0,1\rangle ;$
$\left(S_{2}\right)$ Either

$$
\begin{gathered}
(P[\varphi, u](t)-P[\varphi, v](t))(u-v)<0 \text { for all } \varphi \in D_{1}, u, v \in\left\langle c_{1}, c_{2}\right\rangle, \\
u \neq v, \quad t \in(0,1)
\end{gathered}
$$

or

$$
\begin{gathered}
(P[\varphi, u](t)-P[\varphi, v](t))(u-v) \leq k_{0}(t)(u-v)^{2} \text { for all } \varphi \in D_{1} \\
u, v \in\left\langle c_{1}, c_{2}\right\rangle, \quad t \in\langle 0,1\rangle, \text { where } k_{0} \in C^{0}(\langle 0,1\rangle), \int_{0}^{1} k_{0}(t) d t<0
\end{gathered}
$$

($\left.\mathrm{S}_{3}\right) \quad P\left[\varphi, c_{1}\right](t) \leq 0, P\left[\varphi, c_{2}\right](t) \geq 0$ for all $\varphi \in D_{1}, t \in\langle 0,1\rangle$;
$\left(\mathrm{S}_{4}\right)$ Either

$$
\begin{gathered}
(P[\varphi, u](t)-P[\varphi, v](t))(u-v)>0 \text { for all } \varphi \in D_{1}, u, v \in\left\langle c_{1}, c_{2}\right\rangle \\
u \neq v, \quad t \in(0,1)
\end{gathered}
$$

or

$$
\begin{gathered}
(P[\varphi, u](t)-P[\varphi, v](t))(u-v) \geq k_{1}(t)(u-v)^{2} \text { for all } \varphi \in D_{1} \\
u, v \in\left\langle c_{1}, c_{2}\right\rangle, \quad t \in\langle 0,1\rangle, \text { where } k_{1} \in C^{0}(\langle 0,1\rangle), \int_{0}^{1} k_{1}(t) d t>0
\end{gathered}
$$

Remark 1. Let $Q[x, y, z]=g(z) Q_{1}[x, y]$ for $[x, y, z] \in \mathbf{X}^{2} \times \mathbf{R}$, where $Q_{1}: \mathbf{X}^{2} \rightarrow$ \mathbf{X} is a locally bounded continuous operator, $g: \mathbf{R} \rightarrow \mathbf{R}$ is a continuous function and $Q_{1}[x, y] \geq 0$ for $[x, y] \in \mathbf{X}^{2}$. Then assumption $\left(\mathrm{H}_{1}\right)\left(\left(\mathrm{H}_{2}\right) ;\left(\mathrm{H}_{3}\right) ;\left(\mathrm{H}_{4}\right)\right)$ is fulfilled for example if $g\left(c_{1}\right) \geq 0, \quad g\left(c_{2}\right) \leq 0 \quad\left(g\right.$ is decreasing on $\left\langle c_{1}, c_{2}\right\rangle$ and $Q_{1}\left[\varphi, \varphi^{\prime}\right](t)>0$ for $\left(\varphi, \varphi^{\prime}\right) \in D, t \in(0,1) ; g\left(c_{1}\right) \leq 0, g\left(c_{2}\right) \geq 0 ; g$ is increasing on $\left\langle c_{1}, c_{2}\right\rangle$ and $Q_{1}\left[\varphi, \varphi^{\prime}\right](t)>0$ for $\left.\left(\varphi, \varphi^{\prime}\right) \in D, t \in(0,1)\right)$.
Remark 2. Let $P[x, y]=g(y) P_{1}[x]$ for $[x, y] \in \mathbf{X} \times \mathbf{R}$, where $P_{1}: \mathbf{X} \rightarrow \mathbf{X}$ is locally bounded continuous operator, $g: \mathbf{R} \rightarrow \mathbf{R}$ is a continuous function and $P_{1}[x] \geq 0$ for $x \in \mathbf{X}$. Then assumption $\left(\mathrm{S}_{1}\right) \quad\left(\left(\mathrm{S}_{2}\right) ;\left(\mathrm{S}_{3}\right) ;\left(\mathrm{S}_{4}\right)\right)$ is fulfilled for example if $g\left(c_{1}\right) \geq 0, g\left(c_{2}\right) \leq 0\left(g\right.$ is decreasing on $\left\langle c_{1}, c_{2}\right\rangle$ and $P_{1}[\varphi](t)>0$ for $\varphi \in D_{1}, t \in(0,1) ; g\left(c_{1}\right) \leq 0, g\left(c_{2}\right) \geq 0 ; g$ is increasing on $\left\langle c_{1}, c_{2}\right\rangle$ and $P_{1}[\varphi]>0$ for $\left.\varphi \in D_{1}, t \in(0,1)\right)$.

