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THE HEAT SEMIGROUP ACTING ON TENSORS
OR DIFFERENTIAL FORMS WITH VALUES
IN VECTOR BUNDLE

JURGEN EICHHORN
(Received September 29, 1987)

Abstract. We consider the heat semigroup {e~f4} on noncompact complete Riemannian mani-
folds where 4 is acting on tensors or differential forms with values in a Riemannian vector bundle

For 5 < p <3 e % isastrongly continuous contractive semigroup in L, if 4 acts on tensors

with values in E. The same holds for 4 on differential forms if the curvature endomorphism is
nonnegative.
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1. INTRODUCTION

Let 4 denote the Laplace operator acting on g-forms on a complete Riemannian
manifold (M", g). Then by the spectral theorem in L, the heat semigroup {e~*4}
is well defined. If M"is compact then e~/ is of trace class and is an integral operator
with a smooth kernel H(x, y, f). On open manifolds at the first instance these
statements and many others break completely down. On the other hand, good
properties of the heat operator imply good properties for Green’s operator, and
for many other purposes the heat operator plays an important role, for instance
for trace formulas, L,-index theory, probabilistic viewpoints etc. As a matter .
of fact, the theory of the heat operator and the heat semigroup on open manifolds
is much more complicated than in the compact case. In [5] Strichartz presented
- a fundamental approach to the heat semigroup in L,, as long as possible without
curvature conditions. By this approach became clear that for the Laplace operator
acting on functions there is a rich meaningful theory in L,, for 4 acting on tensors
the situation becomes much more complicated, and 4 acting on g-forms in [5]
. is completely excluded. The main purpose of this paper is to make a small step
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foreward, considering tensors and differential forms with values in a vector
buntle E (as necessary for the sake of mathematical physics), where we impose

in the case of differential forms curvature conditions. Then, for % Sps3,{e )

is again a strongly continuous contractive semigroup, e *4u satisfies the heat
equation and uniqueness theorems holds. As a corollary, we get some results for
usual differential forms on Riemannian manifolds. Our considerations and com-
putations were essentially inspired by the paper of Strichartz.

2. THE HEAT SEMIGROUP {e7'}

Suppose (M", g) open, complete, (E, k) - M a Riemannian vector bundle with
an associated metric connection V*. The Levi-Civita connection V¢ and V* define
metric connections V in all tensor bundles T; ® E over M. Denote by Q°(T,; ®E) .
tensors with values in E, in particular by Q%AT*M @ E) = Q%E) the g-forms with
values in E, by Q) Ty ® E) resp. Q4(E) those with compact support. If 1 < p < o
then PQ°(T; @ E) is the Banach space of all measurable (r, g)-tensor fields # with
values in E such that

Plul = (f lulzdvol,)"” < co.

Here | u |, is the fibre wise norm in (7)), ® E,. For p = 2 the ZQ"(T' E) are
Hilbert spaces with the scalar product

Cu, u'y = [ (u, u'), dvol,.
M

If V* is adjoint to V with respect to <, > then the (trace) Laplace operator 4:
Q°(Tq ®E) > Q°(T; ® E) is defined by 4 = V*V. As well known,-for g-forms
with values in E there is a second Laplace operator 4 = dé + éd: QUE) —» QUE),
é adjoint to the exterior differential d with respect to {, >. The latter Laplace
- operator for a-foims is connected with the first by the Weitzenboeck identity

o 4 =V*V + o. 2.1
Here , _
R CTREED P PR
X, .y X,€eT,M,e,,..., e, an orthonormal baSe in T M, R the curvature endo-
morphism, i.e. (Ry,pt)x,,...x, = Ro,wlux,,...x) — Z Uy, -y RY, w(X), .
RE refp RM the curvature tensors of E resp. M. For g=1ue Q‘(E), there holds
(Au)x = (V*Vu)x + tpic(x) + R(u)y, (2.3)
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[}
where Ric (X) = — Y R} ye; equals to the Ricci transformation of X and #(u)y =

= .Zl Rfj, x(4).
=

On open, complete manifolds both Laplace operators for p = 2 are essentially
self-adjoint on tensor fields resp. differential forms with compact support. In what
follows we write again 4 instead of 4. Therefore by the spectral theorem the operator

[
e = [e"dE,
V]
is well defined in L,(= 2Q%T; ® E) or = 2QYE)). {e”"}o5,< is @ semigroup
and it is not hard to show that e~ "4y satisfies the heat equation. We put the follow-
ing questions.

