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HEXAGONAL QUASIGROUPS 

VLADIMIR VOLENEC 

(Received January 13, 1989) 

Abstract. Hexagonal quasigroups are defined and it is shown that a hexagonal quasigroup 
is a special idempotent medial quasigroup. In hexagonal quasigroups a geometrical terminology 
and methods are introduced. A characterization of hexagonal quasigroups by commutative 
groups is obtained. 
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1. I N T R O D U C T I O N 

We have obviously: 

Lemma 1. In every quasigroup (Q, .) any two of the following three statements 
(one equivalence and two identities) are equivalent; 

(1) ab = co a = be, 

(2) ab.a = b, * a.ba^b. (2)' 

A quasigroup (Q,.) which has the properties (1), (2) and (2)' is said to be semi-
symmetric. Let us prove some more statements. 

Lemma 2. In a semisymmetric quasigroup (Q,.) any two of the following three 
identities are equivalent; 

(3) ab .cd~ ac. bd (mediality), 

(4) a(bc. d) = b(ac.d),(a. be)d = (a.bd)c. (4)' 

•- Proof. The identities (4) and (4)' are mutually dual with respect to the exchange 
of the left and right factors in every product, while the identity (3) is dual to itself. 
Therefore, it is enough to prove the equivalence (3) o (4). We shall use this kind 
of facilitations several times. According to (1), the equality a(bc. d) =-= e is equi* 
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valent to be. d = ea and then to ea .be = d. Similarly, the equality b(ac. d) = e 
is equivalent to eb. ac = d. Therefore, (4) is valid iff it holds ea. be = eb. ac. 
But, this is mediality. 

Lemma 3. A quasigroup satisfying one of the identities (4), (4)' and the identity 

(5) aa = a (idempotency) 

is semisymmetric. 
Proof. Suppose the identities (4) and (5) are valid. From (4) with c = d = a 

it follows, according to (5), the identity a(ba . a) = ba. By the substitution ba -+ b 
we obtain the identity (2)'. 

From Lemma 2 and Lemma 3 we have immediately: 

Corollary 1. For an idempotent quasigroup the identities (4) and (A)' are equivalent. 
A quasigroup (Q,.) is said to be hexagonal if it is idempotent and if it has one 

of the properties (4) and (4)', and then necessarily both properties. 
Now from Lemma 2 and Lemma 3 it follows: 

Corollary 2. A quasigroup is hexagonal iff it is idempotent, medial and semi-
symmetric. 

Moreover we have: 

Corollary 3. A hexagonal quasigroup has all mentioned properties (l) — (5), 
(2)', (4)'. 

Remark. A hexagonal quasigroup may be defined by only one identity. Such 
an identity is a(bc . dd) = b(ac . d). It is obvious that this identity follows from (4) 
and (5). Conversely, from this identity with b = a, it follows at once dd = d, i.e. 
the property (5), and by (5) the considered identity implies (4). 

2. EXAMPLES 

Example 1. Let (G; +) be a commutative group with an automorphism <p such 
that for every a e G it holds 

(6) (<p o <p) (a) - <p(a) + a = 0. 

If. is a binary operation on the set G defined by 

(7) ab = a + <p(b - a), 

then (G,.) is a hexagonal quasigroup. Let us prove this statement! For every 
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a,beG the equations ax = b and ya = b are equivalent (because of (7)) to the 
equations a + <p(x - a) = b and y + q>(a) - <p(y) = fc. First of these equations 
has the unique solution x = a + <p~x(b - a) and, owing to (6), the second equa­
tion can be written in the form (<p o <p) (y) = <p(tf) - b. Therefore, it has the unique 
solution y = <p~l(cp~x(<p(a) - b)). The idempotency of the quasigroujp (G±\) is 
obvious. By (7) we obtain after some simplifications 

a(bc .d) = a- <p(a) + <p(bc) + (<p o q>) (d) - (<p o <p) (be). 

But, because of (6) and (7) we have 

<p(bc) - (<p o q>) (be) = be = b + <p(c) - <p(b), 

and finally we obtain 

a(bc. d) = a + b - <p(a) - <jo(fc) + <p(c) + (q> o <p) (d). 

The symmetry of the right side of this equality in the variables a and b proves the 
identity (4). 

In this paper we shall prove that this example is a characteristic example for 
hexagonal quasigroups, i.e. that every hexagonal quasigroup can be derived from 
a commutative group as in Example 1. 

Example 2. Let (F, + , . ) be a field in which the equation 

(8) q2 - q + 1 = 0 

has a solution q and let •* be the operation in the set F defined by 

(9) a * b * (1 - q) a + qb. 

Then the identity <p(a) = qa defines obviously an automorphism <p of the com­
mutative group (F, +). Because of (8) the identity (6) holds. The equality (9) can 
be written in the form a •* b = a + <p(b - a) and because of Example 1 it follows 
that (F, •*) is a hexagonal quasigroup. 

