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ON THE BOUNDEDNESS OF SOLUTIONS
OF NONLINEAR SECOND - ORDER
DIFFERENTIAL EQUATIONS WITH PARAMETR

SVATOSLAV STANEK

(Received May 19, 1989)

ABSTRACT. This paper establishes sufficient conditions for the boundedness of so-
lutions of a one-parameter differential equation y'' —q (t)y = f (t,9,¥", p) either on
a halfline (t1,00) or on R satisfying conditions either ¥ (t1) = y(t2) = 0(t2 > t1)
or y (t1) = O, respectively.

1. INTRODUCTION

We consider the second-order differential equations

(1) . y"—q(t)y:fl (tvy)/‘)
and
(2) V' —q®)y=fa(t,y, v, m)

with ¢ € C°(J), fi € C%(J x Rx 1), f € C°(J x R?* x I), q(t) > 0 for t € J,
where J C R is either a halfline (t;,00) or R, I = (,8) (-0 < a < # < ),
containing a parameter u.

For y € C°(J) define ||y|| := sup {|y(t)| ;t € J}. If J = (t1,00) is a halfline and
ta > t1 is a number, the problem is considered to determine sufficient conditions
on g, f1, f2 such that it is possible to choose the parameter y so that there exists
a solution y; (y2) of (1) ((2)) satisfying either the boundary conditions

(3) nt)=un) =0 (2(t) =yp:2(t2) = 0)
or the initial conditions

nt)=vit) =0 (12(t) =y () =0

1991 Mathematics Subject Classification: 34C11, 34B15.
Key words and phrases: bounded solution, nonlinear second-order differential equation with
a one parameter, tree-point boundary value problem, Ascoli theorem..
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and

O lsall <o (llw:ll + llvall < 00)-

If J-= Rand t; € R is a number, the problem is considered to determine
sufficient conditions on ¢, fi, fo for the existence of a po € I such that equation
(1) ((2)) with g = po has a solution y; (y2) satisfying

() nt) =0 (1) =0

and (4).

It is discussed also the uniqueness of solutions y; and y, satisfying either (3)
(4) for a halfline J or (4), (5) for J = R.

By using the technique of the two-point boundary value problem Bebernes and
Jackson [1], Belova [2] and Corduneanu [3], [4] have been studied the existence (and
uniqueness) of bounded solutions of the equation y”’ = f (z,y) and Kiguradze [6]
of a system of differential equations either on the halfline (0, 00) or on R and in the
case of the halfline (0, 00) with the further condition y(0) = yo. In contradiction
to them in this paper there are studied second-order differential equations (1)
and (2) depending on the parameter u and using the technique of the three-point
boundary value problem it is investigated boundary solutions satisfying the above
conditions. The three-point boundary value problem y(a) = y(b) = y(c) = 0 only
for homogeneous second-order linear differential equations with two parameters
has been investigated in [5).

2. LEMMaAS

Lemma 1. Let r be a positive constant. If the assumptions

©)1f: @4 W) < ra®) for (Ly,w) €Dy x I, where Dy: =Jx(-nr),
()  fi(t,y,') is an increasing function on I for every fixed (t,y) € D;,

(8) fl(t’y>a)fl(tvy1ﬂ) éo for (try)EDl)

hold, then for any three numbers a, b, c € J, a < b < ¢ there exist po, #1 € I such

that equation (1) with p = po and p = y; has a solution y, and a solution y,,
respectively, satisfying

9) 0(a9) =30 (}) =y (c) =0,
v =v(a) =p() =0,

and . . ,
lwi@)|Sr for t€(a,c) and i=0,1.

For the proof see [7].
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Lemma 2. Let ry, ro be positive constants. If the assumptions

[f2(t,y1,y2, )| S rq(t) for (t,y1,y2,p) € D2 x I, where
(10)  Dy:=J x(=r1,r1) X (~r2,72),

fa(t,y1,¥2,.) is an increasing function on I for every fixed
(11) (t,y1,¥2) € Do,
(12)  fa(t,y,92,2) fot, 91,92, 8) S0 for (,41,y2) € Dy,

2/riV Az +rilql]| £ r2, where Ay := sup{|f2(t,y1,v2, 1)];
(13) (t,ylay%#)eD'.’ XI},

hold, then for any a, b, c € J, a < b < ¢ there exist uo, 1 € I such that equation
(2) with p = po and pu = p; has a solution yo and a solution y;, respectively,
satisfying (9) and

|y§i)(t)| Sriya for t€(a,c) and i,j=0,1.

