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DIRECT FACTORS OF DIRECTED GROUPS, 

JUDITA LIHOVÁ 

(Received August 20, 1990) 

ABSTRACT. There are given necessary and sufficient conditions for a subset of a 
directed partially ordered group G to be a direct factor of G. The main result is 
formulated in 2.13. 

In the paper [6] of M. Kolibiar there are characterized subsets of a directed 
distributive multilattice group G which are direct factors of G (see 1.3 below). In 
This note a generalization of this result is proved for a directed partially ordered 
group and hence also for a directed multilattice group (without the assumption of 
the distributivity). The used process is a slight modification of that in [6]. 

1. PRELIMINARIES 

Let (P, <) be a partially ordered set. For any a, 6 G P denote (a] = {x G P : x < 
< a} , [a) = {x e P : x > a}, L(a, b) = (a] fl (6], U(a} b) = (a) fl [6); if, in addition, 
a < 6, let [a, 6] = [a) H (6]. Further let a V 6 denote the set of all minimal elements 
of the set U(a, 6), a A 6 the set of all maximal elements of the set L(a, 6). 

A subset A of P is said to be directed if U(a) b) fl A £ 0 and I ( a , 6) fl A £ 0 for 
all a, 6 G A. A is called convex if [a, 6] C A whenever a, 6 € -4, a < 6. 

A partially ordered set (P, <) is said to be a multilattice if for all a, 6 G P , 
h G U(a,b), there exists an element h\ G (a V 6) O (ft], and dually. If, moreover, 
(P, <) is a directed set, then (P, <) is called a directed multilattice. 

We say that a partially ordered set (P, <) with the least element 0 is an inner 
direct product of its subsets .A,fl, and we write P = A • .fl, if there exists a 
direct product decomposition f : P ^ A\ x B\ with A = /""^({(djO) : a G -4i}), 
fl = /"^({(O.^) : 6 G fli})- (For characterizations of inner direct products see [4] 
and [6].) 

In what follows we will deal with directed partially ordered groups and with 
directed multilattice groups, as their special case. 

By a directed group we will mean a partially ordered group ((?,+, <) with 
(G, <) directed. * 
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A partially ordered group (G, +, <) is said to be a directed multilattice group if 
the partially ordered set (G, <) is a directed multilattice. (For the definition and 
fundamental properties of a partially ordered group and a multilattice group see 
e.g. [3] and [1], respectively.) 

For a subset .A of a partially ordered group G denote by A+ and A" the set 
{a € A : a > 0} and {d € A : a < 0}, respectively. 

By a direct factor of a partially ordered group G we mean a subset C of G 
such that there exists a direct product decomposition / : G 5= K x L satisfying 
/ - 1 ( { ( a , 0 ) : a e t f } ) = C\ 

We shall use the following two theorems. 

1.1. Theorem. [6; 2.2.A, 2.3]. There is a bijective correspondence between direct 
product decompositions of a quasi-ordered set P into two factors and pairs of 
equivalence relations 0\, 02 in P, satisfying the conditions: 

(t) 0i n 02 = idP . 
(it) 0i V 02 = P x P . 

(ttt) 0i, 02 are permutable. 
(iv) aOiC, c$jb, i £ j (i,j £ {1,2}) and a < b imply a < c <b . 

(v) If a < 6,a0,a'(t G {1,2}), then V exists satisfying 

a! < b',b9ib' . 

The correspondence is as follows. If f : P =* A\ x A<i is a direct product 
decomposition, then 0* (t =1,2) defined by a0,-6 «-> 7r,(/(o)) = *i(f(b)) (iti is the 
projection A\ x A2 —* Ai) are equivalence relations satisfying (i) — (v) . If0\, 02 
are equiovalence relations satisfying (i) — (v), then the map a 1—• ([a]0i, [a]02) is 
an isomorphism of P onto P/0\ x P/02. 

1.2. Theorem. [4; Theorem 2]. Let G be a directed group and let (G+,<) be 
an inner direct product of its subsets A and B, G+ = A • B. Then there exists 
a direct product decomposition G .=* K x L such that K, L are partially ordered 
subgroups ofG and K+ = A, L+ = B. 

It is clear from the proof that the mentioned direct product decomposition 
f:G*KxL satisfies /-*({(*>0): * € K)) = *• 

In [6] the following theorem is proved. 

1.3. Theorem. Let G be a direct distributive multilattice group. A subset C of 
G forms a direct factor ofG if and only if it satisfies the following conditions: 

(1) (C, +) is a subgroup bf (G, +) . 
(2) C is convex and connected in (G, <) . 

(3) For each a£G+ the set Cf) [0, a] has the greatest element . 
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2. THE MAIN RESULT 

Throughout this section, G will be a directed group. Consider the following 
conditions for a subset G of G: 

(1) (G, +) is a subgroup of (G, +) . 