Lemma 1. Let $h \in C^{0}(\langle 0,1\rangle)$. If there exists $\beta_{j} \in C^{1}(\langle 0,1\rangle)(j=1,2), \beta_{1}(t) \leq$ $\beta_{2}(t)$ for $t \in\langle 0,1\rangle$ and a number $\varepsilon \in\{-1,1\}$ such that

$$
\begin{gathered}
\varepsilon\left(\beta_{1}(0)-\beta_{1}(1)\right) \leq 0, \quad \varepsilon\left(\beta_{2}(0)-\beta_{2}(1)\right) \geq 0 \\
\varepsilon\left(h\left(t, \beta_{1}(t)\right)-\beta_{1}^{\prime}(t)\right) \geq 0, \quad \varepsilon\left(h\left(t, \beta_{2}(t)\right)-\beta_{2}^{\prime}(t)\right) \leq 0 \text { for } t \in\langle 0,1\rangle,
\end{gathered}
$$

then the problem

$$
u^{\prime}=h(t, u), \quad u(0)-u(1)=0
$$

has at least one solution $u(t)$ satisfying

$$
\beta_{1}(t) \leq u(t) \leq \beta_{2}(t) \quad \text { for } t \in\langle 0,1\rangle
$$

Proof. Lemma 1 follows from Corollary 2 in [9] and also from Theorem 4.1 in [10].

Lemma 2. Let either $\left(H_{1}\right),\left(H_{2}\right)$ or $\left(H_{3}\right),\left(H_{4}\right)$ be fulfilled with constants $c_{1}<c_{2}$ and let $\left(\varphi, \varphi^{\prime}\right) \in D$. Then the differential equation

$$
\begin{equation*}
u^{\prime}=Q\left[\varphi, \varphi^{\prime}, u\right](t) \tag{7}
\end{equation*}
$$

admits a unique solution u satisfying

$$
\begin{equation*}
c_{1} \leq u(t) \leq c_{2} \quad \text { for } \quad t \in\langle 0,1\rangle, \quad u(1)-u(0)=0 \tag{8}
\end{equation*}
$$

Proof. Let assumption $\left(\mathrm{H}_{1}\right)\left(\left(\mathrm{H}_{3}\right)\right)$ be fulfilled with constants $c_{1}<c_{2}$. Setting $h(t, u)=Q\left[\varphi, \varphi^{\prime}, u\right](t), \quad \beta_{j}(t)=c_{j}$ for $(t, u) \in\langle 0,1\rangle \times\left\langle c_{1}, c_{2}\right\rangle, \quad j=1,2$, then equation (7) admits a solution u satisfying (8) by Lemma 1 with $\varepsilon=1(=-1)$.