For the proof see [7].

Remark 1. 1t follows from Lemma 2: Assume Aj:= sup {|f2 (¢, y1,y2, w)}; (¢, 1,
Y2, #) €J x (—r1,r1) X Rx I} < oo for a positive constant r;. If ||q|| S oo and
assumptions (10) — (12) are fulfilled for D, = J x (—=ry,r1) x R, then for any three
numbers a, b, ¢ € J, @ < b < c there are po, p1 € I such that equation (2) with
p# = po and p = pu; has a solution yp and a solution y;, respectively, satisfying (9),

li )| £ for te(ac), i=0,1

and, of course, |yi(t)] £ 2v/r\/ A2+ risup{g(t); t € (a,c)} for t € (a,c),
i=0,1.

3. BOUNDEDNESS AND UNIQUENESS OF SOLUTIONS ON HALFLINE

In this part we shall assume that J = (t;, 00) is a halfline on R and t; € (t;, 00)
is an arbitrary but fixed number.

Theorem 1. Assume that assumptions (6) — (8) are fulfilled for a positive con-
stant r. Then there are po, 1 € I such that equation (1) with p = po and p = py
has a solution yo and a solution y, , respectively, satisfying

(14) v () = w(t) =0,
(15) y1 (tl) = ﬁ(tl) =0
and

(16) lwll Sr for i=0,1.
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If, in additional,

(17) llgll < oo,

then

(18) Il S 2v2r(rllgll + A1) for i=0,1,
where Ay = sup {|f1 (t,y,p)| ; (t,y,8) € D1 x I} (£ r|lql]).

Proof. Let {a,} be an increasing sequence, a; >t lim a, = co. Then, by Lemma
n—+00

1, there is {¢tn}, #n € I such that equation (1) with g = p, has a solution y,
satisfying

(19) ¥n (t1) = Yo (t2) = Yn(an) = 0
and .
(20) lyn(@)| S r for tE€(t1,an).

Setting Qn := max {g(t);t € (11, an)}, then |/i(t)] £ 2rQm for t € (t1,am), m < n.
Let §n € (t1,12) be a such number that ¥,(£,) = 0. From the equalities

;/,,(t):/: Yi(s)ds for te€(ty,an), mEN,

we get

lva ()] < 2rQm(am —t1) for t€(t1,am), m<n.
Consequently, {y(') (1)}, is equicontinuous and uniformly bounded on (¢, ax)
for k € N and i = 0, 1. Thus by the Ascoli’s theorem we may choose a “diagonal”

subsequence of {yn ()} which for short we denote again {y, (t)} such that () )}

locally uniformly convergent on J for i = 0, 1. Since I is a compact interval without

any loss of generality we may assume {tn } is a convergent sequence, lim pu, = .
n—+00

From the equalities

(21) y:: (t) =q (t)yn (t) + fl (t7 yn(t);l‘n) for te (tl; a,.), neEN,
we see {y)(t)} is locally uniformly convergent on J and for yo (¢) := hm y,,(t),

t € J, we have hm Yn ( ) =y )(t) locally uniformly on J for i = 0, 1 2 If we
pass to the llmlt for n — oo in (21), we get '

yg(t) = Q(t)yﬂ(t) + fl(t! yo(t))l‘O)a te J;

and therefore yo is a solution of (1) with p = g satisfying (14) and (16) fori = 0.
Let assumptlon (17) be satisfied. Then ||yg|| < rllg||+ A1 and from the Landau’s

inequality ||y4l|® < 8llvoll lly%]| we obtain (18).

