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INITIAL VALUE PARAMETERS C O R R E S P O N D I N G 

TO POSITIVE GREEN'S FUNCTIONS 

KURT KREITH 

(Received May 15, 1989) 

ABSTRACT. Green's functions corresponding to certain fourth order boundary value 
problems are represented as trajectories in E2. By adapting previously established 
conjugacy criteria to such trajectories, the positivity of the corresponding Green's 
functions is established 

1. INTRODUCTION 

The use of second order systems to study selfadjoint fourth order differential 
equations goes back to Whyburn [5] and is implicit in much of the classic paper of 
Leighton and Nehari [4]. The fact that nonselfadjoint fourth order equations also 
allow such a systems representation [2] enables one to generalize a variety results 
regarding conjugate points to more general situations. 

In this paper we use systems techniques to establish criteria for the positivity of 
the Green's function associated with the general real fourth order linear equation 

(1.1) (P2(t)v" - Q2(t)v')" - (Px(t)v' - Q^v)' + P0(t)v = 0 

and the conjugate point boundary condition 

(1.2) t,(0) = i/(0) = 0 -= v(if) = t/(ij). 

As in [2], it is assumed that the transformation u(t) = v(<)exp[---|/0 92/ft] has 
been used to reduce (1.1) to the form 

(1.1)' (P2(<)«")" - (Pi'(*)«' - 9i(t)"Y + Po(t)« = 0. 

Given (1.1)', the transformations 

(i-3)(0 
1 /« 

y = щ X- p 2 « " - ^ [Pl - / ł l ]« 
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and' 

( 1 3 ) (" ) 1 [ / /« \21 J>-a> 1 i" 

lead to the second order system 

{ ' } x" = C(t)y + D(t)x 

in which the non-selfadjointness of (1.1) is reflected by the fact that A^ D. 
For the purpose of this paper it is assumed that the coefficients of (1.4) are real, 

continuous, and that B(t) > 0 on an interval [0,T;I], where rji denotes the first 
conjugate point of 0 relative to (1.1)' - i.e. r/i is the smallest t > 0 for which (1.2) 
is realized by a nontrivial solution of (1.1)'. Specific conditions for the existence 
of such r\\ have been given by numerous authors (see for example [2]). 

2. A° CLOSED FORM EXAMPLE 

Before turning to the general case of (1.1) it is of interest to illustrate the 
techniques to be applied in a simpler context. To construct the Green's function 
G(*,r)for 

y{iv) = fit) 
{ 2 1 ) y(0) = y,(0) = 0 = y(^) = y'(V) 

for some fixed 17, the fact that Gtttt = 0 for t ^ r can be used to write 

(2.2) G ( f , r ) = i a t 2 + i 6 t 3 ; 0 < t < r. 

Here a and 6 are "initial value parameters" corresponding to initial data 

y"(0) = a: y'"(0) = 6. 

The usual continuity and "jump" conditions at t = r now imply that 

(2.3) G(t, r) = i a t 2 + ±6<3 + i ( t - r)3; r < t < V. 

so that the Green's function can be determined from the terminal value conditions 
y(rj) =: 2/(17) = 0 - i.e. by solving 

(2.4, G(,,r) = I « , ' + l 6 , > + I ( , - r ) > = 0 

G,(,, r) = a , + ! » , ' + i ( , - r ) ! = 0. 



POSITIVE GREEN'S FUNCTIONS 163 

While it is tempting to solve (2.4) for a and 6 in terms of r) and r it will be 
instructive, for what follows, to proceed differently. Regarding a and r as given, 
we shall instead solve for 6 and r/ in terms of a and r. 

When viewed in terms of the associated second order system 

(2.5) y" = x; x" = 0; (t -£ r), 

this latter problem has the following dynamical interpretation in the (x, y)-plane: 
Given t/(0) = t/(0) = 0, x(0) = a > 0 and a fixed positive value for r, we seek 
a "critical initial velocity" b = x'(0) < 0 such that the trajectory (x(t)yy(t))y 

determined by (2.5) and x'(r+) - x'(r~") = 1, will be tangent to the x-axis at 
some future time i(ay r). In order to assure that this tangency occurs at i = r) for 
all > 0, one seeks to choose O(T) > 0 SO that t(a(T)y r) = rj. 