Let $\left(\mathrm{H}_{2}\right)$ be satisfied and let u_{1}, u_{2} be solutions of (7) satisfying (8) with $u=u_{j}$ $j=1,2, u_{1} \neq u_{2}$. If (5) is satisfied, then $0 \not \equiv\left(u_{2}(t)-u_{1}(t)\right)^{\prime}=\left(Q\left[\varphi, \varphi^{\prime}, u_{2}(t)\right](t)-\right.$ $\left.Q\left[\varphi, \varphi^{\prime}, u_{1}(t)\right](t)\right)\left(u_{2}(t)-u_{1}(t)\right) \leq 0$ for $t \in\langle 0,1\rangle$ and with regard to $u_{2}(0)-$ $u_{1}(0)=u_{2}(1)-u_{1}(t)$ we have $u_{1}=u_{2}$, a contrary. If (6) is satisfied, then

$$
\frac{d}{d t}\left(u_{2}(t)-u_{1}(t)\right)^{2} \leq 2 h_{0}(t)\left(u_{2}(t)-u_{1}(t)\right)^{2} \text { for } t \in\langle 0,1\rangle
$$

hence

$$
\left(u_{2}(t)-u_{1}(t)\right)^{2} \leq\left(u_{2}(0)-u_{1}(0)\right)^{2} \exp \left(2 \int_{0}^{t} h_{0}(s) d s\right) \text { for } t \in\langle 0,1\rangle
$$

In the case $u_{2}(0)=u_{1}(0)$ we obtain $u_{2}=u_{1}$, a contrary. In the case $u_{2}(0) \neq u_{1}(0)$ we have

$$
\left(u_{2}(1)-u_{1}(1)\right)^{2} \leq\left(u_{2}(0)-u_{1}(0)\right)^{2} \exp \left(2 \int_{0}^{t} h_{0}(s) d s\right)<\left(u_{2}(0)-u_{1}(0)\right)^{2}
$$

which contradicts $u_{2}(0)-u_{1}(0)=u_{2}(1)-u_{1}(1)$.
We can similarly prove that assumption $\left(\mathrm{H}_{4}\right)$ guarantees the uniqueness of problem (7) - (8).
Lemma 3. Assume either assumptions $\left(H_{1}\right),\left(H_{2}\right)$ or assumptions $\left(H_{3}\right),\left(H_{4}\right)$ are fulfilled with constants $c_{1}<c_{2}$, and assume $\left(\varphi, \varphi^{\prime}\right) \in D$.
Then the equation

$$
\begin{equation*}
x^{\prime \prime \prime}=Q\left[\varphi, \varphi^{\prime}, x^{\prime \prime}\right](t) \tag{9}
\end{equation*}
$$

admits a unique solution x satisfying (2) and

$$
\begin{equation*}
\left(x, x^{\prime}\right) \in D, \quad x^{\prime \prime} \in H \tag{10}
\end{equation*}
$$

Proof. We can rewrite equation (9) in the form (7) with $u=x^{\prime \prime}$. With respect to Lemma 2 there exists a unique solution u of (7) satisfying (8). Setting $p(b)=$ $\beta\left(b+\int_{0}^{t} u(s) d s\right)$ for $b \in \mathbf{R}, p$ is continuous increasing on $\mathbf{R}, \lim _{b \rightarrow-\infty} p(b)<0$, $\lim _{b \rightarrow \infty} p(b)>0$, hence $p(b)=0$ for a unique $b=b_{0}$. Set $r(c)=\alpha\left(c+b_{0} t+\right.$ $\left.\int_{0}^{t} \int_{0}^{s} u(\tau) d \tau d s\right)$ for $c \in \mathbf{R}$. Then r is continuous increasing on \mathbf{R} and since $\lim _{c \rightarrow-\infty} r(c)<0, \lim _{c \rightarrow \infty} r(c)>0$ there exists a unique solution of the equation $r(c)=0$, say c_{0}. We see $x(t)=c_{0}+b_{0} t+\int_{0}^{t} \int_{0}^{s} u(\tau) d \tau d s$ is a unique solution of (9) satisfying (2). Next $x(\xi)=0=x^{\prime}(\eta)$ for some $\xi, \eta \in\langle 0,1\rangle$ because on the opposite case $\alpha(x) \neq 0, \beta\left(x^{\prime}\right) \neq 0$. Using the equalities $x^{\prime}(t)=\int_{\eta}^{t} u(s) d s$ and $x(t)=\int_{\xi}^{t} x^{\prime}(s) d s$, we get $\left\|x^{\prime}\right\| \leq A,\|x\| \leq A$, consequently $\left(x, x^{\prime}\right) \in D$.

