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ON D I F F E O M O R P H I C S O L U T I O N S 
OF SIMU LTANEOU S ABEL'S EQUATIONS 

MAREK CEZARY ZDUN 

(Received March 3, 1989) 

Abstract. In this paper there is considered the problem of the existence of C-diffeomorphic 
solution (p : (a, b) R of the system of simultaneous Abel's equations 

<KfW) = ?(*) + clt i == 1, ..., /V,xe(a ,b) , 

where fl9 ...>fN are given C-diffeomorphisms of an interval (a, b) onto itself and ct & 0 are 
suitable constans. 

Key words. Functional equation, differential equation with deviating argument, C-diffeo-
morphism, iterations, continous fraction. 

MS classification. 39 B 10, 34 K 99. 

In the present paper we consider the problem of the existance of Cr solutions 
<p : (a, b) -» R of the system of simultaneous Abel's equations 

(1) <p(ft(x)) = (p(x) + ci9 i = 1, ..., N, x e (a, b), 

cx = 1 and ct it 0, i = 2, ..., N, whe re / , ...,fv are given continuous bijections 
of an interval (a, b), — oo ^ a < b g oo onto itself. 

The problem arise from the theory of differential equations with deviating 
arguments. The existence of an invertible Cr transformation of the independent 
variable that converts a given differential equation with several deviating argu­
ments f, / = 1, ...,IV into a differential equation with constant deviations is 
equivalent to the existance of a common Cr solution <p of system (1) such that 
(pf 7-= 0. F. Neuman in [4], O. Boruvka in [1] and L. A. Beklarian in [9] gave 
some conditions ensuring the existence of such solution. In this paper we present 
an otiier approach to this problem and we give some immediate conditions on 
functions / , ...,fy which imply the existence of Cr solutions of (1). This is an 
answer of the problem set by F. Neuman in [5]. 

1. By f" we denote here the n-th iterate of the function / : / -• I that is 

z° = /d, /"+1 :=-/o/«, / -^crr 1 , »-1,2,... 
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Let us note the following properties 

Lemma 1. If system (1) has an invertible solution, then 

(2) fofj-fjof, / , ; = i , . . . , N 

and iffT(x0) = fjk(x0) for some n,ke Z\{0}, x0 e (a,b) and ij G {1, ..., N}, then 
fr — fjn > moreover 

(3) f(x) # x for xe (a, b), i = 1, ..., N. 

Proof. Let <p be an invertible solution of (1). Then we have 

<p(fi(fj(*))) = 9(fj(*)) + c, = cp(x) + cj + c{ =-= <p(fi(x)) + Cj = cpVjMx))). 

Thus we get (2). 
Let fm(x0) = fi(x0) for an x0 e (a, b). By (1) we have 

<p(f?\x)) = <p(x) + mct and q>(fj(x)) = <p(x) + kcj. 

Hence mct = kcj, and consequently <p(f?Xx)) = (p(ff(x)). Thus //" = f / \ More­
over, f(x) T* A:, since ct # 0 for i = 1, ..., N. 

Q.E.D. 

Further in our investigations we consider the following two alternative hypo­
theses (C) and (H). 

(C) fj : (a, b) -> (a, b),j = 1, ..., Nare continuous bijections satisfying (2) and (3) 
and for every *e(2,...,N} there exist mi,fcfeZ\{0} such that ff =ffl, 

however, let (H) be a hypothesis that one of the following assumptions holds: 

(HO fji (a, b) -• (a, b),j = 1, ..., N are continuous bijections satisfying (2) and (3) 
and f?(x) # ffyt) for x e(a, b), m,ke Z\{0}, 

where i = 2, . . . , N. 
Let us assume that ft, ...,fy satisfy hypothesis (H) or (C). Let us fix an x0 e 

e(a, b). The sequence {fftxo)* « e Z } is strictly monotonic and lim f"(x0) = a 
n-+ao 

(or b) and lim f"(x0) = b (or a), since f^x) ?- x in (a, 6) (see [3] p. 21). Hence 
17-* — 00 

for every neN and every ke (2,. . . , N} there exists exactly one mkeZ such that 

fr_1(x0) < fz(*o) < fr(*o>-
m (» 

It has been proved in paper [8] (Th. 3) that there exist limits 

(4) l im-^- = ; s„ k = 2,...,N 
n-*oo n 
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and sk do not depend of x0 . Moreover, sk e Q if there exist uk, vk e Z\{0} such that 

fT = fkk- T h e n sk = — . Also an immediate conclusion of Th. 3, Th. 2 and 

Remark 2 in [8] is the following 

Lemma 2. If hypothesis (C) or (H) is fulfilled and system (1) has a continuous solu­
tion, then ck = sk for k = 2, ..., N. 