In the simple case at hand one can readily solve (2.4) to obtain 

r 3 / 2 

<2-6> ^ = 7iw--
Here 

lim f(a,r) = r; lim f(a, r) = oo, 
a—0 v ' a-+T v ' 

so that for r < r/ < oo, the existence of such an a(r) readily follows from the 
continuity of t as a function of a. Since one can also verify that the corresponding 
trajectory (x(t)yy(t)) satisfies y(t) > 0 for 0 < t < r)y this construction establishes 
the positivity of the associated Green's function G(ty r) (which can, in this simple 
case, also be computed explicitly). 

The example just considered differs from Theorem 3.4 below in that r/i = oo. In 
what follows we shall assume r/i < oo and use similar techniques to conclude that 
for 0 < r/ < r/i, the corresponding Green's function is positive in (0, rj) x (0,r/). 

3. POSITIVITY CRITERIA 

In order to extend the technique of §2 to the general fourth order equation, we 
shall assume that (1.1) has been transformed into the system form (1.4) and that 
the four quadrants of the (xyy) plane are labelled I, II, III and IV, respectively. 
Identifying solutions of (1.3) with their trajectories T = (x(t)yy(t)) in the (x,y)-
plane, we also assume that the following hypotheses of [2] are satisfied: 

(A) If for some to > 0 the quantities y(fo), j/^o), *(*<)) &nd x'(to) are all 
nonnegative (but not all zero), then T(t) remains in I for all t > to. 

(B) No trajectory for (1.3) can remain in II for arbitrary large values oft. 
(C) No trajectory in I is asymptotic to the x-axis or j/-axis, nor can it have a 

limit point in the closure of I. N 

(D) A trajectory for (1.3) cannot go directly from II to I to II. 
As shown in [2], these hypotheses lead to the existence of a finite conjugate 

point relative to (1.1)' which is realized by a positive solution - i.e. there exists a 
trajectory T(ayb) satisfying 

(3.1) y(0) = j/(0) = 0; x(0) = a; x'(0) = 6 
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such that r is tangent to the x-axis at / - t/i < oo and satisfies y(t) > 0 for 
0<t <n\. 

In Theorem 3.4 below it will be shown that for n < n\, the Green's function 
corresponding to (1.1)' and (1.2) satifies G(f, r ) > 0 in (0, n) x (0, n). In this regard 
it will be convenient to denote by f(a. 6) the trajectory determined by (1.4), (3.1) 
and the "jump condition" 

(3.2) x '(r+) - x IT" ) - I (or J'(T) = 6(t - r)) 

which, in a dynamical context, corresponds to "a unit impulse in the positive in­
direction at t = r." The desired positivity properties will follow from the fact that 
f(a,6) has qualitative properties analogous to those of T(a,6) [3]. 

3.1 Lemma. Given r £ (0, .71) and a > 0, there exists 6(a, r) such that f(a, 6) is 
tangent to the x-axis at some fj > 0 and y(t) > 0 in (0, fj). 

Proof Since y(0) = j/(0) = 0 and x(0) = a > 0 is fixed, we can choose x'(0) = 6 
sufficiently negative so that f(a,6) exits the half-plane y > 0 at an orbitrarily 
small value of t. On the other hand, for 6 > 0 it follows from (A) that f(a, 6) will 
remain in I for all t. Therefore, as in [3], there exists 

6 = inf{6 T(a, 6) remains in I U II for all t > 0} 

such that f(a,6) is tangent to the x-axis some fj > 0 and satisfies y(t) > 0 for 
0 < t < fj. 

