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ON OPEN HAMILTONIAN WALKS IN GRAPHS 

PAVEL VACBK 

(Received May 13, 1986) 

Abstract. If G is a graph of order «, an open Hamiltonian walk is meant any open sequence 
of edges of minimal length which includes every vertex of G. Clearly, the length of such an open 
walk is at least n -- 1, and is equal to n — 1 if and only if G contains a Hamiltonian path. In this 
paper, basic properties of open Hamiltonian walks and upper bounds of their lengths in some 
classes of graphs are studied. 

Key wdrds. Graph, Hamiltonian graph, Hamiltonian path, Hamiltonian walk, open Hamilto­
nian walk, cactus. 

MS classification. 05 C 45. 

In this paper, the graph means a finite connected undirected graph without loops 
and multiple edges. If G is a graph, V(G) and E(G) denote the sets of vertices and 
edges of the graph G. A cyclic sequence of edges passing through each vertex of 
a connected graph G and having the minimal length, is called Hamiltonian walk 
in the graph G (see [7]). An open sequence of edges passing through each vertex 
of a connected graph G and having the minimal length is called open Hamiltonian 
walk in the graph G. 

Let G be a graph on n vertices, n ^ 3. Throughout the paper we shall denote cG 

the length of a Hamiltonian walk and lG the length of an open Hamiltonian walk 
in the graph G. Obviously, cG ^ n and lG 7z n — 1. Moreover, cG -= n holds iff 
G is a Hamiltonian graph; lG -= n — 1 holds iff G contains a Hamiltonian path. 

Now we shall prove the upper bounds cG £ 2n -i 2 and lG g 2n - 4. It suffices 
to show by induction that for every k = 3,4, . . . , n, there exists acyclic and an 
open sequenccof edges of the length 2k — 2 and 2k — 4 respectively, both passing 
through k distinct vertices of G. 

For k = 3, such sfequfences are {x, y, z, y, x} and {x,y, z} if [x, y] € E(G), 
[y, z] € E(G). Let Ck be a cyclic sequence of edges of the length 2k — 2 or Z-% be 
an open sequence of edges of the length 2k - 4 both containing k vertices of the 
graph G and let k < n. Let v, v\ w, w' 6 V(G), veCk, v' e I+, w$Ck, w' $1+ 
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and [v9 w]9 [v\ w'] e £(G). These vertices have to exist because G is a connected 
graph. If Ck = {...,ti,u, r,...} and L* = {..., u\ v\ * ' , . . . } , then Ck+1 = {..., u9 V9. 
w9 v919...} andLfc+1 = {..., u'9 v\ w\ v\ t'9...} are desired sequences of the lengths 
2k - 2 + 2 = 2k and 2k - 4 + 2 = 2k - 2. This completes the proof. 

The proved bounds cG £ 2n — 2 and /G ^ 2« — 4 are, in general case, best as 
possible. It is easily seen that the equality cG = 2n — 2 holds for any tree G 
on n vertices; the case lG = 2« — 4 is discussed in the following theorem. 

Theorem 1. Let G be a graph, \ V{G) \ = n = 4. Then /G = 2n - 4 iff G = 

— ^ l » n - l » 

Proof. 1. If G = Kit„-l9 then obviously /G = 2n - 4. 

2. Let /G = 2H - 4. We show by induction that G = Kt ,-,-i. 
a) If /i = 4 and /G = 4, then obviously G = KU3. 
b) Supposing the conclusion to hold for every n g k9 we prove it for « = A: + 1. 

