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ARCHIVUM MATHEMATICUM (BRNO)
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BOUNDS OF LENGTHS OF OPEN HAMILTONIAN WALKS

Pavel Vacek

Dedicated to Professor F. Šik on the occasion of his seventieth birthday

Abstract. If G is a graph, an open Hamiltonian walk is any open sequence of
edges of minimal length which includes every vertex of G. In this paper bounds of
lengths of open Hamiltonian walks are studied.

Since Hamilton defined the useful concept of Hamiltonian cycle or path in
graphs, a lot of related notions have been studied; in particular, Hamiltonian con-
nectedness, pancyclic graphs, hypohamiltonian graphs and many others. Almost
of them are stronger than the existence of a Hamiltonian cycle or a Hamiltonian
path while a few are weaker; namely Hamiltonian walk defined in [1], [2], [3]. Here
we propose some results on open Hamiltonian walks.

In this paper the graph means a finite, connected, undirected graph without
loops and multiple adges. If G is a graph, V (G) and E(G) denote the sets of
vertices and edges of G respectively. An open sequence of edges passing through
each vertex of a graph G is called an open walk in the graph G. Any open walk
of minimal length is called an open Hamiltonian walk (see [4]). Throughout the
paper we shall denote lG the length of open Hamiltonian walk in the graph G.

Let G be a graph on n vertices, n ≥ 3, then n− 1 ≤ lG ≤ 2n− 4 [4]. Let S be a
spanning tree of the graph G and lS the length of open Hamiltonian walk in the
graph S. Then obviously lG ≤ lS and lS = 2(n− 1)−diamS, where diam S is the
diameter of S (see [4]).

Consider the set of all spanning trees of the graph G. Let Smax be a spanning
tree, which has the maximal diameter and denote diam Smax the diameter of it.
Then lG ≤ 2(n − 1)− diam Smax.

Let G be a graph on n vertices and H a path in G whose length h = diamG.
The path H can be completed to a spanning tree of the graph G. Then obviously
lG ≤ 2(n − 1) − diamG.

Let k be a minimal number of edges which we have to add to the graph G to
obtain a graph containing a Hamiltonian path. Obviously, 0 ≤ k ≤ n − 3 and
k = 0 iff G has a Hamiltonian path and k = n − 3 iff G is a star graph K1,n−1.

1991 Mathematics Subject Classification: 05C45.
Key words and phrases: graph, tree, Hamiltonian path, open Hamiltonian walk, diameter of

graph.
Received March 15, 1989.

11



12 PAVEL VACEK

Theorem 1. Let S be a tree on n vertices, n ≥ 4, and k be a minimal number

of edges which we have to add to the graph S to obtain a graph G containing a

Hamiltonian path (k ≤ n − 3). Then

lS ≤ 2(n − 1) −
n + k − 1

k + 1

Proof. If k = 0, the Theorem 1 clearly holds.
Let k ≥ 1. Let H be a Hamiltonian path in G which we obtained from S

after adding k edges. H has to contain each of these k edges. If we omit these
k edges, the rest of H consists of (k + 1) disjoint paths coverning V (G). We
denote α0, α1, . . . , αk the lengths of these paths, where 0 ≤ α0 ≤ α1 ≤ · · · ≤ αk.

Obviously
k
∑

i=0

αi = n − 1 − k. Let βs,t denote the distance of path of lengths αs

and αt in S. Obviously, βs,t ≥ 1 and there exists a path of length

max
s,t

(
αs + αt

2
+ βs,t)

in S and so

diamS ≥ max
s,t

(
αs + αt

2
+ βs,t).

Since 0 ≤ α0 ≤ α1 ≤ · · · ≤ αk,

diamS ≥
αk + αk−1

2
+ βk,k−1.

Let k = 1. Then α0 + α1 = n − 2 and diamS ≥
n − 2

2
+ 1 =

n

2
and so the

Theorem 1 holds again.
Let now k > 1. We shall study the numbers βk,k−1, βk,k−2, βk−1,k−2. At least

one of these numbers has to be at least 2, otherwise S is not a tree. Therefore, the
lower bound of diam S, the diameter of the tree S, is the number M , where

M = max {
αk + αk−1

2
+ βk,k−1 ;

αk + αk−2

2
+ βk,k−2 ;

αk−1 + αk−2

2
+ βk−1,k−2}

We distinguish 3 cases :

1. αk−2 = αk

2. αk−2 = αk − 1
3. αk−2 = αk − 2

1. If αk−2 = αk, then αk−1 = αk−2 = αk and so

αk + αk−1 = αk + αk−2 = αk−1 + αk−2.