It remains to show that, given n < n\, one can choose a(r, n) so that rj(a, r ) = n. 
This will be done by a continuity argument analogous to that of §2. D 

3.2 Lemma. With fj(a, r ) defined as in Lemma 3.1,. 

(3.3) lim ?7(a,r) = r. 

Proof. By (A), the trajectory To of (1.3) satisfying y(r) = j / ( r ) = X(T) = 0; 
x'(t) = 1 will stay in I for all t > r . Writing f (a ,6(a , r ) ) = (xa(<),ya(<)) and 
noting that lim6(a,r) = 0, it follows that ya(T), &a(r)} XQ(T) and xa(r~) all 

a—>0 

tend to zero as a —• 0, while limi^r"*") = 1. Therefore, as a —• 0, f (a ,6(a , r ) ) 
a—->0 

approaches the trajecory To which lies in I, and if ia is a zero of ya(t)} then 
limfa = 0. Since r)(a, r ) is such a zero (indeed a double zero) of ya(0» (3.3) 
follows. D 

3.3 Lemma. With ij(a, T) defined as in Lemma 3.1, let r/i be the first conjugate 
point of 0 with respect to (1.1)'. Then 

lim r)(a,T) = n\. 
a—* 00 
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Proof If T(a, 6) is a trajectory which realizes the conjugate point 171 then, for any 
c > 0, so does T(ca,c6). Regarding a small impulse at t = r as a perturbation of 
T(a, 6), we use the construction of Lemma 3.1 to choose e sufficiently small so that 

yM = A(t)y + B(t)z 

z" = C(t)y + D(t)z+e6(t-T) 

has a trajectory Te(a1b) with double zeros at t = 0 and t = ne and for which 
l im^ = r)\. It then follows that (jx(t), jy(t)) corresponds to a Green's function 

trajectory T(£a, jb) with the same double zeros - i.e. at t = 0 and the other 
arbitrarily close to t = rji. • 

As in §2, a continuity argument now enables one to combine Lemma 3.2 and 
3.3 to obtain the following. 

3.4 Theorem. If the coefficients of (1.4) satisfy hypothesis (A) - (D) above, then 
for any r\ < rji the Green's function corresponding to (1.1)' and (1.2) is positive 
in (0,r;)K(0,77). 

Proof. For any r G (0,r/i) we have limi7(a,r) = 0 and lim ^(a,r) = n\. Thus 
a—>0 a—>oo 

given 77 £ (0,771), we can choose a(T,n) > 0 so that rX<*(r>,?)>r) = n> where this 
double zero is realized by a solution yT(t) which is positive in (0, n) for all r 6 (0,17). 
Writing yT(t) = G(ty r), it follows that G(t, r) > 0 in (0, n)X(0, n). D 

Examples and Generalizations. Specific criteria on the coefficients of (1.4) 
which assure that (.A) - (D) are satisfied and given in [2; Theorem 3.4], These are, 
in effect, "positivity conditions" on 

•>=^-U«-(M}-^-» 
and "smallness and nonnegativeness conditions" on 

A =2k[p i- /4a n d D =2kh+ /4 
4.1 Theorem [2]. If the coefficients of (1.4) satisfy 

(i) C(t) > A(t) > 0 in [0,oo) 
(ii) B(t) > D(t) > 0 in [0,00) 
(Hi) v" + mm{B(t) - D(t), C(t) - A(t))v is oscillatory at t = 00, 
(iv) / ° ° tB( t )d t = f°° tC(t)dt = 00 

Then conditions (A) - (D) are satisfied. 

Using (1.3) one can readily verify, for example, that 

•,<«») - hi ' - f«infV*1' -4- nn(f)ti = 0 
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satisfies these hypotheses whenever — Po(i) > \ on [0, oo). Other more complex 
examples are readily constructed using (1.3) (ii). 

It should also be noted that boundary conditions other than (1.2) can be ac­
commodated by these techniques. In particular, one can establish criteria for the 
positivity of Green's functions associated with focal and "hinged beam" problems, 
and these tend to require weaker hypotheses than Theorem 3.4 above. 
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