Let | V(G) | = k + 1, /G = 2{k + 1) - 4 = 2k - 2 and {x09 xl9 ..., x2fc_2} be 
an open Hamiltonian walk in the graph G. First we show that the graph Gx = 
= G — {x0} is a star graph Kltk-XA\ suffices to prove that /Gl == 2k — 4. Supposn 
on the contrary that /Gl g 2k — 5. Then using the edge [x0, xt~\ we find an opeis 
walk in G of the length g 2k - 3, which contradicts to 1G = 2k - 2. So Gx e 
a star graph Ki,k-i. Moreover, the vertex xx is that vertex of Gt whose degree 
is k -- 1, otherwise using the edge [x0, x^ we find that lG g /Gi + 1 = 2k - 3. 
To finish the proof of G = Kt t k, we need to show that the degree of x0 in G is equal 
to 1. In the opposite case, there exists an edge [x0, Xj] with j > 1 joining this 
edge to the open Hamiltonian walk in Gx that starts in xj9 we find again that 
/G ^ 2k — 3. The proof of Theorem 1 is complete. 

d+1 vertices 
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Now we introduce some examples of graphs which demonstrate that on the 
class of all graphs on n vertices the difference d == cG - 1G acquires all of the values 
1, 2, . . . , « — 1. It means that cG and lG are in a certain sense independent quantities. 
We describe these graphs G for which the difference d acquires extremal values. 
Let d T* 1, d 5* n - 1. On the Figure 1 there is an example of the graph G on 
n vertices in which cG — lG = d. 

Theorem 2. Let G be a graph, \ V(G) \ = n and d = cG - lG. 
1. G is a Hamiltonian graph iffd= 1. 
2. G 15 a path of length n — lift d = n — \. 
Proof. 1. a) If G is a Hamiltonian graph, then cG = n and lG = n — 1 and so 

d = cG - lG = 1. 
b) Let G be a jion — Hamiltonian graph. Denote CG a Hamiltonian walk in the 

graph G with the length cG > n. There is at least one vertex x in the graph G which 
occurs at least twice in the CG: CG = {a9 b9..., c, x9 d9..., £, x9f9..., a}. But then 
the sequence of edges {/,..., a9 b9..., c, x, d,..., e} is an open walk in the graph G 
whose length is cG — 2. So we have lG ^ cG — 2 and therefore, d = cG — lG £: 2. 

2. a) If G is a path of length n - 1, then cG = 2(n - 1) and lG == w - 1. There­
fore d — cG — IG = n — 1. 

b) Let d = n - 1. Since cG g 2(n — 1) and lG - « - 1, then cG = 2(w - 1) 
and lG = « — 1 have to hold. This means that G has to contain a Hamiltonian 
path {*!, x2 , . . . , x»}- Suppose that G is not a path of length n — 1. Then G con­
tains an edge [xi9 xj], where 1 g / < j S n and.7 - / > 1. Obviously, {xt, x2,..., 
*«> *n-i> •••> */> *{» *i-i> •••» *i} is a cyclic walk in G with length 2ft —/ + 
+ i - 1 < 2(n ~ 1), which contradicts to cG = 2(« — 1). 

Theorem 3. Let G' be a connected subgraph of a graph G, then lQ ^ lG> + 
+ 2(n - *'), wAcre n » | V(G) \ and n' - | K(G') |. 

Proof. Let H' be an open Hamiltonian walk in G' whose length is lG,. Denote 
Gi9G29..., Ĝ  connected components of the graph G — G'. For each / let Ct be 
a Hamiltonian walk in Gt whose length is ct. Since G is connected, for each i two 
adjacent vertices xi9 yt exist so that xt e V(Gt) and yt e V(G'). Now it is easy to 
describe the sequence of edges S passing through each vertex of the graph G 

formed by H' and all the Ct and the edges \xi9 yi]. The length of S is £ ct + 

+ /<? + 2<7 £ 2(/i - O + /G,, because c, £ 2 | V(Gt) | - 2 and £ I F(G,) | * 
» n - «'. Therefore /G ^ 2(« - w') + /G,. *«i 

Corollary 1. Let G be a graph on n vertices. If G' is a path in the graph G 
which has n' vertices, then 1G g 2n — ri — 1. 

Proof, Corollary 1 follows from Theorem 3 with lG, =-* n' — 1. 
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Theorem 4.Let G be a non — Hamiltonian graph. Denote Q0 g QX the two 
smallest degrees of vertices in G, \ V(G) \ = n. Then lG g 2n - (Q0 + QX) - 2. 