1. Under which conditions is {e”"},<, <, (if deﬁncd in L,) a strongly continu-
ous contractive semigroup?
~ 2. Does e™*u satisfy in L, the heat equation?

3. Are there several semigroups in L, satisfying the heat equation (uniqueness
problem)?

4. How is the heat semigroup related to the initial value problem for the heat
equation? : .
Some partial answers to this questions extending [5] shall be given in section 4
of this paper.

3. DISSIPATIVITY OF THE LAPLACE OPERATORS

‘In this section we prepare the partial answers to the above questions establishing
in some cases the dissipativity and some other good properties for the Laplace
operators. We recall some facts from the theory of semigroups. If X is a Banach
space, x € X, x # 0, then there exists by the Hahn —Banach theorem an element
x* e X* such that || x* || = || x || and {x*, x> = || x||2. We call such an element
a normalized tangent functional. Taking X = PQ%T; ® E), X* = Q%T, ® E) .

with _1— + —1_, = 1,1 < p < o0, 0 # ue X, such an tangent functional can easily

p p
explicitly be written down by ¢ | u |P~2u with ¢ = ?|| u || "?/?". Suppose 4: D, =X, -
D, c X densely defined. A4 is said to be dissipative if for every x € D, there exists
a normalized tangent functional such that {x*, Ax) < 0. The closure of a dis-
sipative operator is dissipative. If X is a Hilbert space, 4: D, = X is symmetric
~and {4x, x) < 0 for all x e D, then surely A is dissipative. g

& C°-semigroup {T'},»0 of bounded linear operators T, € L(X, X), X a Banach

space, is called a contraction semigroup if || T, || £ 1, 0 £ ¢ < co0. The infinite-
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simal generator A of a semigroup {T}:z0 is defined by

A:=s—=1lim(T, — I/t.
t=+0+

Lemma 3.1. A closed, densely defined operator A: D, - X is the infinitesimal
generator of a contraction semigroup if and only if A is dissipative and im (u — A) =
= X for some i > 0([4]). O

The key for the existence of the heat semigroup {e~**),~ is to establish the condi-
tions of the preceding lemma. We start with the condition im (u — (—A4)) = X for
some > 0, or, equivalently, im (u — 4) = X for some p < 0.

iemma 3.2. Suppose 1 < p £ q <3, uec?Q(T! ® E) + Q°T’ @ E) and Au =
= uu for some u < 0. Then u is identically zero.

Proof. The following fact for complete open manifolds is standard. Suppose
Xo € M, B, = B,(x,) the metric ball centered at x,. Then there exists for every
s >r >0 a Lipschitz continuous and hence almost everywhere differentiable
function @, , on M such that

a.0=s9, (x) =1,
b' supp ¢r,.s =] B,(Xg),
c. @, =1o0n B,(x,),
d limo,,=1,

Py 30

c. ‘d¢,:(x)| = |V¢r s(x)l <

almost everywhere.

Let & be one of the above functlons db, , and A(7) a smooth function > 0 chosen
as follows: h(f) = P"2 for 1t 2 1, h(H) = (e + 1)U D/2 for t £ 1 — ¢, ¢ a small
positive parameter. Then the equations ¢.h'(f) = (p — 2). "% for + = 1 and
t.(e4+ )21 (g ). t=1t.h({) for t<1—¢ and p, g < 3 show that
[t. ()| £ n.h(H) with some n, 0 <5 < 1. Between 1 — ¢ and 1 A(¢) can be
arranged in such a manner that this latter inequality remains valid. For 4 acting
on tensor fields with values in £ we have 4 = V*V which implies

i< ®2h(|ul)u,uy = <P*h(| ul) u, duy = (D*h(| u|) u, V*¥Vu) =
3.1 = (D?K(| ul) Vu, Vu + P*H(u)(VIul) ® u, Vuy +
+ 2{Ph(|u) V® ® u, Vu).

