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ON THE EXISTENCE OF V-MINUVfAL VIABLE SOLUTIONS 
FOR A CLASS OF DIFFERENTIAL INCLUSIONS 

NlKOLAS S. PAPAGEORGIOU 

(Received September 22, 1988) 

ABSTRACT. In this paper we establish the existence of ^minimal viable solutions 
for a class of differential inclusions with a Hausdorff continuous orientor field defined 
on a general Banach space and satisfying a compactness hypothesis and a strong 
Nagumo type condition (theorem 3.1 and 3.2). When the space is finite dimensional, 
we show that the strong Nagumo condition can be weakened to a regular Nagumo 
type (tangential) condition. 

1. INTRODUCTION 

In a recent paper Falcone-Saint Pierre [6] established sufficient conditions for 
the existence of slow viable solutions for a class of differential inclusions defined 
on a finite dimensional Banach space. 

In this note we generalize the results of Falcone-Sait Pierre [6], by relaxing 
some of their hypotheses and by proving an existence result for finite dimensional 
differential inclusions. 

Consider the following multivalued Cauchy problem on a Banach space X: 

x(t) Є F(x(t)) a.e. 

*(0) = x0£KÇX 

[x(t)єK, tЄT=[0,b)} 
(*) 

In their works, Deimling [4] and the author [13], proved that under some com­
pactness type hypothesis on the orientor field F(x), a necessary and sufficient 
condition for existence of solutions of (*), is that for all * € K> F(x) HTK(X) £ I 
(Nagumo type condition). Here TK(X) denotes the Bouligand tangent cone to K 
at x. 
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Key words and phrases: differential inclusions, measure of noncompactness, Hausdorff con­

tinuity, lower semicontinuity, Bouligad cone, Arzela-Ascoli theorem, ^-minimal solution, Kura-
towski convergence. 



176. NIKOLAS S. PAPAGEORGIOU 

In this paper we will be looking for a special type of viable solutions, namely 
solutions with velocity which is minimal with respect to a certain criterion if>(-) 
(̂ (•J-minimal solutions). So let %l>: X —• E be a continuous, convex function. We 
say that a trajectory x(-) of (*) is "ifr-mimmal, viable" if and only if 

ť(x(<)) = inf{V(*) : * € F(x(t))C\TK.{x(i))} a.e. 

Note that when i/>(x) = ||x|| (the norm function), we recover the notion of slow 
solution, which is important in mathematical economics and control theory (see 
Aubin [1] and Henry [7]). In this case V>(-) is nothing else but the metric projection 
on the set R(x) = F(x) C\ TK(x). Recall that if the underlying state space X is a 
strictly convex, reflexive Banach space and K C X is nonempty, closed, convex, 
then the metric projection function x —• proj(ar, K) is single valued. 

2. PRELIMINARIES 

Let X be a Banach space. Throught this paper we will be using the following 
notations: 

Pf(e)(X) = {A C X : nonempty, closed, (convex)} 

and 
Pjt(c)(X) = {A C X : nonempty, compact, (convex)}. 

On Pf(X) we can define a generalized metric /i(», •), known as the Hausdorff metric, 
by setting 

h(A,B) = max{sup(inf \\a - 6|| : 6 € -B), sup(inf | | 6 - a\\: a G A)}. 
a€-4 beB 

Recall that (Pf(X),h) is a complete metric space. 
A multifunction F : X —• Pf(X) *s sa-d to be Hausdorff continuous (h-

continuous), if it is continuous as a function from X into the metric space (Pf(X), h). 
More generally if Y> Z are Hausdorff topological spaces, a multifunction F : Y —» 

2Z \ {0} is said to be lower semicontinuous (l.s.c), if for all U C Z open, F~(U) = 
{y 6 Y : F(y) O U ^ 0} is open in Y. If Y, Z are metric spaces, this definition is 
equivalent to saying that for any yn —• y in Y, we have F(y) C limF(y„) = { :€ 
Z : \imd(ztF(yn)) = 0}, where d(z,F(yn)) = inf{||z - z'\\ : z' € F(yn)}. We will 
say that F : Y —• 2Z \ {0} is upper semicontinuous (u.s.c), if for all U C Z open 
F+(U) ^{yeY : F(y) CU}is open in Y (see Delahaye-Denel [5]). 