. The proof of the existence of a.solution 1 having the properties demanded.ia

Theorem 1 is very similar to that above and therefore it is omitted.
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Example 1. Let v, m be positive constants and let £ € R. Consider the differen-
tial equation

k

(22) V' =10v+ 1

" +¢(t) +p

with g, ¢ € C°(J), lg(t)] 2 2(m + |k|), |p(t)] Sm for t € J and p€
(—|k|—m, |k|+m) =: I,. Equation (22) satisfies the assumptions of Theorem 1 with
r = 1 and thus there are o, ) € I such that equation (22) with p = po (4 = 1)
has a solution yo (y) satisfying (14) ((15)) and ||i]]| £ 1 for i =0,1.1If, in
additional, ||g|| < co then with respect to the inequality

k
sup { L5 alol” + #(0+ 4ls (09,8 € 7 x (=L1) x 1| S 2(m + k)

we obtain ||¥{l| £ 2v/2(lg]| + 2(m + [k[)) for i = 0, 1.

Theorem 2. Let assumptions (10) — (13) be fulfilled for positive constants ry, ry.
Then there are pg, py € I such that equation (2) with p = po and y = p, has a
solution yo and a solution y, satisfying (14) and (15), respectively, and

(23) Iy S rigar for §,j=0,1.

Proof. Since the proofs of the existence of solutions yo,y; are very similar we shall
prove only the existence of yo. Let {an} be defined as in the proof of Theorem 1.
By Lemma 2 there is a sequence {pn}, Hn € I such that equation (2) with p = p,
admits a solution y, satisfying (19), |y$.')(t)| Sripg1 for te(ti,a,), n€N,
i =0,1and |y(t)| £ ri|lgl|+ Az fort € (t1,a,), n € N. Using the Ascoli’s theorem
and the Cauchy’s diagonal method we may assume {ys.')(t)} locally uniformly
convergent on J for i = 0, 1 and (since I is a compact interval) {u,} is a convergent
sequence, ”lergo Pn = Mo. From the equalities

Ya () = ¢()¥n (t) + f2(t,¥n(t),0n(t), pn), tE(t1,an), nEN,

we obtain that {y)/(t)} locally uniformly convergent on J. Thus the function yo,
Yo(t) := "lim yn(t) for t € J, is a solution of (2) with u = po satisfying (14) and
(23).

Remark 2. Let ||g|| £ oo and let sup{|fa(t, y1,¥2,4)l; (¢, 41,92, 4) € I X{=r1,71)x
R x I} < oo, where r; is a positive constant. If assumptions (10) — (12) are ful-
filled for r; and an arbitrary positive constant rp then there exist py,pa € T
such that equation (2) with 4 = py (4 = p2) has a solution y; (y2) such that
vi(t1) = wi(t2) = 0, llmll £ riw2(ts) = 1a(t1) = 0, llpall S ry). This follows
immediately from Remark 1 and the proofs of Theorems 1 and 2.
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Example 2. Let v > 0 be a positive constant and let m > 0 be a positive integer.
The differential equation

arctan(t)

(24) V' =at)y+ " sin(y) + e

+p

with ¢ € C°(J), q(t) 2 2+ for t € J, |lgl] 0o, where p € (~1- 7,14 3) =: I,
satisfies assumptions (10) — (12) with r; = 1 and an arbitrary r» > 0. Thus by
Remark 2 there are y;, uo € I; such that equation (24) with u = u; (4 = u2)
has a solution y1 (32), wi1(t1) = wi(t2) = 0, |lmll S 1 (v2(t1) = w2(t1) = 0,

. tan(t
ly2ll S 1). Assume [lgl| < oo. Since ||ya* sin(ys) + m(m_) +ul S 247 for
’ 2

(t,y1,y2,4) € J x (—1,1) x R x I, assumption (13) holds for r, = 24/2 + 7 + ||¢||
and thus by Theorem 2 we have ||y}|| £ 2¢/2+ 7+ ||q|| for i =1,2. :

Theorem 3. Let ry, ro be positive constants and let
|f2(t, 91, ¥2, ) = fa(t, 21, 22, )] £ B1(®)|y1 — 21| + h2(t)|y2 — 22|

for (t,y1,y2,4), (t,21,22,4) € (t1,t2) x (—r1, 1) X (—r2,r2) x I, where h; €
C°((t1,t2)), i = 1,2. Let the initial problem (2), y®) (tc;) = A; has the (locally)
unique solution for all ty € (t2,00) and |Ai| £ ri41 (i = 0,1). Moreover, assume
that at least one from the following conditions

[:z exp /:,‘ ha(v) dv) /‘:(q(‘r) 4+ hy(r))drds 1,

' [(a(8) + h1(s)) (s — t1) + ha(s)]ds £ 1
/; z(exp/ ’ ha(v) dv) /‘z(q('r) + hy(r))drds £ 1
| late) + ha(e)) 2 = 9 + hateds < 1,

holds.