Proof. Theorem 4 follows from the Corrlary 1 and from the theorem 0. 
Ore [8]: A graph G either contains a Hamiltonian path or there exists a path of 
the length at least Q0 + Q\ ia the graph G, if Q0^Qt are the two smallest degrees 
of vertices in the graph G. 

Definition 1. A connected graph will be called cactus if every edge of it lies on one 
circuit at most. 

Let G be a cactus, \ V(G) \ = n, | E(G) \ —m.Ifwis the number of circuits which 
the graph G contains as subgraphs, then m =- n — 1 + w. 

Theorem 5. Let G be a cactus, \ V(G) \ = n = 2. Let xt, xs be arbitrary two 
fixed vertices of the graph G and let M be a path of maximal length connecting 
vertices x{ and Xj. Denote by m the length of M. (We do not exclude the case xt = 
=- Xj, when m = 0 is assumed.) Let q be a number of circuits which are edge disjoint 
with the path M. The lengths of these circuits are kx,k2, ...,kq. Then the sequence 
of edges of minimal length connecting vertices xx and xjy which is passing through 
each vertex of the graph G, has the length 

i 
Ixixj = 2(n - 1 + q) - in - £ kv 

and the length of an open Hamiltonian walk H in the graph G is 

1G = min 1XIXJ. 
xi,xj€V(G) 

Proof. We shall proceed by induction with respect to n = | V(G)\. The 
assertion is obvious if n = 2. If n > 2, we distinguish two cases 1 and 2: 

1. G has not an articulation point. In this case G is an edge or a circuit and our 
theorem clearly holds. 

2. Let G have an articulation point z. 

a) Let articulation point z divide the graph G into two subgraphs H' and H" 
so that V(H') n V(H") = {z}. 

3L%) If *i e H\ X; e H\ | V(H') | = t, then I V(H") [ = « - / + ! . Since z is an 
articulation point in the graph G, every path in G connecting vertices x{ and xs 

contains the vertex z. Let M be a path of the length m as in the statement of 
Theorem 5. We denote M' the path of maximal length m'connecting vertices xt / 
and z in the graph H' and M" the path of maximal length m" connecting vertices z 
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and Xj in the graph It". Clearly m' + m" = m and there is not any path connecting 
vertices xt and z of the length greater than m* in the graph H*. Similarly, there is 
no pathvconnecting vertices z and Xj of the length greater than m" in the graph H". 
We suppose that H' contains p circuits which are edge disjoint with the path M'. 
The lengths of these circuits are kt, k2,..., kp. Then the graph H" contains q — p 
circuits which are edge disjoint with the path M". The lengths of these circuits 
are kp+l9 kp+l9..., kq. Since ) V(H') \ < n9 we may suppose by induction that 
there is an open sequence of edges of minimal length connecting vertices x( and z 
passing through each vertex in the graph H', the length of this sequence of edges is 

/ , f . - 2 f r - l - p ) - m ' - £ f c t . 
v-=l 

Similarly, there is an open sequence of edges of minimal length connecting vertices 
z and Xj passing through each vertex in the graph H" and has the length 

/2JCJ = 2 ( n - * + 4 - p ) - m " - £ kv. 
v-p+i 

This implies that an open sequence of edges of minimal length* passing through 
each vertex of the graph G connecting vertices xt and Xj has the length 

^XiXj = = ^xtz * *zxj s s s 

= 2(t-l-p)-m'-iK +2(n-t + q-p)-m"- J kv = 
v-i v**p+l 

= 2(n-l + q)-m-iK-
t > - = l 

a2) Let xi9 Xj e H'9 | V(H') \ = t9 \ V(H") | = n - / -f 1. Since z is an articula­
tion point of G, the path M of maximal length m connecting vertices xt and Xj 
does not contain any vertex of the set {V(H")\z}. Let the graph H' contain p 
circuits edge disjoint with M and let kx, k2,..., kp be the lengths of these circuits. 
Then H" contains q — p circuits edge disjoint with M and lengths of these circuits 
are kp+i9 kP+i> ••• > -V By induction, an open sequence of edges passing through 
each vertex of H- and connecting the vertices xt and xs has the minimal length 

/ U = 2 0 - l + p ) - m - f : f e . . 