Now let us turn to X being a Banach space, let K C X be nonempty and let 
x 6 K. The "Bouligand or contingent cone" to K at x is defined by: 

aw-là-^jfŕS-Ѓ-tì-ь} 
where for any z 6 X, dK(z) = inf{||* - x'\\ : x1 G K} (see Aubin-Cellina [2]). It is 
clear that this cone is closed, TK(x) = Tg(x) and if x £ int K> then TK(x) = X. 
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Note that unfortunately TK(X) in general is not convex. Also note that int K £ 0, 
then for all z G K, int TK(x) ^ 0 (see Aubin-Ekeland [3], p.169). 

By a ( ) . We will denote the "Kuratowski measure of noncompactness" which is 
defined on the nonempty, bounded subsets of X. So if .A is such a set we have: 

m 

a(A) = inf{d > 0 : A C [J Ak> for some m and A'k8 s.t. diam(Ajfe) < d). 

Finally given a multifunction F : Y - • 2Z \ {0}, by "graph of F " we will mean 
the set GrF = {(y, z) 6 Y x Z : z G F(y)}. 

3. MAIN RESULTS 

Let X be a Banach space and V> • X —• E a continuous, convex function. We will 
be looking for ^--ninimal viable trajectories of (*). Recall that x : T = [0,6] —• X 
is a "V'-tt-ini-™- viable trajectory", if there exists / G 5'F(X()) — {9 ^ ^ ( ^ O : 

g(t) G F(x(<)) a e ) 8.t. x(t) = x0 + /0
fy(s)ds for all t € T, *(<) G # and 

tP(x(t)) = inf {^(*) : 2 G F(z(*)) n !*(*(<))} a.e. 
In our first theorem we will establish the existence of such solutions for a large 

class of infinite dimensional differential inclusions. For this we will need the fol­
lowing simple lemma. 

Lemma. IfYtZ are HausdorfF topological spaces, F : Y —• 2Z \ {0} is i.s.c, 
G : y - • 2Z \ {0} .has an open graph and for all y eY, F(y) D G(y) ^ 0, then 
y — L(y) = F(y) D G(y) is l.s.c. 

Proof. We need to show that given V C Z open, L~(V) = {y £Y : L(y) 0 V £ 
0} = {y € y : F(y)CiG(y)nV ? 0} is open. Let y G L~(V) and z G F(y)f)G(y)nV. 
Then (y,z) G G r G n (Y x V). Note that since by hypothesis G ( ) has an open 
graph, GrG O (Y x V) is open. So we can find U\(y) an open neighborhood of 
y arid W\(z) an open neighborhood of z.s.t. U\(y) x Wi(*) C GrG f)(Y x V). 
Observe that F(y) H W\(z) £ 0 since it contains z and because by hypothesis 
F ( ) is l.s.c, we can find U2(y) and open neighborhood of y s.t. F(]f)eW\(z) £ 0 
for all t/ G U2(y). Set C/(y) = U\(y) H U2(y). Then for all y> G I/(y) we have 
F(j/) fl Wi(z) ^ 0 while [/(y) x W\(z) C GrG fl ( y x V). So for all y> G U(y), 
^ ( j / ) H G(j/) fl V = 1(2/) H V ? 0 =» I-(V r) is open => L() is l.s.c. • 

Now we are ready for the theorem establishing the existence of V'-minimal viable 
solutions for (*). Our result extends theorem 4.1 of Falcone-Saint Pierre [6], since 
our state space is infinite dimensional, the growth hypothesis on the orientor field 
F() is more general and V() need not be inf-compact ad in [6]. Note that this 
last fact is very important, because it allows j>(-) to be the norm of an infinite 
dimensional Banach space and so our existence theorem incorporates the results 
on the existence of slow solutions (see Aubin-Cellina [2]). 
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Theorem 3.1. If K G Pfc(X) with int K ^ 0, V : X - • K is continuous, convex 
and F : K —> Pjc(X) is a multifunction s.t. 