3. Multiple solutions for BVP (1) - (2)

Theorem 1. Assume either assumptions $\left(H_{1}\right),\left(H_{2}\right)$ or assumptions $\left(H_{3}\right),\left(H_{4}\right)$ are fulfilled with constants $c_{1}<c_{2}$. Then there exists a solution x of (1) satisfying (2) and $\|x\| \leq A,\left\|x^{\prime}\right\| \leq A, \quad c_{1} \leq x^{\prime \prime}(t) \leq c_{2}$ for $t \in\langle 0,1\rangle$.

Proof. Let \mathbf{Y} be the Banach space of C^{2}-functions on $\langle 0,1\rangle$ with the norm $\|x\|_{2}=$ $\|x\|+\left\|x^{\prime}\right\|+\left\|x^{\prime \prime}\right\|$ for $x \in \mathbf{Y}$. Let $\kappa=\left\{x ;\left(x, x^{\prime}\right) \in D, x^{\prime \prime} \in H\right\} . \kappa$ is bounded convex closed subset of \mathbf{Y}. According to Lemma 3, to each $\varphi \in \kappa$ there exists a unique solution x of (9) satisfying (2) and $x \in \kappa$. Setting $T(\varphi)=x$ we obtain an operator $T: \kappa \rightarrow \kappa$. To prove Theorem 1 it is sufficient to show T has a fixed point.

First we shall prove T is a continuous operator. Let $\left\{\varphi_{n}\right\} \subset \kappa$ be a convergent sequence, $\lim _{n \rightarrow \infty} \varphi_{n}=\varphi$ and let $x_{n}=T\left(\varphi_{n}\right), x=T(\varphi)$. Then

$$
\begin{gathered}
x_{n}^{\prime \prime \prime}(t)=Q\left[\varphi_{n}, \varphi_{n}^{\prime}, x_{n}^{\prime \prime}(t)\right](t) \text { for } t \in\langle 0,1\rangle \text { and } n \in \mathbf{N}, \\
x^{\prime \prime \prime}(t)=Q\left[\varphi, \varphi^{\prime}, x^{\prime \prime}(t)\right](t) \text { for } t \in\langle 0,1\rangle
\end{gathered}
$$

and

$$
\begin{gathered}
\alpha\left(x_{n}\right)=0=\beta\left(x_{n}^{\prime}\right), \quad x_{n}^{\prime \prime}(1)-x_{n}^{\prime \prime}(0)=0 \text { for } n \in \mathbf{N} \\
\alpha(x)=0=\beta\left(x^{\prime}\right), x^{\prime \prime}(1)-x^{\prime \prime}(0)=0
\end{gathered}
$$

Let $\{\bar{x}\}$ be a subsequence of $\left\{x_{n}\right\}$. Since $\left\|x_{n}\right\| \leq A,\left\|x_{n}^{\prime}\right\| \leq A, c_{1} \leq x_{n}^{\prime \prime}(t) \leq c_{2}$, $\left\|x_{n}^{\prime \prime \prime}\right\| \leq L$ for $t \in\langle 0,1\rangle$ and $n \in \mathbf{N}$, where $L=\sup \left\{\left\|Q\left[x, x^{\prime}, c\right]\right\| ; \quad\left[x, x^{\prime}, c\right] \in D \times\right.$ $\left.\left\langle c_{1}, c_{2}\right\rangle\right\}(<\infty)$, due to the Ascoli-Arzela theorem exists a convergent subsequence $\left\{\tilde{x}_{n}\right\}$ of $\{\bar{x}\}, \lim _{n \rightarrow \infty} \tilde{x}_{n}=z$. One can realy verify z is a solution of the differential equation $y^{\prime \prime \prime}=Q\left[\varphi, \varphi^{\prime}, y^{\prime \prime}\right](t), z \in \kappa, \alpha(z)=0=\beta\left(z^{\prime}\right), z^{\prime \prime}(1)-z^{\prime \prime}(0)=0$. By Lemma 3 the above functional boundary value problem admits a unique solution, due to the definition of T necesarily equal to x. Hence $\left\{x_{n}\right\}$ is convergent and $\lim _{n \rightarrow \infty} x_{n}=x$.

