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ON OPEN HAMILTONIAN WALKS IN GRAPHS

PAVEL VACEK
(Received May 13, 1986)

Abstract. If G is a graph of order n, an open Hamiltonian walk is meant any open scquence
of edges of minimal length which includes every vertex of G. Clearly, the length of such an open
walk is at least w — 1, and is equal to n — 1 if and only if G contains a Hamiltonian path. In this
paper, basic properties of open Hamiltonian walks and upper bounds of their lengths in some
classes of graphs are studied.

Key words. Graph, Hamiltonian graph, Hamiltonian path, Hamiltonian walk, open Hamilto-
nian walk, cactus. .
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In this paper, the graph means a.finite connected undirected graph without loops
and multiple edges If G is a graph, ¥(G) and E(G) denote the sets of vertices and
edges of the graph G. A cyclic sequence of edges passing through each vertex of
a connected graph G and having the minimal length, is called Hamiltonian walk
in the graph G (see [7]). An open sequence of edges passing through each vertex
of a connected graph G and having the minimal length is called open Hamlltoman
walk in the graph G.

Let G be a graph on n vemces, n=3. Throughout the paper we shall denote ¢
the length of a Hamiltonian walk and /; the length of an open Hamiltonian walk
in the graph G. Obviously, ¢ = n and I; = n — 1. Moreover, ¢g = n holds iff
G is a Hamiltonian graph; Iz = n — 1 holds iff G contains a Hamiltonian path. .

Now we shall prove the upper bounds ¢ £ 2n — 2 and /g < 2n — 4. It suffices
to show by induction that for every k = 3,4, ..., n, there exists a cyclic and an
open sequencerof edges of the length 2k — 2 and 2k -4 respectnvcly, both passing
through k distinct vertices of G.

For k = 3, such séquences are {x,y,z y, X} and {x, y, 2} if [x, y] €E(G),
[», 2] eE(G) Let C, be'a cyclic sequence of edges of the length 2k — 2 or L, be
an open sequence of edges of the length 2k — 4 both contagnmg k vertices of the
graph G and let k <n. Let v,v',w,w e V(G), veC;, v'eL,, w¢Cy, w ¢ L,
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and [v, w], [, w'] € E(G). These vertices have to exist because G is a connected
graph. If C, = {...,u, 0,1, .. }and L, = {..., v/, 0, ¢, ..}, then Cyyy ={...; 4, 1,
w,o,t,...}and Ly, = {...,u', 0, w, v, t', ...} are desired sequences of the lengths_
2k — 2 + 2 =2k and 2k — 4 + 2 = 2k — 2. This completes the proof.

The proved bounds ¢z < 2n — 2 and /; £ 2n — 4 are, in general case, best as
possible. It is easily seen that the equality c; = 2n — 2 holds for any tree G
on n vertices; the case I; = 2n — 4 is discussed in the following theorem.

Theorem 1. Let G be a graph, | V(G)| =n = 4. Then Ig =2n — 4 iff G =
= Knn_—v
Proof. 1. If G = K, ,_,, then obviously /g = 2n — 4.

2. Let I; = 2n — 4. We show by induction that G = K ,_;-
a) If n = 4 and I; = 4, then obviously G = K| ;.
b) Supposing the conclusion to hold for every n < k, we prove it forn = k + 1.

Let | V(G| =k+ 1, lg=2k+ 1) —4 =2k -2 and {x¢, Xy, ..., Xsx_2} be
an open Hamiltonian walk in the graph G. First we show that the graph G, =
= G — {x,} is a star graph K, ,_,. It suffices to prove that /;, = 2k — 4. Supposn
on the contrary that Iz, < 2k — 5. Then using the edge [x,, x,] we find an opeis
walk in G of the length < 2k — 3, which contradicts to I; = 2k — 2. So G, e
a star graph K, ,_,. Moreover, the vertex x, is that vertex of G, whose degree
is k — 1, otherwise using the edge [x,, x,| we find that I; < I;, + 1 = 2k — 3.
To finish the proof of G = K, ,, we need to show that the degree of x,in G is equal
to 1. In the opposite case, there exists an edge [xo, x;] with j > 1 joining this
edge to the open Hamiltonian walk in G, that starts in x;, we find again that
lg £ 2k — 3. The proof of Theorem 1 is complete.
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Now we introduce some examples of graphs which demonstrate that on the
class of all graphs on n vertices the difference d = ¢ — Iz acquires all of the values
1,2,...,n — 1. It means that c; and /; are in a certain sense independent quantities.
We describe these graphs G for which the difference d acquires extremal values.
Let d # 1, d # n — 1. On the Figure 1 there is an example of the graph G on
n vertices in which ¢g — Iz = d.

Theorem 2. Let G be a graph, | V(G)| = nandd = cq — Ig.