According to the inequality | V| u| | = | Vu| which implies

32 . IVIiu| @ul =|ul.|Vu]

and to. . .
: [t K@ = n. k),
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there holds

—n<@*h(| ) Vu, Vu) S —(@* |} | W(lul)| Vu, Vu) =
= =@ |K(ul)| |u| | Vu] | Vu|dvol S
S -[P*H(u)|V|u|®u||Vu|dvol £
SKOH(ul)VIul @ u, Vu),
(1 = n) <P*h(| u|) Vu, Vu) < <B>h(| u ) Vu, Vu) +
+ (DK ul) (VIul) ® u, Vu), ie.
together with (3.1)
(3.3 (1 = n) <P*h(| u]) Vu, Vu) £ 2| <Ph(| u]) (V®) ® u, Vu) |.
The left hand side of (3.3) equals to '
1 =n) [ P*h(l u]) | Vu|? dvol.
The right hand side we estimate according to Schwartz inequality from above by
2 VP I} (f D2h(| u|) | Vs |* dvol)/2 (§ k(| u]) | u |* dvol)'/2, k
Squaring both sides and division by (1 — n)? [ ®#2A(| u ) | Vu |* dvol now gives
(34 [D*h(ul)|Vul>dvol =1 —m)~2.®||VO|*. | h(lul)|ul|?dvol.

supp ®
Performing lim , we obtain

e—=0
lul? i Jul21,

- =
h(lul)lul—{|u|« if  Jul=1,

i.e. h(Ju|)|u|* is globally integrable since by assumption. u€?Q%T, ® E) +
+ 1Q°%T} ® E). Let s = oo. Then according to property e. of @ the right hand side
of (3.4) tends to zero, hence [h(Ju|)| Vu |?dvol =0, Vu =0, du=0, u =

B .

= u“"/}u = 0 as asserted. O
‘Lemma 3.3. — A4 with domain QYT ® E) is dissipative on *Q°(T, ® E) for 1 <

<p<3
Proof. If ue Q)(T; ® E) then

AuP=2u, —duy = —<V( u|P~? ), Vs =
e UV Yy — (p = 2) ([P V 1| ® u, Vud. Using (5.2),

we obtain

| QulP2Vul @u Vad| S flulP™ .|V u| @ul.| Vuldvol <
SflulP™®. Jul | Vul.|Vu|dvol = { u|?~2 Vu, Vu),
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ie with |p - 2| <1
(3.5) - JulPru, —4uy £0.0

Much more difficult becomes the situation if we consider the Laplace operator
acting on g-forms with values in E. At the first glance the curvature endomorphism
destroys the estimates of the preceding lemmas. But they remain still valid if we
assume ¢ = 0, i.e. (gu, u), = 0 for all x.

Lemma 3.4. Suppose 1 <p<r<3,020inA4=V*V + 9, ue?Q(E) +

+ ,QUE) and Au = pu for p < 0. Then u is identically zero.

Proof. On the right hand side of the equation corresponding to (3.1) appears
additionally the term {ou, u). Since <{ou,u) = 0 the analogue of (3.3) remains
valid and we conclude in the same manner as in the proof of 3.2 Vu = 0, u has
to be parallel. This implies gu = pu, u < 0, which contradicts ¢ = 0,ie.u = 0. O

In analogous manner 3.3 carries over to forms if ¢ 2 0.

Lemma 3.5. Suppose in 4 = V%V + ¢, ¢ 20, 4 acting in QUE). Then — 4
with domain Q¥(E) is dissipative on PQIE) for 1 < p < 3.0
We give some examples for ¢ = 0.

1. If ¢ = 1, the Ricci curvature of M" nonnegative and R = 0, then according
to (2.3) ¢ 2 0. For ordinary 1-forms the conditions Ricci curvature = 0 and
¢ = 0 are equivalent.

2. A sufficient condition for ¢ = 1 and ordinary forms (i.e. the trivial line bundle)
is given by the nonnegativity of the curvature operator R°P. This we will shortly
indicate. R = R induces a symmetric linear operator R°?: A2TM — A*TM in the
space of bivectors, called the curvature operator R°? and characterized by
(R(XAY),ZAW), =(RX, Y)W, Z),. If R°? = A then (ou, u), = Aq(n — q) .
-1 ul2 ([3], p. 264), in particular R°? 2 0 implies ¢ = 0.