(1) F() is h-continouous, 
(2)\F(x)\<c(l + \\x\\),c>0, 
(3) a(F(B)) < ka(B) for all B C K nonempty bounded, k>0, 
(4) F(x) O int TK(x) # 0 for all xeK, 
then (*) admits a tp-minimal viable solution x(-). 

Proof. Let G : K -» 2X be defined by 

G(x) = {t, G Y : tl>(y) < m{(t/>(z) : z G R(x)) = A(x)} 

where R(x) = F(x) H TK(X). Since F( ) is A-continuous (hence l.s.c. too) and 
x —• int TK(X) has an open graph (see Aubin-Ekeland [3], proposition 7, p. 
169), from the lemma we deduce that x —• F(x) H int TK(X) l.s.c. Hence x - • 
F(x) fl int Tfr(x) = F(x)f)TK(x) = _R(x) is l.s.c. (see Klein-Thompson [9], propo­
sition 7.3.3, p. 85). Also since #(•) is compact valued (.F(0 being compact val­
ued because of hypothesis (3)), there exists a z G R(x) (depending on x) s.t. 
\l>(z) = A(x) =-> G(x) ^ 0 and in fact, since V(') ls a- s o convex, it is easy to see 
that G(x) G Pkc(X). 

We claim that G(-) has closed graph. To this end let (xn, yn) G GrG (xn, yn) --* 
(x,y) in if x X. We have ^O/n) < A(x„) for all n > 1. Since /?(•) is Ls.c. from 
theorem 4, p. 51, in Aubin-Cellina [2], we have that A(-) is u.s.c. So by passing to 
the limit we get: 

limip(yn) = tl>(y) < fimA(x„) < A(x) 
=>(x,y)€GrG 
==-> GrG is closed in KxL. 

Invoking theorem 1, p. 41 of Aubin-Cellina [2], we get x -* L(x) = .F(x)flG(x) is 
u.s.c. Also because of hypothesis (4), L(X)DTK(X) ^ 0 for all x G K. Furthermore 
we have |L(x)| = sup{||z|| : z G L(x)} < \F(x)\ = sup{||z'|| : z1 G F(x)} < c(\ + 
||x||) (hypothesis (2)), while for B C K nonempty bounded, since the Kuratowski 
measure of noncompactness is monotone, we have a(L(B)) < a(F(B)) < ka(B). 
So if we consider the following viability problem 

i(ť) Є L{x{t)) a.e. 

x(0) = «o Є K 

x(t)€K,teT=[0,b)ì 
(*)' 

we see that all the hypotheses of theorem 1 of Deimling [4] are satisfied and so 
according to that theorem there exists solution x(-) of (*)'. It is easy to see that 
x(') is the desired V>()-^Binial viable solution of (*). D 

We can also have an integral selection criterion. 
"Sen as before let i/>: X —• M be a continuous , convex function and set I^(v) = 

f* 1>(v(t)) dtf for all t>() € Ll(X) if the integral exists, permitting ±oo. We say thai 
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a trajectory ar() of (*) is "/̂ -minimal viable'' if and only if .fy(i) = inf{/^(v) : v € 
SVo)}* where R(x) = F(x)nTK(x) and S1^^ = {g G I1**) : *(') G R(x(t))} 
a.e. 