1. G is a Hamiltonian graph iff d = 1.

2. Gis a path of lengthn — 1iffd =n — 1.

Proof. 1. a) If Gisa Hamlltoman graph then cg =nand l;=n—1and 0
d=cg—Ilg=1

b) Let G be a non — Hamiltonian graph Denote C; a Hamiltonian walk in the
graph G with the length ¢g > n. There is at least one vertex x in the graph G which
occurs-at least twice in the C4: Cg = {a, b, ..., ¢, x, d, ..., &, X, f, ..., a}. But then
the sequence of edges {f, ..., a, b, ..., ¢, x,d, ..., e} is an open walk in the graph G
whose length is c¢; — 2. So we have /; < ¢; — 2 and therefore, d =cg — Ig = 2.

2. a) If Gis a path of length n — 1, then ¢g = 2(n — 1) and l; = n — 1. There-
fored=cg—Ilg=n-1.

b) Let d=n — 1. Since ¢cg £2(n — 1) and Iz = n — 1, then ¢ = 2(n — 1)
and I; = n — 1 have to hold. This means that G has to contain a Hamiltonian
path {x,, x,, ..., x,}. Suppose that G is not a path of length n — 1. Then G con-
tains an edge [x;, x;], where 1 £ i < j < nandj — i > 1. Obviously, {x,, Xgy ey
Xny Xn—ty ey Xj, Xgy Xy, ..., Xy} is a cyclic walk in G with length 2n — j +
+1i-— 1 < 2(n — 1), which contradicts to ¢ = 2(n - 1.

Theorem 3. Let G’ be a connected subgraph of a graph G, then Is g IG
+ 2(n — n'), where n = | V(G) | and 0’ = | V(G") |.

Proof. Let H' be an open Hamiltonian walk in G' whose length is lg. Denote
G,, G,, ..., G, connected components of the graph G — G’. For each i let C, be
a Hamiltonian walk in G, whose length is ¢;. Since G is connected, for each i two
adjacent vertices x;, y; exist so that x;e V(G;) and y, e V(G’). Now it is easy to
describe the sequence of edges S passing through each vertex of the graph G

formed by H’ and all the C, and the edges [x: y.]- The length of § i is Z G+

+IG,+2qs2(n—n)+IG, because c,s2lV(G,)| — 2 and ZIV(G,)I
= n — n'. Therefore IGSZ(n-—n)+IG ,

Corollary 1. Let G be a graph on n vertices. If G' is' a path in the graph G
which has n’ vertices, then Ig S 2n —n' - 1. , :
Proof, Corollary 1 follows from Theorem 3 with /g, = n' — 1.
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Theorem 4. Let G be a non — Hamiltonian graph. Denote ¢, < @, the two
smallest degrees of vertices in G, | V(G)| = n. Then lg < 2n — (¢o + 0,) — 2.

Proof. Theorem 4 follows from the Corrlary 1 and from the theorem O.
Ore [8]: A graph G either contains a Hamiltonian path or there exists a path of
the length at least ¢o + 4 in the graph G, if g¢ < ¢, are the two smallest degrees
of vertices in the graph G. .

Definition 1. A connected graph will be called cactus if every edge of it lies on one
circuit at most.
_ Let G be a cactus, | V(G) | = n, | E(G) | = m. If w is the number of circuits which
the graph G contains as subgraphs, thenm =n — 1 + w.

Theorem 5. Let G be a cactus, | V(G)| = n = 2. Let x;, x; be arbitrary two
fixed vertices of the graph G and let M be a path of maximal length connecting
vertices x; and x;. Denote by m the length of M. (We do not exclude the case x, =
= X;, when m = 0 is assumed.) Let q be a number of circuits which are edge disjoint
with the path M. The lengths of these circuits are ky, k,, .. , kq. Then the sequence
of edges of minimal length connecting vertices x; and x;, which is passing through
each vertex of the graph G, has the length

q
gy =20—1+9) —m—-3 k,
v=1
and the length of an open Hamiltonian walk H in the graph G is

Ilg= min [,
xi, x5 € V(G)
Proof. We shall proceed by induction with respect to n = | ¥(G)|. The
assertion is obvious if n = 2. If n > 2, we distinguish two cases 1 and 2:

1. G has not an articulation point. In this case G is an edge or a circuit and our
theorem clearly holds.

2. Let G have an articulation point z.

a) Let artwulanon point z divide the graph G into two subgraphs H' and H"
so that V(H') n V(H") = {z}.

a,) If x;e H', x;e H", | V(H') | = t; then | V(H")| = n — t + 1. Since z is an
- articulation point in the graph G, every path in G connecting vertices x; and x;
contains the vertex z. Let M be a path of the length m as in the statement of
 Theorem 5. We denote M’ the path of maximal length m'connecting vertices x; /
and z in the graph H’ and M" the path of maximal length m” connecting vertices z
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and x; in the graph H". Clearly m' + m” = m and there is not any path connecting
vertices x; and z of the length greater than m’ in the graph H’. Similarly, there is
no path.connecting vertices z and x; of the length greater than m" in the graph H”.
We suppose that H' contains p circuits which are edge disjoint with the path M.
The lengths of these circuits are k4, k,, ..., k,. Then the graph H" contains ¢ —'p
circuits which are edge disjoint with the path M”. The lengths of these circuits
are k.1, kpi2, ..., k,. Since | V(H') | < n, we may suppose by induction that
there is an open sequence of edges of minimal length connecting vertices x; and z
passing through each vertex in the graph H’, the length of this sequence of edges is