If there exists a o € I such that equation (2) with u = po has a solution y, satis-
‘fying (14) and (23), then this solution is unique in the set {y : y € C*(J), |[ly®|| £
Ti41 fori= 0, 1}.

Proof. If y, is a further solution of (2) with g = po, y1(t1) = n(t2) = 0, |]y§‘)|| hS
riz1 (i = 0,1) then analogous to [7] we may prove yo(t) = ¥ (t) for t € (t,,12).
The locally uniqueness of solutions implies yo(t) = y;(¢) for t € J.
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Corollary 1. Let
| filt,yow) = fult 20| S h(O)ly - 2|
for (t,y,p), (t,2,p) € {t1,t2) X (—=r,r) x I, where h € C°({t1,t2)), be satisfied for
a positive constant r. Let the initial problem (1), y¥)(t5) = Ai has the (locally)

unique solution for all ty € (t2,0), |Ao| £ r and A, € R. Finally, let at least one
from the following conditions

/ / :(q(r) +h(r))drds S 1,

h(q(s) +h(s)) (s —t1)ds £ 1,

t

tg t2
|7 [ an+haards <,
t
Stz
| a@ + b 2 - 9)as < 1,
t
be satisfied.
If for a po € I equation (1) with p = po has a solution yo satisfying (14) and
(16) then this solution is unique in the set {y; y € C?(J), ||y|| £ r}.
Lemma 3. Let assumption (11) be fulfilled for positive constants ry,r; and let

afz 0fr _ o
3’ v € C°(Dy x I). Assume

(25) q(t) + g—g—(t,yl,yz,u) 2m for (t,y,ys,p) € D2 x I,
where m 2 0 is a non-negative constant and
(26) (L =) inf{g—g(t,yl,yz,ﬂ); (t,¥1,92,p) € Dy x I} > —o00.
If at least one from the conditions-
(27) m>0,

(K :=)inf {/: p(s)ds; t2<z S t} > —o00, where p(t) =

(28) ‘mm{ (t y,¥2,8);  (¥1,¥2,#) € (=1, 1) X (—ry,r2) x I}
for t € (t2,00), A

(29) lﬂf {If?(ta !/1,1121#1) - f?(ty yhy?’”?)l; (ty y:,yz) € D’} > 0
for py,pa € 1,1 # py,
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holds, then there is at most one po € I such that equation (2) with y = po has a
_volution y, satisfying (14) and (23). In the positive case the solution yo is unique
in the set {y; y € C*(J), |l¥|| £ ris1, i=0,1}.

Proof. Assume y; and ¥ are solutions of (2) with 4 = p; and p = po, respectively,

p1,p3 € I, gy S pa, yj(ta) = yj(t2) = 0, ||Il,-i)|| Sripafori=0,1andj=12
Putting w = y;, y3 then

wl"(‘) = q(t)w(t) + (f2(t, 41(2), ¥1(2), 1) — fa(t, y2(2), 1. (2), 1))+
+ (fa(t, ya(t), 1 (2), 1) = fa(t, 2(2), ¥2(2), p1))+
+ (fa(t, y2(2), v2(2), 1) — fa(t, 92(2), 2(2), 12)),

consequently, )
(30) w”(t) = (a(t) + 9(1))w(t) + h()W'(t) + a(t) for te,

where g, h,a € C°(J), g(t) + g(t) 2 m (2 0) (by (25)), h(t) 2 L (by (26)) and
a(t) S 0 (by(11)) fort € J. If py < p2 (41 = p2) then a(t) < 0 (a(t) = 0) for-
telJ.