(2) G is convex and directed in (G, <) . 

(3) For each a EG* the set G f\ [0, a] has the greatest element a(C) . 

(4) For all a, 6 G G+ satisfying a(C) = 6(G), if t; G f/(a, 6), 

then there exists v\ G C (̂a,6) with V\ < v, t>i(C) = a(C) . 

We will prove that G is a direct factor of G if and only if G satisfies (1) - (4). 
Before proving this, we shall make some preliminary considerations assuming that 
G is a subset of G satisfying (l)-(4). Let us define binary relations 0, <j> in G+ as 
follows: 

a06 if a(C) = 6(C), 

a<j>bii a - 6 G G . 

It is easy to see that 0t</> are equivalence relations and that all 0-classes and </>-
classes are convex subsets of G+ . The aim is to prove that 0 and <j> satisfy the 
conditions (i) - (v) of 1.1. We begin with some auxiliary lemmas. 

2.1. Lemma. If a,6 € G, t G U(a,b)t then there exists t\ G Cf\U(a\b) with 
t\<t. 

Proof. Let a, 6 G G, t G tI(a,6). By the directedness of G there exist elements 
ci,C2 G G such that ci < a < C2, ci < 6 < C2. It is easy to verify, using the 
conditions (1) and (3), that the element t\ = (t — ci)(G) -f ci is the greatest 
element of the set CD [c\,t]. Evidently *i G G, *i < t. Since a,6 € CD [ci,t], we 
havea ,6<t i . 

2.2. Lemma. If a, 6 G G, r € £(a,6), then there exists rx G GnL(a ,6) with 
r\ > r. 

Proof. Let a, 6 €C,r G I(a, 6). It is easy to see that < = a — r + 6 G f/(a, 6) and by 
the preceding lemma there exists ti G G n £/(a, 6) with *i < t. Set ri = 6 — t% + a. 
Then evidently r\ ECC\ L(a, 6), ri > r. 

2.3. Lemma. If a G G+, then a(G) is the greatest element ofCf\(a]. 

Proof. Evidently a(C) G Gn(a]. Now let x G Cf\(a]. We will prove that t < a(C). 
Since 0,ar G G, a G 1/(0, a?), there exists ax G Gn£/(0,tf) with ax < ajby 2/1. 
Then ai€Cf\ [0, a], so that ax < a(C). We have * < ai < a(C): 
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2.4. Lemma. l e t a, 6 G G + , e = a - 6 G C. Then e = a(C) - 6(C) 

Proo/. We have - e + a(C) = 6 - a + a(C) < 6, so that - e + a(C) G C D (6]. Using 
the preceding lemma we obtain —e + a(C) < 6(C), which gives a(C) < e + 6(C). 
Further e + 6(C) < e + 6 = a, so that e + 6(C) GCf l (a]. Using 2.3 once more we 
get e + 6(C) < a(C). We have proved a(C) = e + 6(C). Hence e = a(C) - 6(C). 

Analogously can be proved: 

2.5. Lemma. If a, 6 G G + and e = - a + 6 G C, then e = -a(C) + 6(C). 

2.6. Lemma. If a, 6 G G + , a<f>b and u G L(ay 6), u > 0 , then- there exists tii G 
G i(a ,6) such that tii > u, «i^a. 

Proo/. Let a, 6 G G + , a^6, u G X(a, 6), ti > 0. It is easy to see that u—6 G L(a—b10), 
where a - 6, 0 G C . By 2.2 there exists ri G C n L(a - 6,0) with ri > u - 6. Then 
tii = ri + 6 G -k(fl>6), tii > ti and evidently tii^6, which follows tii^a, too. 

2.7. Lemma. If a, 6 G G + , a<£6 and v G C/(a,6), then there exists vi G U(a,6) 
such that v\ < vf vi<f>a. 

Proof. Let a,6 G G + , a<£6, and let v G t/(a,6). Then v - 6 G E/(a - 6,0), where 
a - 6, 0 G C. By 2.1 there exists ti G C n t/(a - 6,0) with ti < v - 6. Then 
t>i = t i + 6 has the required properties. 

Now we proceed to the proof that 0 and <f> satisfy the conditions (i) - (v) of 1.1. 

2.8. Lemma. 0 C\ <j> is the least equivalence relation in G + . 

Proof. Let a0 n <t>b. Then a(C) = 6(C) and e = a - 6 G C. Using 2.4 we get 
e = a(C) - 6(C) = 0, hence a = 6. 

2.9. Lemma. 0 V<j> = G + x G + . 

Proof. If (a, 6) G G + x G + , then evidently a0a(C)<t>b(C)0b. 

