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EVERY CONNECTED ACYCLIC DIGRAPH 
OF HEIGHT 1 IS NEIGHBOURHOOD-REALIZABLE 

BOHDAN ZELINKA 

(Received May 11, 1987) 

Abstract. A digraph H is called neighbourhood-realizable, if there exists a digraph G with 
the property that for each vertex v of G the set of terminal vertices of edges outgoing from v 
induces a subgraph isomorphic to H. The assertion in the title of the paper is proved. 
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The study of the neighbourhood realizability of graphs was initiated by a problem 
proposed by A. A. Zykov at the Symposium on Graph Theory in Smolenice in 
1963 [1]. This problem was formulated for undirected graphs. Here we shall deal 
with its digraph variant. 

Let H be a directed graph (shortly digraph). A digraph G is called a neighbour­
hood realization of H, if for each vertex v of G the set of terminal vertices of edges 
outgoing from v induces a subgraph isomorphic to H. If there exists a neighbour­
hood realization of //, the digraph H is called neighbourhood-realizable. 

The digraph variant of the problem of A. A. Zykov is the problem to characterize 
neighbourhood-realizable digraphs. Some results were obtained in [2] and [3]. 
Here we shall consider acyclic digraphs of height 1. 

A digraph is called acyclic, if it does not contain a cycle (directed circuit). Its 
height is the maximum length of a directed path in it. If the height of an acyclic 
diagraph if is 1, then its vertex set can be partitioned into the set A of sources and 
the set B of sinks. 

We shall prove a theorem. 

Theorem 1. Every connected acyclic digraph of height 1 has an infinite neighbour­
hood realization. 

Proof. Let H be an acyclic digraph of height 1, let A be its source set, let B 
be its sink set. Choose two disjoint sets A, B such that A c A, B c B. If 1 A | 
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(or | B |) is infinite, we choose A (or B) in such a way that | A — A I - I A \ (or 
| B - B | = | B | respectively). If | A \ (or | B \) is finite, then | A | = ;/ (or | B \ = 
= / 0 ) . We shall construct a graph G0 with the vertex set V(G0) _ A u B. The 
graph H with the vertex set A u B is a subgraph of G0. Put A' = A, B' = B. 
Choose an element ae A, a set A(a) a A — A' such that | A(a) \ = | A | and 
a set i?(a) c: B such that B(a) u B' is the set of terminal vertices of edges outgoing 
from a and | B(a) \ = | B \. We add edges from A(a) to B(a) in such a way that the 
set A(a) u B(a) might induce a graph H(a) isomorphic to H. We add edges from a 
to all vertices of A(a) u (B(a) — B'). Then we change the notation in such a way 
that A' will denote the former set A' u A(a) and B' will denote the former set 
B' u B(a). Now we choose another vertex of A and proceed in the same way. 
After exhausting all vertices of A we continue by taking other vertices of A'. Thus 
we may proceed into infinity, until we obtain a graph G0 with the vertex set A u B 
with A _ A, B _ B in which the neighbourhood (set of terminal vertices of out­
going edges) of every vertex of A induces a subgraph isomorphic to H. Now let r 
be an integer, r _ 3. We take r copies Gx, ..., Gr of the graph G0. For each / = 
= 1, . . . ,r we lead edges from all vertices of G( corresponding to vertices of B 
into all vertices of Gi + 1 corresponding to vertices of A u B\ the sum i -F 1 is taken 
modulo r. The graph G thus obtained is a neighbourhood realization of H. • 

A natural question is the following, 

Problem, Has every finite connected acyclic diagraph of height 1 a finite neighbour­
hood realization! 

We shall show a class of such digraphs for which this assertion is true. 
Let p, q be positive integers. By the symbol K(p -» q) we denote the digraph 

whose vertex set is the union of two disjoint sets P, Q such that | P | = /?, | Q | = q 
and whose edge set is the set of all edges going from a vertex of P into a vertex of Q. 

Theorem 2. For any two positive integers p, q the graph K(p -> q) has infinitely 
many finite neighbourhood realizations. 

Proof. Let r be an integer, r _ 3. Let Pl9 ..., Pr, P;, ..., Pr, Ql9 ..., Qr be 
pairwise disjoint sets, let | P{ \ = P[ | = /?, | Q, | = q for i = 1, ..., r. Let V = 

r 

= (J P, u P/ u Q*. We shall construct a graph G with the vertex set V. In G for 
1 = 1 

each i = 1, ..., r edges go from all vertices of Pt u P[ to all vertices of Qx and each 
vertex of P, is joined with each vertex of Pt by a pair of oppositely directed edges 
(by a double edge). Further from each vertex of Qt edges go to all vertices of 
?i+i u Qi+i> the sum / + 1 being taken modulo r. No other edges than those 
described are in G. The graph G is a neighbourhood realization of K(p -* q). As 
there are infinitely many possibilities to choose r, there are infinitely many neigh­
bourhood realizations of K(p -* q). D 
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