Further we consider the system 

(5) (p(fi(x)) = <p(x) + J,, i = 1,..., N, x e (a, b), 

where st = 1 and s2, ..., sN are given by (4). 
2. Let us start with case (C). 

Lemma 3. (see [7]). Iff and g are strictly increasing selfmappings of (a, b),fo g = 
= g of and f = gn for an n e N, then f = g. 

Lemma 4. //"f and g are strictly increasing selfmappings of (a, b),fog = gof, 
fv = fM > r -www? u, v e Z\{0} and mv = nu, then fn = gm. 

Proof. Letfu = gu. Thenfmny = gmm = gm2v. Hence by Lemma 2f" = g"1. 

Q.E.D. 

Theorem 1. Let hypothesis (C) be fulfilled and let fj" =f/,f for some u{, vte 
e Z\{0}, i = 1, ..., N. Let se Q, mi9 ..., mN, kx, ..., kN e Z\{0} be such that 

-I=:mis=:si, for i ~ \, . . . ,N 

and fe* mt, ...,mN be relatively prime and 

m^kx + ... + mNkN =- 1. (x) 

Then system (5) is equivalent to the equation 

(6) (f>(f(x)) = <p(x) + j , 

w h e t t / : - / * 1 o... of*\ 

Proof. Let (p satisfy system (5), then 

K/f'to) ««<*) +Mi. i=i,...,1v. 

(*) From the elementary number theory it is known that such integers always exist. 
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Hence 

<?(/(*)) = 9 °fki ° ... of^(x) = q>(x) + fc-s- + ... + kNsN = 
= (p(x) + (fc^j + ... + kNmN) s = <p(*) + s. 

Thus <p satisfies (6). 
Note that f^ = fk

hUl for i, k = 1, ..., N, since / * = f* for z = 1, ..., N. On 
the other hand 

ViUk ş f c = iщ 

Wi s, m, ' 

whence, by Lemma 4 it follows that 

fmк __ fПti 
Jt ~ Jк > /, k = 1, ...,N. 

Therefore 

fMi = vïo...oñ*y n í = ( / ľ ) f c l o... o(/ľf = 
= (/Г)fclo... o(fГ)ÄW 

— ) t 
.. mivfcjv __ # - l __ £ 

— Ji —Jl* 
for / = 1,..., N. 

Now, let q> satisfy (6), then 

(p(f(x)) = <p(fWi(X>) = q>($) + mfs = <?>(*) + st> i = 1, ..., N, 

so <p satisfies system (5) 
Q.E.D. 

Let / be an interval and r _ 1 be an integer. Denote by Diffr J the set of all 
functions cp: J -> R continuously differentiate up to r-order such that <p'(*) # 0 
for x e J . 

If fe DifF (a, fc) arid a < f(x) < x or b < f(x) < x in (0, fc), then equation (6) 
has a solution q> e DifF (a, fc) depending on an arbitrary function (see [3] Th. 4.1, 
Th. 3.1 and L. 5.1). Hence in view of Theorem 1 we get the following 

Corollary 1. Iff , . . . ,fN e DifF (a, b) satisfy hypothesis (C), then system (5) has 
a solution <p e DifF (a, b) depending on an arbitrary function. 

3. Now we shall consider case (H) 

Theorem 2. JLetfx, ... ,f# satisfy hypothesis (H). Then system (5) has a continuous 
solution unique up to an additive constant. This solution is monotonic. Moreover, if 
sk $ Q, then every continuous solution of the system 

(7) ^V^W "(«.») 
fulfils system (5). 
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Proof. It follows by hypothesis (H), that at least ony coefficient s2, ..., sN, 
which are defined by (4), is irrational. Let sk e Q. It has been proved in [8], that 
under our assumptions system (7) has a continuous solution q> unique up to an 
additive constant and this solution is monotonic. Let 2 % i ^ N, i ^ k and <p be 
a continuous solution of (7), then by (2) we have 

<7> ofi(fi(x)) = <p oft(fi(x)) = <p of(x) + 1 
and 

<P ofi(fk(x)) = (p ofk(fi(x)) = <p of(x) + Sk. 

Therefore the function <p of satisfies (7), and consequently from the uniqueness 
of continuous solutions of system (7) it follows that there exists c{ e R such that 

<P of(x) = q>(x) + ct. 

Thus q> satisfies system (1) with ck = sk. Moreover, according to Lemma 2, ct = st 

for i = 1, ..., N. Therefore, q> is a solution of system (5). 
Let us note that by the way we have proved also the second thesis of the theorem. 

Q.E.D. 

Now we give some conditions which imply that solution q> of system (5) described 
in Theorem 2 is a Cr diffeomorphism on (a, b) i.e. q> e Diffr (a, b). 