Next wee see $T(\kappa) \subset\left\{x ; x \in C^{3}(\langle 0,1\rangle),\left\|x^{(j)}\right\| \leq A\right.$ for $\left.j=0,1,2,\left\|x^{\prime \prime \prime}\right\| \leq L\right\}$ with the constant L as above, hence $T(\kappa)$ is a precompact subset of \mathbf{X}.

This proves T is a completely continuous operator and by Schauder fixed point theorem there exists a fixed point of T in κ.

Example 1. Consider the functional differential equation

$$
\begin{equation*}
x^{\prime \prime \prime}(t)=\left(t^{1 / 2}+x^{2}\left(t^{2}\right)-2 x^{\prime \prime}(t)\right) \int_{0}^{t} \cos ^{2}\left(x^{\prime}(s)\right) d s \tag{11}
\end{equation*}
$$

Assumptions $\left(\mathrm{H}_{1}\right),\left(\mathrm{H}_{2}\right)$ are fulfilled with $c_{1}=0, c_{2}=1$, hence by Theorem 1 with $\alpha(y)=y(0), \beta(y)=y(1)$ for $y \in \mathbf{X}$ there exists a solution x of (11) satisfying

$$
\begin{gathered}
x(0)=0, x^{\prime}(1)=0, x^{\prime \prime}(1)-x^{\prime \prime}(0)=0,\|x\| \leq 1,\left\|x^{\prime}\right\| \leq 1,0 \leq x^{\prime \prime}(t) \leq 1 \\
\text { for } t \in\langle 0,1\rangle .
\end{gathered}
$$

Theorem 2. Let $a_{1}, a_{2} \in \mathbf{R}, a_{1}<0<a_{2}$. Assume assumptions (H_{1}), (H_{2}) with $c_{1}=0, c_{2}=a_{2}$ and assumptions $\left(H_{3}\right),\left(H_{4}\right)$ with $c_{1}=a_{1}, c_{2}=0$ are fulfilled. If $Q[0,0,0](t) \not \equiv 0$ on $\langle 0,1\rangle$, then there exist at least two different solutions x_{1}, x_{2} of (1) satisfying (2) with $x=x_{j}$ and

$$
\begin{align*}
& \left\|x_{j}\right\| \leq\left|a_{j}\right|,\left\|x_{j}^{\prime}\right\| \leq\left|a_{j}\right|, \quad a_{1} \leq x^{\prime \prime}(t) \leq 0 \leq x_{2}^{\prime \prime}(t) \leq a_{2} \tag{12}\\
& \text { for } t \in\langle 0,1\rangle \quad(j=1,2) .
\end{align*}
$$

Proof. By Theorem 1 there exist solutions x_{1}, x_{2} of (1) satisfying (2) and (12). If $Q[0,0,0](t) \not \equiv 0$ then $x=0$ is not a solution of (1), hence $x_{1} \neq x_{2}$.

Analogously using Theorem 1 we can prove the following theorem
Theorem 3. Let $a_{1}, a_{2} \in \mathbf{R}, a_{1}<0<a_{2}$. Assume assumptions (H_{3}), (H_{4}) with $c_{1}=0, c_{2}=a_{2}$ and assumptions $\left(H_{1}\right),\left(H_{2}\right)$ with $c_{1}=a_{1}, c_{2}=0$ are fulfulled. If $Q[0,0,0] \not \equiv 0$ on $\langle 0,1\rangle$, then there exist at least two different solutions x_{1}, x_{2} of (1) satisfying (2) with $x=x_{j}$ and (12).