Py
L=2(t—1=p)—m —= Yk,
v=1

Similarly, there is an open sequence of edges of minimal length connecting vertices
z and x; passing through each vertex in the graph H” and has the length

q
Ly=2n~t+q—-p—m'— Y k,
) v=p+1 )
This implies that an open sequence of edges of minimal length passing through
each vertex of the graph G connecting vertices x, and x; has the length

' lx‘x] = lxtz + llXj =

p q
=2t—-1-p-m—-Yk+2(n—t+q-—pj—m" - Y k,=
v=1

v=p+1

q
=2n—14+¢g)—m-Y k,.
' v=1

a) Let x;, x;e H', | V(H')| = t, | V(H")| = n — ¢t + 1. Since z is an articula-
tion point of G, the path M of maximal length m connecting vertices x; and x;
does not contain any vertex of the set {V(H")\z}. Let the graph H’ contain p
circuits edge disjoint with M and let k,, k,, ..., k, be the lengths of these circuits.
Then H” contains g — p circuits edge disjoint w1th M and lengths of these circuits
are K41, Kp+2, ---» kg« By induction, an open sequence of edges passing through
each vertex of H’ and connecting the vertices x; and x; has the minimal length

xix;"z(t—l'*'p)—‘m Zk

v=1

Similarly, a cyclic sequence of edges passing through each vertex of the graph H"
has the minimal length ' =
\ s PR

l,=2n—t+qg~-p)— Zlk,.
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An open sequence of edges of minimal length passing through each vertex of the
graph G connecting vertices x; and x; has the length :

+ p' q -
lxgx;+l;1x]+l;z=2(h_1+p)_m-Zkv+2(n-t+q—p)_ Z kv=
v=1

v=p+1

. q
=2n—1+¢q) —m-Y k,.
v=1

b) Let articulation point z divide the graph G into subgraphs H,, H,, ..., H,,
3ss=n-1 so that V(H)n V(H)) = {z} for i +# j. Then either x;, x;€
eV(H)),fe{l,2,..,s5} or x,eV(H,) and x;e V(H),r, te{l 2,...,shr<t
Then we denote H’ Hyand H" = H U ... VH;_; UH;y; U ..U H,, or
H =H uvH,and " = H;u..VH,_,uU H,+1 v..UH,_;u H,H U.. U
U H,, respectively. In this way both possibilities are converted into the case
described in a,. This completes the proof of Theorem 5. '

Corollary 2. Let G be a cactus, ‘| V(G)| = n. Let w be a number of all circuits
which the graph G contains as subgraphs; denote by k4, k,, ..., k,, the lengths
of these circuits. Then the length of Hamiltonian walk in the graph G is ¢g =

W .

= 2n—-14+w ——‘;k,. .

Proof. The assertion immediately follows from the Theorem 5.

Corollary 3. An open Hamiltonian walk in a tree G has the length /; =
"=2(n — 1) — k, where n = | ¥(G) | and k is the diameter of G.

Proof. The assertion follows from Corollary 2 with w = 0, because a tree G
is the cactus that contams no circuit and the diameter of G is the maximal length
of a path in G. :

Corollary 4. Let G be a 3-cactus, i.e. a cactus whose every edge lies on a circuit
of the length of 3, | ¥(G) | = n. Let k be the maximal length of a path in G. Then
an open Hamiltonian walk in the graph G has the length I; = 3/2(n — 1 — k/3).

Proof. First denote that if G is a 3-cactus, | ¥(G) | = n and | E(G) | = m, then
m = 3/2(n — 1). Let M be a path in G with maximal length k. Then k/2 is the
" number of circuits in G which have two common edges with M. The number
[3/2(n = 1) — 3/2k]/3 = 1/2(n — 1 — k) gives the number of circuits in G which
are edge disjoint with M. Using the same notation as in Theorem 5 we have g =

= 1/2(n — 1 — k) and therefore

G=2[n~l+l/2(n—l—k)] —k—3/2(n-—1—k)—3/2(n— 1 — k/3).

~ Corollary 5. Let G be an unicyclic graph, i.e. a connected graph with - the
~ unique circuit, say C whose length is c. Denote k, the maximal length of the path
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in G which is edge disjoint with C and k, — the maximal length of the path in G
which has at least one common edge with C. Then an open Hamiltonian walk
in G has the length I; = min (2n — k; — ¢, 2n — k, — 2), where n = | V(G) |.

Proof. Since an unicyclic graph contains the only circuit as its subgraph the
proof is immediately resulting from the Theorem S.
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