It is well-known that one can write each irrational number a uniqely in the form 
of infinite continuous fraction 

« = [«] + — 
«i(«) + 

1 a2(cc) + -
a3(a) + .. 

where a^a), / = 1, 2, ... are positive integers. Denote by A the set of all a e R\Q 
such that 

lim lim sup £ log(a,(a) + 1)/ £ log(af(a) + 1) = 0. 
B-+oo n-*ao l£i£n l£i<n 

In paper [2] Ch. V. 9 it has been shown that the set A is of full Lebesgue measure 
in R, i.e. | R\A \ = 0. 

We shall prove the following 

Theorem 3. Let 3 g r g co and fly ...,/A e Diffr (a, fc) satisfy hypothesis (H). 
If there is k e <2,..., N} such that sk e A, then system (5) has a solution cp e 
e DifF"2 (a, b) unique up to an additive constant. 

Proof. Let y e Diffr(a, b) be a solution of the equation 

(8) yifxi*)) = y(*) + h xe(a,b). 
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Such solution exists and depends on an arbitrary function (see [3], Th. 4.1, Th. 3.1 
and L. 5.1). We may write the last relation as follows 

(9) y-x(t+ l)=f&-«)), feR. 

Let sk € A. Put 

(10) * : = V o / f t o y - i . 

Note that g e DifT R and 

(11) * ( '+ 1) = g(f) + 1, '<-R. 

In fact, according to (9) and (2) we have 

g(t + 1) = y ofk oy'Ht + 1) = y of, of, oy-\t) = y of, ofk oy-x(t) = 
= y of! oy"1 oy ofk oy~x(t) = V of, oy""1 o g(t) = g(t) + 1. 

In view of Theorem 2 system (7) has a continuous and monotonic solution 
<p : (a, b) -* R. Note that the function *F :== <p o y"1 is a continuous and increasing 
solution of the system 

an v(t + D = nt)+i tGR 
( ' ng(t)) = nt) + s„ teK 

Indeed, by (9), (10) and (7) we have 

¥{t + 1) - <p oy_1(t + 1) = (p o/j oy_ 1(0 = <P °V_1(0 + 1 = V(t + 1) 

and 
W O ) = <P oy"1 oy ofk oy-*(0 = <P ofk oy-x(0 + sk. 

Moreover, 

(13) f?(x) = y-l(m + y(x)) and fifi = y o/T ov"*(0. 

for meZ, xe(a, b) and , E R . 

It follows from hypothesis (.¥*) that for every n e N there is m* e Z such that 

rt'Hx) < /»"(x) < /?(x). 
<£) ( » 

Hence by (13) we get 

m* - 1 + t <. «"(0 £ m* + /, n 6 N, < 6 R 

and consequently in view of (4) 

(14) Hm •&$- - skf ten, 
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Further we apply the following result of M. Herman (see [2], Ch. IX, Th. 5.1). 
If g e DifT R (3 g r <; w) satisfies (11) and (14) and sk e A, then system (12) has 
a solution ^eDifT" 2R. 

Let i/r G DifT""2 R be a solution of (12). According to Theorem 2 system (12) 
has a continuous solution unique up to an additive constant, so \j/ = ¥ + c 
for a c e R, whence we infer that W e DifF~2 R and consequently q> - ¥ oy e 
e Diffr~2 R. Moreover, in view of Theorem 2 q> satisfies (5). Q.E.D. 

If in Theorem 3 we drop the assumption that there exists fc e {2,..., N} such 
that sk 6 A, then system (5) may have a continuous solution which is not of class C1 

(see [2] Ch. XII. 1). Moreover M. Herman has shown (see [2] Ch. XI that the set 
of functions g for which system (12) has a Cr solution (1 :g r < oo) is of the first 
Baire cathegory in the space of all functions geDifTR fulfilling conditions (11) 
and (14) with C norm in [0, 1]. 

4. In this section we give some conditions which ensure the existence of Cr diffeo-
morphic solutions of system (5). 

Theorem 4. Let a > - oo and letft, ..., fN: (a, b) -+ (a, b) be continuous bijections 
fulfilling relation (2) and such that f(x) < x for xe(atb), i = 1,..., N. Ifft ,f2 e 
e Diffr (a, b), r ^ 2 and 

(15) 0 < f!(a) < 1, / = 1, 2 and \ogft(a)l\ogf£a) $ Q, 

then there exist c2,..., cN such that system (1) has a solution <p e DiffH^fc). This 
solution is unique up to an additive constant. 

Theorem 5. Let a > - oo and letft, ..., fN: (a, b) -> (a, b) be continuous bijections 
fulfilling relation (2) such that f{(x) < x for xe (a, b), i = 1,..., N. If ft,f2 e 
e Diff1 (a, b) are convex or concave and satisfy (15), then there exist c2, ..., cN such 
that system (1) has a solution <p e Diff1 (a, b). This solution is unique up to an addi­
tive constant. 