Remark 3. If equation (1) satisfies the asssumptions of Theorem 2 , then equation $x^{\prime \prime \prime}=-Q\left[x, x^{\prime}, x^{\prime \prime}(t)\right](t)$ satisfies assumptions of Theorem 3 and also vice versa.
Example 2. Consider the functional differential equation

$$
\begin{equation*}
x^{\prime \prime \prime}(t)=\varepsilon \exp \left\{t x^{\prime}\left(t^{2}\right) x(\sin t)\right\} \ln \left(\frac{t+1}{2}+\left(x^{\prime \prime}(t)\right)^{2}\right) \tag{13}
\end{equation*}
$$

where $\varepsilon=\mp 1$. If $\varepsilon=-1(\varepsilon=1)$, then assumptions of Theorem 2 (Theorem 3) are fulfilled with $a_{1}=-2^{1 / 2} / 2, a_{2}=2^{1 / 2} / 2$. Since $Q[0,0,0](t)=\varepsilon \ln ((t+1) / 2) \not \equiv 0$ on $\langle 0,1\rangle$, there exist solutions x_{1}, x_{2} of (13), $x-1 \neq x_{2}$ such that $\alpha\left(x_{j}\right)=0=\beta\left(x_{j}^{\prime}\right)$, $x_{j}^{\prime \prime}(1)-x_{j}^{\prime \prime}(0)=0,\left\|x_{j}\right\| \leq 2^{1 / 2} / 2,\left\|x_{j}^{\prime}\right\| \leq 2^{1 / 2} / 2,-2^{1 / 2} / 2 \leq x_{1}^{\prime \prime}(t) \leq 0 \leq x_{2}^{\prime \prime}(t) \leq$ $2^{1 / 2} / 2$ for $t \in\langle 0,1\rangle$ and $j=1,2$. If for example $\alpha(x)=\int_{0}^{1} x(s) d s=\beta(x)$ for $x \in \mathbf{X}$, then there exist solutions y_{1}, y_{2} of (13), $y_{1} \neq y_{2}$ satisfying $(j=1,2)$

$$
\int_{0}^{1} y_{j}(s) d s=0, \quad y_{j}(1)-y_{j}(0)=0, \quad y_{j}^{\prime \prime}(1)-y_{j}^{\prime \prime}(0)=0
$$

and

$$
\begin{gathered}
\left\|y_{j}\right\| \leq 2^{1 / 2} / 2, \quad\left\|y_{j}^{\prime}\right\| \leq 2^{1 / 2} / 2, \quad-2^{1 / 2} / 2 \leq y_{1}^{\prime \prime}(t) \leq 0 \leq y_{2}^{\prime \prime}(t) \leq 2^{1 / 2} / 2 \\
\text { for } t \in\langle 0,1\rangle
\end{gathered}
$$

From Remark 3, Theorem 2 and Theorem 3 it follows the following
Corollary 1. Assume equation (1) satisfies assumptions of Theorem 2 and $Q[0,0,0](t) \not \equiv 0$ on $\langle 0,1\rangle$. Then the equation

$$
x^{\prime \prime \prime}(t)=\lambda Q\left[x, x^{\prime}, x^{\prime \prime}(t)\right](t), \quad \lambda \in \mathbf{R}
$$

admits for each $\lambda \neq 0$ at least two different solutions x_{1}, x_{2}, satisfying (2) with $x=x_{j}$ and (12).

4. Multiple solutions for BVP (3) - (4)

Since the proofs of results for BVP (3) - (4) are evident analogous to the ones for BVP (1) - (2), we state them without proofs.