Since αk + αk−1 ≥ 2
n− 1 − k

k + 1
,

diamS ≥
n − 1 − k

k + 1
+ 2 =

n + k + 1

k + 1
.



BOUNDS OF LENGTHS OF OPEN HAMILTONIAN WALKS 13

2. If αk−2 = αk − 1 we distinguish 2 cases a) and b).

a) Let αk−2 = αk−1 = αk − 1. Then

n − 1 − k = α0 + α1 + · · · + αk ≤ kαk−2 + (αk−2 + 1) = (k + 1)αk−2 + 1

and so αk−2 ≥
n − k − 2

k + 1
. Therefore αk−1 + αk−2 ≥ 2

n − k − 2

k + 1
and we

get

diamS ≥
n − k − 2

k + 1
+ 2 =

n + k

k + 1
.

b) Let αk−2 = αk−1 − 1 = αk − 1. Then

n − 1 − k ≤ (k + 1)αk−2 + 2 and αk−2 ≥
n − k − 3

k + 1
. Therefore

αk−1 + αk−2 ≥ 2
n − k − 3

k + 1
+ 1 =

2n − k − 5

k + 1
and so

diamS ≥
2n − k − 5

2(k + 1)
+ 2 =

n + 3

2
k − 1

2

k + 1
.

3. If αk−2 ≤ αk − 2, then αk − αk−2 ≥ 2.

a) If αk−2 >
n − k − 1

k + 1
−

2

k + 1
, then

αk ≥
n − k − 1

k + 1
−

2

k + 1
+ 2, αk−1 ≥ αk−2 and so

αk + αk−1 ≥ 2(
n − k − 1

k + 1
−

2

k + 1
) + 2 = 2

n − 2

k + 1
.

b) If αk−2 ≤
n − k − 1

k + 1
−

2

k + 1
, then

α0 + α1 + . . . + αk−2 ≤ (k − 1) (
n − k − 1

k + 1
−

2

k + 1
) and so

αk + αk−1 = n − 1 − k − (α0 + α1 + · · · + αk−2) ≥

≥ n − 1 − k − (k − 1)(
n − k − 1

k + 1
−

2

k + 1
) = 2

n − 2

k + 1
.

In both cases we get

αk + αk−1 ≥ 2
n− 2

k + 1

and, therefore

diamS ≥
n − 2

k + 1
+ 1 =

n + k − 1

k + 1
.

We find out that, if k > 1, the bound diamS ≥
n + k − 1

k + 1
holds in all 3 cases 1 –

3. This proves the Theorem 1. �
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Remark 1. The bound of the diameter of the tree from the Theorem 1 is the
best possible. In the figure 1 there is an example of a tree on 11 vertices. The tree
can be completed to a graph with a Hamiltonian path by 2 edges. The diameter

of this tree is 4 =
n + k − 1

k + 1
.

Now we show that the conclusion of the Theorem 1 remains to hold even if G
is not a tree.

Theorem 2. Let G1 be a graph on n vertices, n ≥ 4, and k be the minimal

number of edges which we have to add to the graph G1 to obtain a graph G
containing a Hamiltonian path (k ≤ n − 3). Then

lG1
≤ 2(n − 1) −

n + k − 1

k + 1
.

Proof. Let H be a Hamiltonian path in G, which we obtained from G1 after
adding k edges. H has to contain each of these k edges. If we omit these k edges,
the rest of H consists of (k+1) disjoint paths covering V (G). This system of paths
can be completed by edges of G1 to a spanning tree S of the graph G1. Spanning
tree S can be completed by the same edges as G1 to a graph with a Hamiltonian

path. According to the Theorem 1, lS ≤ 2(n−1)−
n + k − 1

k + 1
and because lG1

≤ lS ,

is the Theorem 2 proved. �

Theorem 3. Let G be a graph which we obtain from a graph G1 by omitting a

unique edge. Then

lG1
≥

2lG + 1

3
.