~ Let py = p. Since g(t) + g(t) 2 0 for ¢t € J, the equatin ¥’ = (g(t) + g(t))y +
h(t)y is disconjugate on J and thus w = 0.

Let py < p3 and let w(r) =0, w’(7) £ 0 for some 7 € (t1,t3). If w'(7) = 0 then
using (30) we get w”(7) < 0 and thus w(t) < 0, w'(t) < 0 in a right neighbourhood
of the point 7, likewise as in the case, when w/(7) < 0. Since w”(£¢) < 0 in any
point ¢ € (7,00) where w(§) < 0, w'(€) = 0, we obtain w(t) < 0, w'(t) < 0 on
(7, 00) which contradicting w(tz) = 0. Consequently, w(t) < 0, w'(t) < 0 for t > t,.
Next, from (30) we get equality

wft) = [:(exp [ mnaniw
+ [ et [ ) 0) (@) + o tr) + ) ), e,
and ?hus ‘
(31) w(t) / /(p [ b0)a) (@) + 50wl + oty dras, 128
Ifm > 0 then for some fs,f3 > t; we obtain
Ch o ‘o
w(t) <m [ G /, h(v) dv) w(r)dr ds < mu(ts) /t [ fexp(L(s-r))drds

for t>ts andsince f:’ f,: exp(L(s—7))drds = co we have ‘Iim' w(t) =
. - 00
—00. '
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If K > —oo, then using (31) we have

w(t) [' /t’(exp /: h(v)dv)a(r)drds < ¥ /" /t‘ a(t) drd;

and since f::’ ft: a(t)drds = —o0, we get t!ljg w(t) = -
If a(t) S A < 0 fort 2 ty, where A is a negative constant, then

t) < A/t /t exp/ h(v)dvds <A/ / exp(L(s — 7)) drds

and hm w(t) =
Thus we see if at least one from conditions (27)- (29) is fulfilled then 'luglo w(t) =

—oo contradicting ||w|| £ 2r;. This completes the proof.

Corollary 2. Assume assumption (7) is fulfilled for a positive constant r, —— 3 =1

C°(Dy x I) and
of: S
(32) q(t) + Bg(t,y,u) 20 for (t,yp)€DixI

Then there is at most one po € I such that equation (1) with u = po has a
solution y satisfying (14) and (16). In the positive case y is unique in the set
{y ye C*(J), llyll S ). '

Theorem 4. Let assumptions (10) - (13) be satisfied for positive constants ry,

ro and let -g—';z 6_3? €C(D; x I). If assumptions (25), (26) and at least one from
conditions (27) — (29) hold, then there are unique po, 1 € I such that equation
(2) with p = po and p = p; has a solution yo and a solution y, satisfying (14)
and (15), respectively, and (23). This solutions are unique in the set {y; y €

C*(J), Iy € rigr, i=0,1}.

Proof. The proof folows from Theorem 2 and Lemma 3 (for y; with an evident
modification of the proof of Lemma 3).

Theorem 5. Let assumptions (6) - (8) be satisfied for a positive constant r and
let g—i € C%Dy x I). If assumption (32) is satisfied, then there are unique pq,
p1 € I such that equation (1) with p = po and g = py has a solution yo and
a solution y, satisfying (14) and (15), respectively, and (16). This solutions are
unique in the set {y; y € C*(J), |lyl| £ r}.

Proof. The proof follows from Theorem 1 and Corollary 2 (for y; with an evndent
modification of the proof of Lemma 3).
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Example 3. Consider the differential equation
(33) y" — (exp(|sin(t)| — 1))y =t~ cos(e~'y) + t ™' arctan(y’) + p

on the interval J := (1,00), where p € I := (-1 - er" 1+ g) Assume t; € (1,00)
and ry, rp are positive constants, r; 2 (2 + 7)e, r2 2 3ry. It is easy to verify
that assumptions (10) - (13), (29), (25) with m = 0 and (26) with L = 1 are
fulfilled. Therefore by Theorem 4 there are unique po, g1 € I such that equation
(33) with 4 = po (u = p1) has a solution yo (y1) satisfying yo(1) = yo(¢2) = 0,
y1(1) = 41(1) = 0 and ||y;]| £ (2+7)e, ||y} || £ 3e(2+7) for j = 0, 1. This solutions
Yo, Y1 are unique even in the set {y;y € C%(J), ||yl + ||¥']| < oo}.