Theorem 4. Assume either $\left(S_{1}\right),\left(S_{2}\right)$ or assumptions $\left(S_{3}\right),\left(S_{4}\right)$ are fulfilled with constants $c_{1}<c_{2}$. Then there exists a solution x of (3) satisfying (4) and $\|x\| \leq A$, $c_{1} \leq x^{\prime}(t) \leq c_{2}$ for $t \in\langle 0,1\rangle$.

Theorem 5. Let $a_{1}, a_{2} \in \mathbf{R}, a_{1}<a_{2}$. Assume assumptions (S_{1}), (S_{2}) with $c_{1}=0$, $c_{2}=a_{2}$ and assumptions $\left(S_{3}\right),\left(S_{4}\right)$ with $c_{1}=a_{1}, c_{2}=0$ are fulfilled. If $P[0,0](t) \not \equiv$ 0 on $\langle 0,1\rangle$, then there exist at least two different solutions x_{1}, x_{2} of (3) satisfying (4) with $x=x_{j}$ and

$$
\begin{equation*}
\left\|x_{j}\right\| \leq\left|a_{j}\right|, \quad a_{1} \leq x_{1}^{\prime}(t) \leq 0 \leq x_{2}^{\prime}(t) \leq a_{2} \text { for } t \in\langle 0,1\rangle, \quad(j=1,2) . \tag{14}
\end{equation*}
$$

Corollary 2. Assume equation (3) satisfies assumptions of Theorem 5 and $P[0,0](t) \not \equiv 0$ on $\langle 0,1\rangle$. Then the equation

$$
x^{\prime \prime}(t)=\lambda P\left[x, x^{\prime}(t)\right](t), \quad \lambda \in \mathbf{R}
$$

admits for each $\lambda \neq 0$ at least two different solutions x_{1}, x_{2} satisfying (4) (with $x=x_{j}$) and (14).

Example 3. Consider the functional differential equation

$$
\begin{equation*}
x^{\prime \prime}(t)=\lambda\left(t-\left(x^{\prime}(t)\right)^{2}\right) \int_{0}^{t^{1 / 2}}\left(e^{s}+x^{4}\left(s^{2}\right)\right) d s, \quad \lambda \in \mathbf{R}-\{0\} \tag{15}
\end{equation*}
$$

The assumptions of Corollary 2 are satisfied with $a_{1}=-1, a_{2}=1$, and since $P[0,0](t)=t \int_{0}^{t^{1 / 2}} e^{s} d s \not \equiv 0$ on $\langle 0,1\rangle$, there exist solutions x_{1}, x_{2} of (15), $x_{1} \neq x_{2}$, such that $\alpha\left(x_{j}\right)=0, \quad x_{j}^{\prime}(1)-x_{j}^{\prime}(0)=0, \quad\left\|x_{j}\right\| \leq 1, \quad-1 \leq x_{1}^{\prime}(t) \leq 0 \leq x_{2}^{\prime}(t) \leq$ 1 for $t \in\langle 0,1\rangle$ and $j=1,2$.

If for example $\alpha(x)=\sum_{j=1}^{n} a_{j} x\left(t_{j}\right)$ where a_{j} are positive constants $(j=$ $1,2, \ldots, n)$ and $0 \leq t_{1}<t_{2}<\cdots<t_{n-1}<t_{n} \leq 1$, then there exist two different solutions y_{1}, y_{2} of (15) satisfying $\sum_{j=1}^{n} a_{j} y_{i}\left(t_{j}\right)=0, y_{i}^{\prime}(1)-y_{i}^{\prime}(0)=0$, $\left\|y_{i}\right\| \leq 1$ and $-1 \leq y_{1}^{\prime}(t) \leq 0 \leq y_{2}^{\prime}(t) \leq 1$ for $t \in\langle 0,1\rangle$ and $i=1,2$.

Acknowledgement. The author is grateful to the refree for his useful suggetions, in particular for Lemma 1 and Lemma 2 and the associated references.