Our existence result concerning 7,/r minimal viable trajectories of (*), reads as 
follows: 

Theorem 3.2. If X is a separable Banach space, K G Pfc(X) with int K £ 0, 
tl> : K —* R is continuous, convex, for all z(-) viable trajectories of (*) and aii 
v G -5H(*())» I*i>(v) *s defined and finite for at least one such v and F : K —• Pjc(X) 
is a multifunction satisfying hypothesis (1) -+ (4) of theorem 3.1, then (*) admits 
an I^-minimal viable trajectory. 

Proof. From theorem 3.1 we know that there exists ^-minimal viable trajectory 
x(.) of (*). So i>(x(t)) = inf{V>(z) : z G R(x(t))} a.e. Note that R() being l.s.c. is 
measurable. So we can apply theorem 2.2 of Hiai-Umegaki [8] and get that: 

inf{/^(V) : v G 5^ ( . } ) } « J inf{V(z) : z G R(x(t))} dt 

= / il>(x(t))dt = Ii,(x), 
Jo 

==> x(-) is an I^-minimal viable trajectory of (*). D 

If the underlying state space X is finite dimensional, then we can improve 
theorem 3.1 by replacing hypothesis (4), with a standard Nagumo type hypothesis. 
So we have the following existence result. 

Theorem 3.3. If dim X < oo, K G Pfc(X) with int K £ 0, ^ : X -* Ik is 
a continuous, strictly convex, inf-compact function and F : K —• Pje(X) is a 
multifunction s.t. 

(1) F(-) is h-continuous, 
(2)\F(x)\<c(l + \\x\\), c > 0 , 
(3) F(x) fl Tx(x) ^ 0 for all x G K, 

then (*) admits a ^-minimal viable trajectory x(*). 

Proof. Let Fn(x) = F(x) + ^B\, where B\ is the closed unit ball iti X. Clearly 
Fn() is ii-continuous, |Fn(x)| < c(+£) + c||ar|| and Fn(x) f\ int TK(X) £ 0 for all 
x G K. Consider the following approximating viability problems: 

ř *»(<) € M*n(t)) a.e. 
xn(0) = zo € А-

[xn(t)£K, ÍGT-=[0,b]J 
(*)» 

From theorem 3.1 (note that hypothesis ($) of that theorem is automatically 
satisfied with k = 0 because of the finite dimensional^ 
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every n > 1, (*)n admits a ^-minimal viable solution xn(). Then for all n > 1 we 
have: 

IM0II<(«+1) + C||«n(<)ll ae-

=> IMOII < IHI + (c + 1)6 + / ' e|M«)|| da. 
Jo 

So from Gronwall's inequality we get that for all n > 1 and all t G T 

IMOII < (IMI + (c+ l)6)exp(c6) = M. 

Thus ||xn(OII < (c + 1) + cM = M a.e. Therefore {in()}n>i is uniformly 
integrable in Ll(X) and so {xn(-)}n>i is equicontinuous in C(T,X). It is also 
bounded. So from the Arzela-Ascoti theorem, we deduce that {xn}n>1 is compact 
in C(T,X). Hence by passing to a subsequence if necessary, we may assume that 
xn ->xinC(r,X). 

Note that Fn(x) —> F(x) (convergence in the sense of Kuratowski [10], p. 339). 
Because int TK(X) ^ 0, from lemma 1.4 of Mosco [11], we have that Fn(x) H 
TK(x) = Rn(x) £ F(x) fl TK(x) = R(x) for all x G K. 

Now we claim that the minmization problem min{<p(z) : z G R(x)} is Tihonov 
well-posed i.e. it admits a unique solution zn £ R(x) and every minimizing se­
quence converges to it. That a solution exists, follows from the continuity of ^() 
and the compactness of R(x). That is unique, is a consequence of the strict con­
vexity of $(•). Finally let {zn}n>i be a minimizing sequence i.e. i)(zn) { X(x) 
where A(x) is the value of the minimization problem. Without any loss of gen­
erality, we may assume that for all n > 1, t/>(zn) < X(x) + 1. Since ip(-) is inf-
compact, {zn}n>i is relatively compact and so we may assume that zn —> z. Then 
V'(̂ n) —• i>(z) = ^(*) ie. z is the unique solution of the minimization problem. 
Therefore rmn{ip(z) : z G R(x)} is Tihonov well-posed. Without any loss of gen­
erality assume V>(0) = 0. 