4. BOUDEDNESS AND UNIQUENESS OF SOLUTIONS ON R

In this part we shall assume J = R and ¢; € R is arbitrary but fixed number.

Theorem 6. Let assumptions (6) - (8) be fulfilled for a positive constant r. Then
there is a po € I such that equation (1) with 4 = po has a solution y satisfying

(34) y(t2) =0
_and
(35) Iyl S .

If, in additional,
(36) llgll < oo,

then

(37) Y1l £ 2v/(rllgll + A1),
where A; = sup {|f1(t,4,4)]; (t,v, ) € Dy x I}.

Proof. Let {an} be a decreasing sequence and let {b,} be an increasing sequence,

lim @, = —o0, lim b, = 00, a1 < t; < b;. By Lemma 1 there is a sequence
n-—+00 n -+ 00

{pn},un € I such that equation (1) with 4 = p, has a solution yn,yn(as) =
Un(t1) = yn(bn) = 0 and |ya(t)] S+ for t € (an,bn), n € N. Next we -
have |yi(t)] £ 2rQ, for t € {an,b,), n € N, where Q, = max {¢q(t); t €
{(an,bn)}. From the mean value theorem follows the existence of a £, € (a1,b1)

such that y, (1) — yn(a1) = ¥, (én)(b1 — a1), consequently |y}, (én)| S ™ ?—ral
the equality ¥},(t) = ¥, (éx) + J;. ¥/2(s) ds implies

2
lva(®)l < 5 -ral_+ 2Qmr(bm —am) for t€ (am,bm), mSn.

and -
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Using the Ascoli’s theorem and the Cauchy diagonal method we may choose a .

subsequence of {yn(t)}, for short we denote this subsequence again {ya(t)}, such

that y(¢) := lir{.lo Yn(t) locally uniformly on R. Since I is a compact interval we
n—

may assume that {#} is a convergent sequence and nlingo Bn = po. Analogous to
the proof of Theorem 1 it is posible to prove that y is a solution of (1) with u = yg
having properties (34) and (35).

If (36) holds then from the Landau’s inequelity ||y’||* £ 4||y|l|ly”|| and using the
inequality ||y”|| < r|lq|| + A1 we obtain (37).

Theorem 7. Let assumptions (10) — (13) be satisfied for positive constants ry,
9. Then' there exist a pg € I such that equation (2) with p = po has a solution y
satisfying (34) and

(38) YD € rigr for i=0,1.

Proof. Let {an}, {bn} be defined as in the proof of Theorem 6. Then by Lemma 2
there is a sequence {yn}, pn € I such that equation (2) with s = u, has a solution
Yn, Yn(an) = Yn(t1) = yn(bs) =0 and Iy(’)(t)l S riyq for t € (an,bs),i=0,1 and
n € N. Since |y;i(t)] £ rillqll + A2 for t € (am,bm) and m £ n, the next part of
the proof is analogous to that of Theorem 2 and therefore it is omitted.

Theorem 8. Let assumptxons (10) - (13) be satisfied for positive constants r1,

r9. Assume that — 0fs , =2 € C%D; x I),

Oy’ dy;
(39) q(t) + a—yj(t,yl,yz,u) 20 for (t,y1,y2,p) € Dax1
and

t1
(K1 :=) inf{—/ pi(r)dr;s < tl} > —00,
. ) t'
(40) (K2 :=) inf{/ pa7)dr;ty S s < t} > =00,
8

0 .
where pi(t) = max{ﬁ(t,ynymﬂ)'(yl,yz,#) € (—r1,11) X (=7, r9) X I} for

t € (—oo,11) and pa(t) = mm{a (t, v1, 92, 1); (!Ix,yz,ll) € (=r1,m1) x (13,12} X I}

for te (tl,oo) '

Then there is the unique po € I such that equation (2) with u = po has
a solution y satisfying (34) and (38).This solution is unique jin the set {v;y €
C*(R),||ly)|| < ri41 fori =0,1}.