References

[1] Castro A., and Shivaji R., Nonnegative solutions for a class of radially symmetric nonpositone problems, Proc. Amer. Math. Soc., in press.
[2] Chiappinelli R., Mawhin J. and Nugari R., Generalized Ambrosetti - Prodi conditions for nonlinear two-point boundary value problems, J. Differential Equations 69 (1987), 422-434.
[3] Dancer E.N. and Schmitt K., On positive solutions of semilinear elliptic equations, Proc. Amer. Soc. 101 (1987), 445-452.
[4] Ding S.H. and Mawhim J., A multiplicity result for periodic solutions of higher order ordinary differential equations, Differential and Integral Equations 1, 1 (1988), 31-39.
[5] Fabry C., Mawhin J. and Nkashama M.N., A multiplicity result for periodic solutions of forced nonlinear second order ordinary differential equations, Bull. London Math. Soc. 18 (1986), 173-180.
[6] Gaete S. and Manasevich R.F., Existence of a pair of periodic solutions of an O.D.E. generalizing a problem in nonlinear elasticity, via variational method, J. Math. Anal. Appl. 134 (1988), 257-271.
[7] Islamov G. and Shneiberg I., Existence of nonnegative solutions for linear differential equations, J. Differential Equations 16 (1980), 237-242.
[8] Kolesov J., Positive periodic solutions of a class of differential equations of the second order, Soviet Math. Dokl. 8 (1967), 68-79.
[9] Kiguradze I.T. and Půža B., Some boundary-value problems for a system of ordinary differential equation, Differentsial'nye Uravneniya 12, 12 (1976), 2139-2148. (Russian)
[10] Kiguradze I.T., Boundary Problems for Systems of Ordinary Differential Equations, Itogi nauki i tech. Sovr. problemy mat. 30 (1987), Moscow. (Russian)
[11] Nkashama M.N., A generalized upper and lower solutions method and multiplicity results for nonlinear first-order ordinary differential equations, J. Math. Anal. Appl. 140 (1989), 381-395.
[12] Nkashama M.N. and Santanilla J., Existence of multiple solutions for some nonlinear boundary value problems, J. Differential Equations 84 (1990), 148-164.
[13] Mawhin J., First order ordinary differential equations with several solutions, Z. Angew. Math. Phys. 38 (1987), 257-265.
[14] Rachůnková I., Multiplicity results for four-point boundary value problems, Nonlinear Analysis, TMA 185 (1992), 497-505.
[15] Ruf B. and Srikanth P.N., Multiplicity results for ODE's with nonlinearities crossing all but a finite number of eigenvalues, Nonlinear Analysis, TMA 102 (1986), 157-163.
[16] Santanilla J., Nonnegative solutions to boundary value problems for nonlinear first and second order differential equations, J. Math. Anal. Appl. 126 (1987), 397-408.
[17] Schaaf R. and Schmitt K., A class of nonlinear Sturm-Liouville problems with infinitely many solutions, Trans. Amer. Math. Soc. 306 (1988), 853-859.
[18] Schmitt K., Boundary value problems with jumping nonlinearities, Rocky Mountain J. Math. 16 (1986), 481-496.
[19] Smoller J. and Wasserman A., Existence of positive solutions for semimilear elliptic equations in general domains, Arch. Rational Mech. Anal. 98 (1987), 229-249.
[20] Šenkyřik M., Existence of multiple solutions for a third-order three-point regular boundary value problem, preprint.
[21] Vidossich G., Multiple periodic solutions for first-order ordinary differential equations, J. Math. Anal. Appl. 127 (1987), 459-469.

Svatoslav Staněk
Defartment of Mathematical Analysis
Faculty of Science, Palacký University
Tombova 38
77906 Olomouc, Czechoslovakia

[^0]: 1991 Mathematics Subject Classification: 34K10, 34B15, 34B10.
 Key words and phrases: Schauder linearization technique, Schauder differential equation, functional boundary conditions, boundary value problem.

 Received October 2, 1991.