We shall prove Theorems 4 and 5 simultaneously. 
Proof. Put pt : = fl(a). Iff- e Diffr [a, b) (r ̂  2), then it follows from Th. 6.1 

in [3] that there exists a unique Cr diffeomorphism ¥ on [a, b) such that 

(16) n / i ( * » = Pi V(x) for x 6 [a, b) 

and *F'(a) == 1. However, if ft 6 Diff1 [a, b) is convex (concave), then in view of 
Th. 4 in [6] equation (16) has a convex (concave) and strictly increasing solution 
W e Diff1 (a, b) unique up to a multiplicative constant. 

Using (2) and (16) we obtain 

(^ of2) of,(x) - (!P oft) of2(x) ~pt¥ of2(x), xe [a, b). 
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Thus the function a : = W of2 satisfies equation (16) and respectively a e Diff [a, b) 
or a e Diff1 (a, fc) and is convex (concave). 

By the uniqueness of the solutions of equation (16) it results that there exists 
a p > 0 such that a = p*P. On the other hand a = W of2, so 

(17) V(f2(x)) = pf«, xe[a,b). 

We have that ^(x) > 0 for x e (a, b), since <P(0) = 0 and !P is strictly increas­
ing. Put 

<p := log yVlogp!. 

From (16) and (17) we get 

(18) <?(/,(*)) = <?(*) + I 
<p(fz(x)) = <P(x) + cy 

where c = logp/log//(a). Moreover cp e Diff (a, b) or q> e Diff1 (a, b). Further, 
taking into account Lemma 1 we see that / and / satisfy hypothesis (C) or (H2) 
for N = 2. Note, that finally/ and/2 satisfy only hypothesis (H2), since otherwise 
f[(a)n = f2'(a)m for some m, n e Z\{0}, which is contradiction to (15). Now put 
<p. := cp 0f. for i = 3, ..., N. By (2) and (18) we get 

<Pi(fi(x)) = (p ofi(ft(x)) = cp of(fi(x)) = cp of(x) + 1 = (Pi(x) + 1 
and 

<Pi(L(x)) = <P oflf2(x)) = cp o/2(/(x)) = <p of(x) + c2 = ?,(:*) + c2. 

Therefore (p, for f = 3, ..., N are continuous solutions of system (18). On the other 
hand, according to Theorem 3 system (18) has a unique continuous solution up 
to an additive constant, so for every ie {3, ..., N} there exists ct such that 

<p(f(x)) = <Pi(x) = cp(x) + ci9 for x e (a, b). 

Thus (p satisfies (1). Q.E.D. 
Proving Theorems (4) and (5) we have proved also the following 

Corollary 2. Let a > - oo andf , ..., fN satisfy hypothesis (H2). Iffx e Diff [a, b), 
/ 2 6 Diff (a, fe), r = 2 (/, e Diff1 [a, b), / 2 e Diff1 (a, ft) arid / , /2 are cowex 
or concave), 0 < f[(a) < 1, fheri system (5) has a solution cp e Diff (a, b) (cp e 
eDiff1 (a,fc)). 

Theorem 6. I//, ... ,fN satisfy hypothesis (H2) for b = oo, / , /2 e Diff1 (a, oo) 
are corwex or concave and lim /[(x) = 1, then system (5) has a solution cp e Diff1 

x-+a + 

(a, oo). 
Proof. Let us note that equation 

(piftix)) = pOc) + c, 

130 



is equivalent to the equation 

<f>(frl(x)) = <P(x) - ct. 

Hence we may assume that fx and f2 are convex functions. 
It follows from Th. 7.4 in [3] that the equation 

(19) <p(fi(x)) = <p(x) + 1 

has a convex solution (p e Diff1 R unique up to an additive constant. 
Put (pi := cp of, i = 2, ..,, N. By (2) and (19) we have 

<Pi(f(x)) = <p of2(fx(x)) = <p of(f2(x)) = (p(/2(x)) + 1 = <p2(x) + 1. 

Therefore cp2 satisfies (19) and q>2 is a convex C1 diffeomorphism. Hence by the 
uniqueness of convex solutions of equation (19) we infer that there exists c2 such 
that (p2 = <p + c2, whence we get 

(20) <p(fi(x)) = <p(x) + c2, x e (a, oo). 

Further by the same arguments as in the last lines of the proof of Theorem 4 we 
deduce that there exist c3, ..., cN such that cp satisfies system (1). Moreover, from 
Lemma 2 we obtain that ct = si9 for / = 2, ..., N. Thus cp satisfies (5). 

Q.E.D. 
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