Example 3. Let (C, + , . ) be the field of complex numbers and •* the operation 
on C defined by (9), where q = einl3. Then the equality (8) holds and because of 
Example 2 it follows that (C, •*) is a hexagonal quasigroup. This quasigroup has 
a beautiful geometrical interpretation which motivates the study of hexagonal 
quasigroups. Let us regard the complex numbers as points of the Euclidean plane. 
For any point a we obviously have a* a = a, and for every two different points a, b 
the equality (9) can be written in the form 

aXrb - a _ q-0 
b-<t I - 0 ' 
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which means that the points a,b,a*rb are the vertices of a triangle directly similar 
to the triangle with the vertices 0, 1, q, i.e. the vertices of a positively oriented 
equilateral triangle. We can say that a*b is the centre of the positively oriented 
regular hexagon with two adjacent vertices a and fe, which justifies the name 
"hexagonal quasigroup". The hexagonal quasigroup (C, •*) was investigated in [2]. 

Every identity in the hexagonal quasigroup (C, -*) can be interpreted as a geo­
metrical theorem which, of course, can be proved directly, but the theory of hexa­
gonal quasigroups gives a better insight into the mutual relations of such theorems. 
For example, Figure 1 gives an illustration of the proof of Lemma 2 in the case of 
the quasigroup (C, •*) (here and in all the other figures we shall use the sign . instead 
of thfe sign •*). In the same Figure 1 the identity (4)' is also illustrated in the form 
(d. ea)b = (d. eb) a. 

ac»d =eb 

ac = d«eb 

/ 
bc*d == ea 

d s- ea»bc s- eb-ac 

c = (d-ea)b s= (d-eb)a 

Ъ = c(d-ea) ss ( a c d ) e 

3. P A R A L L E L O G R A M S 

From now on let ((?,.) be any hexagonal quasigroup. 
At first let us prove the following theorem. 

Theorem 1. In a hexagonal quasigroup (Q9.) the identities of left and right distri-
butivity 

(10) 

w 

a. bc = ob f acy abiCsxQc.bc (10)' 



and the identities 

(ab.c)d=b(c. dá), (11) 

(12) (ab .c)d = (a.bd). ca, b(c . da) = ac . (bd. a) (12)' 

hold. 
Proof. If we put b = a in (3), then by (5) it follows a.cd = ac. ad, i.e. the 

identity (10). Now, let (ab . c) d = e. Because of (1) we obtain successively ab . c = 
= de, ab = c . de, b = (c . de) a and by (4)' it follows b = (c . da) e. Owing to (1) 
we finally have b(c. da) = e, which proves (11). The identity (12) can be proved 
as follows: 

(ab . c) d = (afc . c) (ad. a) = (aft . ad). ca ( = } (a . bd). ca. 

Figure 1 also illustrates the proof of the identity (11) in the form (ac. d)e = 
= c(d. ea), where we have successively the equalities (ac . d) e = fc, ac. d = eb, 
ac = d. eb9 c = (d. cfc) a,c = (d. ea) b9 c(d. ea) = &. 

Now, we shall introduce a geometrical terminology for the hexagonal quasi-
group (Q,.), which is motivated by Example 3. 

The elements of the set Q are said to be points. 
Because of (3) we can apply all results of [4]. 

d = bc»ab 
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We shall say that the points a, b, c, d form a parallelogram and shall write 
Par (a, b, c, d) iff there are two points p and q such that ap = bq and dp = cq 
[4, Corollary 1]. In [4] it was proved that (Q, Par) is a parallelogram space, i.e. 
the quaternary relation Par c Q4 has the following properties: 

1 ° For any three points a, b, c there is one and only one point d such that 
Par (a, b, c, d). 

2° If (e,f, g, h) is any cyclic permutation of (a, b, c, d) or of (d, c, b, a), then 
Par (a, b, c, d) implies Par (e,f, g, h). 

3° From Par (a, b, c, d) and Par (c,d,e,f) it follows Par (a, b,f, e). 
Let us prove: 

Theorem 2. Par (a, b, c, be . ab) for any points a, bf c (Fig. 2). 
Proof. It is sufficient to prove the equalities ap = bq, (be . ab)p = cq with 

p = ba, q = b. We have successively 

a .ba = b = bbf 

(be . ab). ba = (be . b) (ab . a) = cb. 

In Figure 2 we can see, by the way, how the fourth vertex of a parallelogram 
can be constructed (when three vertices are given) by means of the compasses 
only, where the compasses are used only for the drawing of circles and not for 
transfer of segments. 

Because of 1 ° Theorem 2 gives an alternative definition of parallelograms: 

(13) Par (a, fr, c, d) <-> d =be . ab. 