Set An(x) = min{il>(z) : z G Rn(x)} and A(x) = min{t/>(z) : z G R(x)}. Since 
Rn(x) -+ R(x) and the limit problem is Tihonov well-posed, we can apply theorem 
3 of Zolezzi [14] and get that An(x) | A(x). Now note that for every n > 1, we 
have An(xn(<)) < A(xn(t)). 

Recall that A() is u.s.c. So we get: 

Im-An(xn(*)) < HSlA(xn(t)) < A(x(t)). 

Also from the Dunford-Pettis compactness criterion and by passing to a subse-
quence if necessary we may assume that xn «-+ i in Ll(X). Then for all A C T 
Lebesgue measurable we have XAXn 2* XAX in LX(X). Recalling that /^(-) is 
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weakly l.s.c. we get: 

/ V>(XA(V)X(.)) dt < lim / i>(XA(t)in(t)) <ft < 1m. / il>(in(t)) dt = 
JO .!0 J A 

= lim I An(*n(<)) dt < J iimAn(*n(0) dt (Fatou's lemma) < 

<J\(x(t))dt, 

=>Jj(i(t))dt<J^\(x(t)) 
=> VOW) < A(*(f)) a.e. 

Next we claim that Fn(xn(t)) —• F(x(t)) as n —> oo. To this end, note that for 
every n > 1, * -* un(x) = n(Fn(x), F(x)) is continuous and «„(*) J 0. So from 
Dini's theorem we have u„(*) —• 0 uniformly on compacta. Then note that: 

h(Fn(Xn(t)), F(x(t))) < h(Fn(Xn(t))> F(xn(t))) + h(F(xn(t)), F(x(t))) 

= Un(Xn(t)) + h(F(xn(t)),F(x(t))) 

We see that un(xn(t)) —• 0, while from hypothesis (1) we have h(F(xn(t)), 

F(x(t))) -4 0 as n - • oo => Fn(xn(t)) -^ -?(*(*)) as n -+ oo. 
Now observe that 

in(t) e Fn(xn(t)) a.e. 

and a?n —• x in C(T,X), while i n ^ i in -^(X). Invoking theorem 1, p. 60 of 
Aubin-Cellina [2] (see also theorem 3.1 0^12]), we get: 

x(t) € F(x(t)) a.e. 

Furthermore x(t) G K for all t € 7\ Then for A > 0 we have: 

dK(x(t) + \x(t)) _ <**(*(< +A)-Ae(A)) Ac(A) . 
A "~ A S ~ - € { A ) 

where e(\) —• 0 as A —• 0 + . So we have: 

MdK(x(t) + Xx(t))=0 ^ 

Aio A 

=> i(t) € rjc(«(l)) a.e. 
=> x(t) e F(*(<)) n TK(x(t)) = £(*(*)) a.e. 

Because of the uniqueness of the solution of mm{^(z) : z € R(x(t))} = A(s(<)) 
and since as we saw above V'OKO) £ A(*(0) a.e., we conclude that -c(-) is the 
desired ^-minimal viable trajectory of (*). O 
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If in theorem 3.3, X is strictly convex and tp(z) = ||^||, then the result applies 
and we get slow viable solutions for (*). By the way, note that there is a minor 
inaccuracy in the work of Falcone-Saint Pierre [6]. The state space X has to be 
strictly convex, or otherwise the metric projection need not be single valued. 

Acknowledgement. The author wishes to express his gratitude to the referee for 
his (her) corrections and remarks that improved the content of this paper. 
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