Proof. Let {[x, y]} = E(G1) − E(G) and LG1
be an open Hamiltonian walk in

G1 of length lG1
. If [x, y] /∈ E(LG1

) then lG1
= lG and the Theorem 3 holds.

Let [x, y] ∈ E(LG1
). The edge [x, y] is contained at most twice in LG1

.
Suppose that the edge [x, y] is obtained twice in LG1

. If at the first occurence
the edge [x, y] is walked in the direction from x to y, then at the second occurence
it is walked in the direction from y to x. Let

LG1
= {x0, x1, . . . , xi−1, xi, xi+1, . . . , xi+k, xi+k+1, . . . , xlG1

}
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and xi = xi+k+1 = x, xi+1 = xi+k = y. Obviously, for any index s, i + 2 ≤ s ≤
i + k− 1 there does not exist an index t, t ≤ i− 1 or t ≥ i + k + 2 so that xs = xt,
otherwise there exists an open walk of length less than lG1

in G1 (not containing
the edge [x, y]). Since G is a connected graph indexes r, s (i + 2 ≤ r ≤ i + k − 1
and s ≤ i − 1 or s ≥ i + k + 2) have to exist so that [xr, xs] is an edge in G.

Suppose that s ≤ i − 1. Then the sequence of edges
{

x0, x1, . . . , xs, xr, xr−1,

. . . , xi+1, xi+k−1, xi+k−2, . . . , xr, xs, xs+1, . . . ,xi, xi+k+2, xi+k+3,. . . , xlG1

}

is

an open walk in G having length lG1
and not containing the edge [x, y].

If s ≥ i+k+2, then the sequence of edges
{

x0, x1, . . . , xi, xi+k+2, xi+k+3, . . . ,

xs, xr , xr−1, . . . , xi+1, xi+k−1, xi+k−2, . . . , xr, xs, xs+1, . . . , xlG1

}

is an open

walk in G having length lG1
and not containing the edge [x, y].

In both cases we have lG = lG1
. It means that the edge [x, y] occurs in LG1

only
once.

The open Hamiltonian walk LG1
is divided by the edge [x, y] into two sequences

of edges P and Q having lengths p and q. Obviously, lG1
= p + 1 + q. Since G is a

connected graph, vertices u, v (u ∈ P , v ∈ Q, u 6= x, v 6= y) have to exist so that
[u, v] is an edge in G.

In G, there exists an open walk (see Fig. 2) of length

lG ≤ p +
⌊p

2

⌋

+ 1 +
⌊q

2

⌋

+ q = lG1
+

⌊p

2

⌋

+
⌊ q

2

⌋

≤

≤ lG1
+

p + q

2
= lG1

+
lG1

− 1

2
=

3lG1
− 1

2

and so lG1
≥

2lG + 1

3
. �

Remark 2. The bound of the Theorem 3 is the best possible as seen in the figure
3. There is a graph G which can be completed by unique edge to the graph G1

with a Hamiltonian path. Clearly lG = 13, lG1
= 9 and

lG1
=

2lG + 1

3
.
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Corollary 1. Let G be a graph on n vertices which we obtain from a graph G1

by omitting a unique edge. Let lG ≥ 1

2
(3n− 1). Then lG1

> n− 1 i.e. G1 does not

contain a Hamiltonian path.

Proof. It is sufficient to find when
2lG + 1

3
≥ n considering lG1

≥
2lG + 1

3
. This

in equality holds for lG ≥
1

2
(3n − 1). �

References

[1] Bermond J.C., On Hamiltonian walks, Proc. 5th British combinatorial conf. (1975), 41-51.
[2] Goodman S.E. and Hedetniemi S.T., On Hamiltonian walks in graphs, SIAM J. Comput 3

(1974), 214-221.
[3] Jolivet J.L., Hamiltonian pseudocycles in graphs, Proc. 5th Conf. Combinatorics, graph the-

ory and computing (1975), 529-533, Boca Raton.
[4] Vacek P., On open Hamiltonian walks, in print.

Pavel Vacek

Smetanovo nábřež́ı 517
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