On the other hand, we can start with this definition (13) and prove the properties 
1-3°. The property 1° is obvious. Further, let Par (a, bf c, d), i.e. d= be. ab. 
For the proof of 2° it suffices to prove Par (bf c, df a) and Par (df c, b, a), i.e. 
cd .be = a and cb.de — a. Because of (3) it is necessary to prove only one of 
these two equalities. But, we have successively 

cd.be = c(bc . ab) .be = (c . be) . (be . ab) (be) = 

= (c . be). ab =' b . ab =' a. 

Now, let Par (a, b, c, d) and Par (c, d, eff), i.e. d = be . ab and / = de . cd. It 
follows successively 

ab . ea = (be . ab) (be) . ea = (d. fee) . ca = 

= <fe . (fcc . a) =' de. (be) (b . ab) =0) de. b(c . ab) (= 

= de. (c . be) (c . ab) = de . c(bc . ab) = de . cd = / 

i.e. Par (e, a, fe, / ) , and by 2° we obtain Par (a, 6 , / e). 
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We can also give direct proofs of some statements on paraileiograms given in [4] 
using the equiva'ence (13). Let us prove two statements: 

4° For any a,beQ Par (a, a, 6, b) holds. 
5° From Par (a, b, d, e) and Par (b> c, e,f) it follows Par (c, d9ft a). 
In fact, the statement Par (a, a, b, b) is a consequence of (5) and (2). For the 

proof of 5° we must show that e = bd. ab and / = ce . be imply df.cd- a. But, 
we have successively 

/ = c(bd.ab).bc (i= (bc.bd)a.bc ( = } 

= (fe . cď) a .bc = (ò . cď) fc'. ac = cd. ac 
and therefore 

a/, cd = d(cd. ac) . cd = (cd. cd) a . cd = (cd. a) . cd =* a. 

Let us prove two more statements about the parallelograms in the hexagonal 
quasigroup (Q,.). 

Theorem 3. For any points a, b and c we have Par (a, ab, ab . c, be), Par (c, ab, 
a . be, be) and Par (a, c, ab . c, a . be). 

Proof. Because of [4, Th. 25] and the identities (2), (2)', (5) and (10)' we have 
implications 

Par (b 
p ( "u"!u"! "l\t ^ ^ a r (^ • a^> ^ • a^> ab • c> ^ c) ^ P a r (a> a^> ** • c> ^c)> 

Par l VŁ, « « «̂v 
p (u'u'u* Iľлl* ^ ^ a r ( ^ c • >̂ ^ > a • ^c> ^c • ^ c ) ^ ^ a r (c> a^> a • ^ c> ^c)> 

b, ab, ab, b)) 
lb, ab, c, c)j 

• (be, a, a, be)) 
' (b, b, be, be)) 

Par (a, ac, ac, a)\ n , , , N _ , , , . 
t> < u , u \i ^ " a r (afl> ac* a > a c - be, a . be) => Par (a, c, ab . c, a . be), "ar (a, a, t?c, Oc) J 

and the assumptions of these implications are consequences of 4° and 2°. 

Theorem 4. From Par ( a n , a i 2 , a i 3 , a i 4) (i = 1, 2, 3, 4) and Par (ax j , a 2 j , a 3 j , a4J) 
0* =* 1, 2, 3) it follows Par ( a 1 4 , a 2 4 , a 3 4 5 a4 4). 

Proof. We have equalities ai2ai3 . anai2 = a i 4 (i = 1,2, 3,4) and aZia3i. atia2i^ 

~ Q*) (J = 1> 2, 3) and therefore successively 

024<*34 • ^14^24 = 

*= (a22a13 . a2ia22) (a32a33. a3ia32). (a12ai3. aitai2) (a22a13. a
2
ia

2
2) * 

** (̂ 22̂ 23 • ̂ 32^33) 0*21^22 • ̂ 31%2) • (̂ 12̂ 13 • ̂ 22^23) fallen • 021*22) = 

~ (<*22a3Z • a2Za**) 0*21*3 J • *22*32) • 0*12*22 • *13*23) 0*11*Z1 • *12*22) = 

= (aZ2a32 . a23a33) (ai2a2Z . ai3a23) . (a2ia3i . aZ2a32) (аг1а21. ai2a21) =-
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~ (#22^32 • a\la2l) (^23^33 • #13a23) • (^21^31 • ^11^2l) («22^32 • «12^22) = 

= #42^43 • ̂ 41^42 =* #44 • 

We can formulate: 

Problem 1. Do the statements of 4° and of Theorem 4 hold in any parallelogram 
space, i.e. can these statements be proved by 1—3° only? 