Proof. By Theorem 7 there is some po € I such that equatnon (2) with p I‘o has
a solution y satisfying (34) and (38). Suppose that there is some p; € I, ‘o £ <m,
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such that equation (2) with p# = g1 has a solution gy, y1(t1) =0, || || < ri4 for
i =0,1. Setting w = y — y; then

(41) w”(t) = (q(t) + 9())w(t), + h(t)w'(t) + a(t) for tE€R,
where a,g,h € C°(R), q(t)+9(t) 20 (by(39)), a(t) £0 (by (11)) for t € R,
inf {~ [* h(r)dr; s St1} 2 Ky, inf { [ b(r)dr; 1 S < <ty2 K

(by(40)) and if po < py (o = p1) then a(t) < 0 (a(t) 0) for t € R. Using (41)
we have

w(t) = [ (exp [ DGO
@ o+ (exp(- / " h(v) dv) ((a(r) + 9(r))u(r) + a(r)) dr] ds, tER

and

o
w(t) = (exp [ h(v) dv)[w'(t1)+

(43) / (exp(= / " h(v) dv)) ((a(s) + 9(s))w(s) + a(s))ds], tER.

Let w'(t;) < 0. Then from (42) and (43) we get w(t) < 0, w'(t) < 0 for
t € (t1,00), consequently, _

t H
w(t) < v'(ty) / (exp / h(v) dv)ds < w'(ty) exp(Ka)(t —t1) for ¢2 1
ty 1)
and thus tlir(r’lo w(t) = —oo contradicting
(44) llwl] £ 2.
Let w'(t;) > 0. Then from (42) and (43) it follows w(t) < 0, w'(t) > 0 for
t € (—oo,t;), consequently,
fl ‘l A
wt) S ~w'(t) [ (exp(= [ B0 ) ds S —w'(t)exp(Kn) (1 -1), ¢St
t .
and thus t_l‘iinoo w(t) = —oo contradicting (44).

Let w'(t1) = 0. If po = p1 then a(t) = 0 for t € R and w = 0 by virtue of the
uniqueness of the initial value problem for the equation y" = (q(t)+9(t))y+h(t)y' .
If jio < py then a(t) < 0 on R and from (41) it follows w(t) < 0, w'(t) < 0 for
t € (¢1,00). Consequently,

0= [ [ (e [ b)) + sl ule) 4ol drde s
. §exp(K2)/‘ /. a(r)drds

- and since fh L a(r)drds = —oco we obtain hm w(t) = ~00 conttadlctmg (44).
Tlm completes the proof of the theorem.
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Corollary 4. Let assumptions (6) — (8) be fulfilled for a positive constant r.

Assume that %‘2—1 € C°(Dy x I) and

o)+ OB 20 for (tun)€DixL

Then there is the unique po € I such that equation (1) with '= po has a solution y
satisfying (34) and (35). This solution y is unique in the set {y; y € C*(R), |ly|| £
r}. '

Example 4. Consider the differential equation
(45) ' —q(t)y = exp(=y?)sin(t) + k - exp(~t]) In(1 + (v/)?) + pp(2),

where p, ¢ € C°(R),1 S p(t) £2,8 <L q(t) S13fort € R,p € (—8,8) =: I and
k€ R,|k| £ 1. Let t; € R. Assumptions (10) - (13) hold with r; = 3 and r, = 31.
Putting fa(t, y1,y2, 4) = exp(-y})sin(t) + k - exp(~[t])In(1 + 13) + pp(t) for

(t,1,2,4) € R? x I, we have ﬁ(t,yz,yz,ﬂ) 2 -6, Q(i)+—£2-(t Y1, Y2,4) 2

2 for (t,y1,y2,4) € R x (-3,3) x (-31,31) x I, |af (t,yl,yg,p)l < exp(-|t])

for (y1,y2,p) € (-3,3) x ( —-31,31) x I, t € R and since f exp(—lfl) dr £ 2 for
s < t, assumption (40) holds. By Theorem 8 there is the unique o € I such that
.equation (45) with u = po has a solution y satisfying y(t1) = 0, ||y|| < 3, ||y|| £ 31.
This solution y is unique in the set {y; y € C*(R), ||lyll £3, ||¥I| £31}.
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