Similarly, a cyclic sequence of edges passing through each vertex of the graph H" 
has the minimal length ' * 

/ l^-2(»-^ + « - » ^ t K-
0--P+1 

f -" , ' 
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An open sequence of edges of minimal length passing through each vertex ot the 
graph G connecting vertices xt and Xj has the length 

i p' q 

lXiXJ + lXiXj + Kz = 2(n - 1 + p) - m - £ K + 2(n - t + q - p) - £ fe, = 
t>=i t / = j p + i 

= 2 ( n - l + < ? ) . - / > . - _ * „ . 
V = l 

b) Let articulation point 2 divide the graph G into subgraphs Hl9 H2,..., H-, 
3 g ,y g w - 1 so that F(#j) n F(H^) = {z} for 1 9-;. Then either xi9 Xje 
6 V(Hf)9fe {1, 2, . . . , * } , or xt e F(//r) and x, e V(H,), r, f e {1, 2, ..., s}, r < t. 
Then we denote if' = Hf and H" = Ht u ... u / / / - i u i / / + 1 u ... u HS9 or 
/ / ' = //, u Ht and H" = H^ u ... u Hr^i u Hr+1 u ... u Ht_t u H, + 1 u ... u 
u //,, respectively. In this way both possibilities are converted into the case 
described in a2. This cdmpletes the proof of Theorem 5. 

Corollary 2. Let G be a cactus, | V(G) \ = n. Let w be a number of all circuits 
which the graph G contains as subgraphs; denote by kl9 k29..., kw the lengths 
of these circuits. Then the length of Hamiltonian walk in the graph G is cG — 

w 
- 2 ( l ! - l + M 0 - £ * | . 

/ = - l 

Proof. The assertion immediately follows from the Theorem 5. 

Corollary 3. An open Hamiltonian walk in a tree G has the length lG = 
= 2(n — 1) — k, where n = | V(G) \ and k is the diameter of G. 

Proof. The assertion follows from Corollary 2 with w = 0, because a tree G 
is the cactus that contains no circuit and the diameter of G is the maximal length 
of a path in G. , 

Corollary 4- Let G be a 3-cactus, i.e. a cactus whose every edge lies on a circuit 
of the length of 3, | V(G) | = n. Let k be the maximal length of a path in G. Then 
an open Hamiltonian walk in the graph G has the length lG = 3/2(n — 1 — k/3). 

Proof. First denote that if G is a 3-cactus, | V(G) \ = n and | E(G) \ = m, then 
m = 3/2(n - 1). Let M be a path in G with maximal length k. Then k/2 is the 
number of circuits in G which have two common edges with M. The number 
[3/2(H - 1) - 3/2.Jc]/3 = l/2(w - 1 - k) gives the number of circuits in G which 
are edge disjoint with M. Using the same notation as in Theorem 5 we have q = 
«a 1/2(H - 4 - k) and therefore 

l0 m 2[n - 1 + l/2(* - l - Jfc)] - k - 3/2(H - 1 - fc) = 3/2(w - 1 - k/3). 

Corollary 5. Let G be an unicyclic graph, i.e. a connected graph with the 
unique circuit, say C whose length is c. Denote kt the maximal length of the path 

) '' • 
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in G which is edge disjoint with C and k2 - the maximal length of the path in 0 
which has at least one common edge with C. Then an open Hamiltonian walk 
in G has the length lG = min (2w - kx - c, In - k2 - 2), where H - | V(G) |. 

Proof. Since an unicyclic graph contains the only circuit as its subgraph, the 
proof is immediately resulting from the Theorem 5. 
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