If a ternary operation ( ) on the set Q is defined by 

(14) (abc) » do Par (a, b9 c9 d)9 

then it is well-known (see [4]) that (Q9 ()) is a laterally commutative heap after 
V. V. Vagner [3], i.e. the following identities hold: 

(15) ((abc) de) = (a(bcd) e) « (ab(cde))9 

(16) - (abc) = (cba), 

(17) (abb) = a. 

Because of (14) Theorem 4 immediately implies: 

Corollary 4. For any points au (i>j = 1, 2, 3) we have 

. i(a\\a\2a\z) (a2\a22a2z) (a3\a32a33)) = 

= ((al1La2la3l) (a12a22a32) (al3a23a33)). 

Problem 2. Does the statement of Corollary 4 hold in any laterally commutative 
heap, i.e. can this corollary be proved by the identities (15)— (17) only? 

4. C H A R A C T E R I Z A T I O N OF HEXAGONAL Q U A S I G R O U P S 

Let 0 be any given point. We define an addition of points by the equivalence 

a + b = c o Par (0, a, c9 b). 

Therefore, we have identically Par (b9 0, a9 a + b)9 which implies by (13) 

(18) a + boOa.bO. 

In [4] it is proved that (Q9 +) is a commutative group with the neutral element 0. 
This fact can be proved directly by means of (18): 

(a + b) + c ( « ) 0(0a. bO). cO ( ~ } (0 . 0a) (0 . bO). cO « ' 

« (0 . 0a) b. 0(d). 0) (= (0 . 0a) 0 . b(c0. 0) (= 
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= Oa. (Ob. 0) (cO. 0) <W Oa. (Ob . cO)0 <-l) a +. (6 + c), 

a + fc'L8)0a.fco£>0fc.«0(L8)fc + «, 

a + O^OB.OOffi'Ofl.O^fl, 
(1) (1) ' -«> 

b = 0(0 . Oa) <=> bO = 0 . Oa <=> Oa . bO = 0 o a + b = 0. 
Now, let A0, £0 be the translations of the quasigroup (Q,.) defined by the point 0, 

i.e. the bijections defined by identities k0(a) = Oa, Q0(a) = aO. We can prove: 

Theorem 5. The translations k09 Q0 of the quasigroup (Q,.) are two automorphisms 
of the group (Q9 +) such that Q0 O k0 resp. k0 o Q0 is the identity on the set Q and 

(19) k0(a) + Qo(a) = a 

for every point a. 

Proof. For any points a, b we have 

k0(a + b) = 0(a + 6) ( = } 0(0a . bO) ( = } (0 . Oa) (0 . bO) (=' 

= (0 . Oa) b = (0 . Oa) (Ob . 0) ( = } Oa + Ob = k0(a) + k0(b). 

Dually, Q0 is also an automorphism. By (2) and (2)' it follows that £>0 o k0 resp. 
k0 o £0 is the identity on the set Q. For any point a we get 

Qo(a) + k0(a) = oO + Oa =8) (0 . aO) (Oa . 0) = (0 . aO) a =' aa^ a. 
Because of (2)', (2) and (18) we obtain successively 

ab = (0. oO) (Ob. 0) = oO + Ob = Q0(a) + k0(b), 

which agrees with the well-known Toyoda's theorem (see [ l ] , p. 33). But, by 
Theorem 5 it follows further 

ab = a - k0(a) + k0(b) = a + k0(b - a). 

Moreover, (19) implies (k0 o k0) (a) + (k0 o g0) (a) = A0(a), i.e. (k0 o k0) (a) -
— k0(a) + a = 0 owing to the fact that k0 o g0 is the identity. Therefore, every 
hexagonal quasigroup (Q9.) can be obtained from a commutative group (Qy +) 
as in Example 1, i.e. it holds 

Theorem 6. There is a hexagonal quasigroup (Q9.) iff there is a commutative 
group (Q9 +) and an automorphism <p of this group satisfying (6). Each of two binary 
operations + and . is defined by means of the other by the identities (7) and (18), 
where 0 is the neutral element of the group (Q9 +). 

In [4] it is proved that Par (a, b9 c9 d) iff a + c — b + d. We can prove this 
statement directly by means of (13) and (18), i.e. we can prove the equivalence 
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of the equalities Oa . cO = Ob . dO and d = be . ab. Because of (1), the first equality 
is equivalent to dO = (Oa . cO). Ob. But, 

(Oa . cO) . Ob = (Oa . 0) (cO . b) ( = a(cO . b) 

and the obtained equality is equivalent to d = 0. a(cO. b) owing to (1). Finally, 
we have successively 

0 . a(cO . b) ( = } (bO . a). cO ( = ) ' (ba . Oa). cO (= (ba . c) (Oa . 0) (= 

= (ba . c) a = (ba . c) (ba . b) = ba . cb = be . ab. 

Acknowledgement. The author is grateful to referees for some useful suggestions. 
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