2.10. Lemma. 0,<# are permutable. 

Proof First we show that 0 <j> <<j>0. Let a0 • ^6 for some a, 6 G G + . Then there 
exists t G G + with a0t^6. Set e = 6 - t. Since e G C, we have e = 6(C) - t(C), 
by 2.4. Now a(C) = t(C), so that e = 6(C) - a(C). Consider the element e + a. 
We are going to prove that a<t>e + a06. Evidently 0 < 6(C) = e + a(C) < e + a, 
so that e + a(C) G C n [0,e + a]. If x G C n [0,e + a], then - e T i c 6 C n (a], 
which yields — e + x < a(C), by 2.3. Hence x < e + a(C). We have proved that 
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e + a(C) is the greatest element of C D [0, e + a], i.e e + a(C) = (e + a)(C). We 
get 6(C) = e + a(C) = (e + a)(C), which implies 60e + a. The relation a0e + a is 
trivial. 

To show that <f> • 0 < 0 • 0, let a0 • 06. Then 60 • 0a, by the symmetry of 0 and 
0. Using the inequality proved above and the symmetry of 0 and 0 once more, we 
obtain aO • 0a. 

2.11. Lemma. 0,0 fulfil the condition (iv) of 1.1. 

Proof. First we show that if a0c06 for some a, c, 6 € G + , a < 6, then a < c < 6. 
Let a0c06, a < 6. An application of directedness of G and 2.7 yields the existence 
of an element v G £7(6, c) with i;0c. since a(C) = c(C), there exists v\ G £l(a,c) 
such that v\ < v, vi(C) = c(C), by the property (4) of C. In view of the convexity 
of 0-classes we have v\0 f) 0c and this implies v\ = c, by 2.8. We have proved that 
a < c. To show that c < 6, take an element d G I-(6, c) such that d > a, d^c. The 
existence of such an element is guaranteed by 2.6. The convexity of 0-classes yields 
d0c. We have again dO 0 0c, hence c = d < 6. 

Next we prove that a0c06, a < b imply a < c < 6. Suppopse that a0c06, a < 6 
for some a,c, 6 G G + . Using the properties (2) and (4) of C we obtain that there 
exists v G U(b,c) with v(C) = c(C). In view of 2.7 there exists vi G f/(a,c) such 
that vi < v, vi0c. On the other hand the relation v(C) = c(C) gives v0c and 
this together with the convexity of 0-classes yields v\6c. We have v\0 H 0c, which 
implies c = vi. Hence a < c. Obviously c — a + 6 G f/(6,c) and since 60c, there 
exists s G LI(6, c) such that s < c - a + 6, s(C) = 6(C), by (4). Further 6 - s + c G 
G L(6, c) O [a) and hence 6 — s + c0c, by convexity of ^-classes. But then also 60s, 
because 6 - s = (6 — s + c) — c G C . We have 60D0s, hence 6 = s > c. 

2.12. Lemma. 0,0 fulfil the condition (v) of 1.1. 

Proof. First let a < 6, aOa' for some a, 6, a' £G+. We are going to prove that there 
exists V G G+ such that a' < 6', 606'. Put V = a' - a'(C) + 6(C). It is easy to see 
that d' < 6'. Set e = - a ' + 6 ' . Then the definition of V gives e = - a ' (C)+6(C) G C 
and 2.5 ensures e = - a ' ( C ) + 6'(C). Therefore -a'(C) + 6(C) = ~a'(C) + 6'(C), 
which follows 606'. 

Now let a < 6, a</>a' fo some a, 6, a' G G + . We are seeking for 6' with a' < 6', 
606'. Put 6' = a' - a + 6. Evidently a' < V and 606', because V - 6 =s a' - a G C. 

We are ready to prove the main theorem. 

2.13. Theorem. l e t G be a directed group, C a subset of G< TAen C is h direct 
factor ofG if and only ifC fulfils the conditions (1) - (4) mentioned at the beginning 
of this section. f -

Proof If C is a direct factor of G. we can suppose that G = C1 v D' C = '$(?. 0) : 
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x € C'}. It is easy to see that C fulfils (l)-(4). (If a = (x,y) G G+ , then the 
greatest element a(C) of C H [0, a] is (x, 0).) 

Now let C fulfil (l)-(4). Considering 2.8 - 2.12 we can say that the equivalence 
relations $ and </> satisfy the conditions of Theorem 1.1, so that the map / assigning 
to any a£G+ the couple ([a]0, [a]<f>) is an isomorphism of (G+ , <) onto (G+ /0 , < 
<) x (G + /^ , <). In accordance with the definition of the inner product given in the 
section 1, G+ = f~x({([a]0, [0]<f>) : a G G+}) • /^({([O]*, [a]<f>) : a G G+}) . There 
is /"^({([ORM*) : a 6 G+}) = {x € G+ : [x]0 = [0]*} = [O]0 and analogously 
/ ^ ( { ( M * . [0]4) : a € G+}) = [O]0. But [Ofy = {x G G+ : *40} = {x G G+ : x G 
6 C } = C + . Hence G+ = C + • [O]0. By Theorem 1.2 there exists a direct product 
decomposition (G, +, <) S ( # , +, <) x (L, +, <) with AY.L being partially ordered 
subgroups of G satisfying K+ = C + , L + = [O]0. It is easy to see that X, L are 
directed groups. Finally we are going to show that K = C. From /<T+ = C + we 
get immediately K~ = C . Now let a be any element of C, r G C n L(a, 0). (The 
existence of such an element r is guaranteed by (2) and 2.2.). Hence r £ C~ = if"". 
Further evidently < = a - r € C H f/(a, 0), hence t e C + = /.T+. We have a = t + r 
with t G -f-"+, r G /f", so that a G K. We have proved C C K. Since if, as a direct 
factor of G, also satisfies (l)-(4), the inclusion K C C can be proved anlogously. 
Hence C = K is a direct factor of G. The proof is finished. 

3. DIRECT FACTORS OF DIRECTED MULTILATTICE GROUPS 

In this section G will be any directed multilattice group. Besides (l)-(4), con­
sider also the following conditions for a subset C of G. 

(5) For all a, 6 G G+ , the relations u G a V 6, a(C) = b(C) imply u(C) = a(C). 
(6) For all a, 6 G G+ , ti G a V 6 implies u(C) G a(C) V 6(C). 

3.1. Theorem. Let G be a directed multilattice group, C a subset ofG. Then 
the following conditions are equivalent: 
(I) C is a direct factor of G} i.e. C fulfils (l)-(4). 
(II) C fulfils (l)-(3) and (6). 
(III) C fulfils (l)-(3) and (5). 

Proof. It is easy to verify that if C is a direct factor of G, then C fulfils (l)-(3) 
and (6). 

Evidently (6) implies (5), so that (II) implies (III). 
Finally, if C fulfils (5) and we have a, 6 G G+ satisfying a(C) = 6(C) and 

v € U(a,b), then vx G a V 6 with vx < v fulfils vx(C) = a(C). Hence (III) implies 

(I). 

Remark. It is easy to verify that the condition of connectedness in (2) of 1.3 can 
be replaced by the condition of directedness. Taking this into consideration and 
comparing 1,3 and 3.1 we can see that the distributivity of a directed multilattice 
group G yields that if a subset C of G fulfils (l)-(3), then it fulfils also (4), (5) 
attd (6). 
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The following two examples are illustrative. 3.2 shows that the condition (5) 
(and hence also (4) and (6)) does not follow from (l)-(3), in general. 

3.2. Example. Let G = {(a, 6) £ Z x Z : a + 6 even }, where Z is the additive 
group of all integers with the natural order. Define in G the operation + and 
the order relation < componentwise. Evidently (G,+ ,<) is a directed multilattice 
group. We will show that G has no direct factors, but {(0,0)} and G. Firstly, the 
subset C\ = {(a,0) : a even} of G is not a direct factor; it satisfies (l)-(3), but 
it does not satisfy (5). Indeed, if we set a = (1,1), 6 = (0,2), u = (2,2), then 
a,6,u £ G+, u £ a V 6, a(Gi) -= 6(Ci) = (0,0), but u(Cx) = (2,0). Analogously 
C2 = {(0,6) : 6 even} is not a direct factor of G. Now let us suppose that C 
is a subset of G satisfying (l)-(3) and (5), C / {(0,0)}. Then one of the three 
following possibilities occurs:l) C C Gi, 2 ) C C C2, 3) there exists (a,6) £ C 
with a ^ 0 , 6 - ^ 0 . I f G C G i , then there exists (a, 0) £ C with a > 0, which follows 
(2,0) £ C, because (—a,0) < (2,0) < (a,0). Hence in the case C C C\ we have 
C = Gi, a contradiction. The seconde possibility can be excluded analogously. 
Let (a, 6) £ G, a -̂  0, 6 -̂  0. Since C is directed, there exists (u,t/) £ C such 
that (u,v) > (a,6), (u,v) > (—a,—6). Hence we have (u,v) £ C with w > 0, 
v > 0. Then (—t/,—t/) < (1,1) < (u,t/), which implies (1,1) £ G. Consequently 
(M) £ G for each t £ Z. Given any (r, 5) £ G we have (-p, -p ) < (r, s) < (p,p) 
for p = max(|r|, |s|), so that (r, s) £ G. We have proved C = G. 

3.3. Example. Let G = {(a, 6, c) £ Z x Z x Z : 6 + c even} and let the operation 
+ and the order relation < be defined componentwise. We obtain a directed mul­
tilattice group with nontrivial direct factors {(a, 0,0) : a £ Z}, {(0,6,c) : 6-f c 
even}. 
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