3. Of particular interest are those cases where sectional curvature K 2 0 implies
R°? 2 0 and hence ¢ = 0.

If f: M" - R"*?is an isometric immersion, n = 2k, M" open, complete oriented,
sectional curvature K 2.0 and at some point xe M, K > 0 then ¢ =2 0 ([1]).
A second class is given by manifolds with pure curvature operator. M" has pure
.curvature operator if for each x € M there exists an orthonormal frame (e, ..., €,)
in T,M such that R(e; A e;) = K;j(e; A ), K;; = sectional curvature of the
plane spanned by e;, e;. For a manifold with sectional curvature = 0 and pure
curvature operator there holds ¢ = 0 ([1]).

An open manifold which belongs to all three classes is the rotatmg parabola
in R%.
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4. PROPERTIES OF THE HEAT SEMIGROUP
We now give some answers to the questions of section 2.

Theorem 4.1. Suppose (M", g) open, complete, (E, h) - M a Riemannian vector
" bundle. Denote by {e~**} = {[ e™** dE.} the heat semigroup acting on *Q°(T; ® E).

Then ?|| e *u|| < ?|| u|| for all ue *Q%T; ® E) n 2Q%T; ® E) and —;— <psi.
Therefore {e~'*} extends to a contration semigroup on *Q°(T; ® E) for these p.

.0 - :
e~ '4u satisfies the heat equation =5 € Yy = —A e "u for ue*Q%T! ® E), and

{e='4}" is the unique semigroup with these properties for —;- <p=s3

Proof. The closure L of — 4 '98(7}'@ E) in ?Q%(T! ® E) is dissipative for 1 <p<3.
Furthermore, p — L is surjective for ¢ > 0 and the above p: If this would not be
the case there would not be the case there would exist an u € P’Q°(T, ® E) such that
{u, (u — LY v)y = 0 for all ve QYT; ® E). This would imply .du = —puu, pu > 0,

and contradict 3.2. From p’ < 3 we get the restriction p > —g— . Altogether, L gene-

rates according to 3.1. a contraction semigroup {Q,};s, for % < p < 3. Next

we show that the semigroups Q, and e™*4 agree on L, nL, = 20T ® E) n
N PQT' ® E). For this it suffices to show that the two resolvents (u — (—4))™*
and (¢ — L)™' coincide on L, N L,. Suppose ue L, nL,, (0 — (=4A)u~! = v,
(#—L)"'u=w. Then veL,, weL, v—weL,+L, and 4@ —w) =
= —pu(v — w), u > 0. According to lemma 3.2 we have v = w, {Q,}, = {e™"},

on L, n L,. This proves the estimate ?|| e~ *u|| < ?|| u|| for —23— <p<3 By

a limiting argument we conclude this for the endpoints of the interval too. Since
e~ "y satisfies the heat equation for ue D, and since this domain is dense in
PQO(T: @ E), e "y also satisfies the heat equation for u € PQ%(T! ® E), but at the
first instance only in the distributional sense. The hypoellipticity of the heat
operator implies this in the pointwise sense. We conclude with the proof of the
uniqueness statement. If L’ is the infinitesimal generator of another contraction
semigroup {P,}, such that Pu satisfies the heat equation, then we have to show
(u = L)' =@ —(=4)"" (u — L) *u = v means v e D,, and (u—L)v=u
If ve D,, then "' (Pp — v) » L'v in ?Q%T, ® E), t"*(P,, ;v — Ppv) » PL've
€ PQ%T! ® E) for any fixed s > 0 (since P, is a bounded operator). P,u satifies the
heat equation. Therefore ¢ !(P,, v — Pp) > -g—sP,v = —A4dPy, i.e. altogether
P ,L’b ='—APp. Performing lin; we obtain L'v = iing — 4Pp = —4v in the
s~ - -
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distributional sense. It follows v € ?Q%(T? ® E) satisfies (4 — (—4)) v = u. On the
other hand, if (u — (=4))"'u =w, then wePQ(TTQ E), (t — (—A) w = u,
A — w) = —u(v — w), u > 0. According to 3.2 » = w, the resolvents and.the
semigroups coincide. O

In similar manner we conclude for g-forms with values in E.

Theorem 4.2. Suppose (M", g) open, complete, (E, h) - M a Riemannian vector
bundle and ¢ = 0 for the endomorphism ¢ in A =V %V + ¢, acting on g-forms
with values in E. If {e”*},, , denotes the semigroup on *Q%(E), then *|| e *u|| <

S Pl u]| for all ue?QE) n *Q%E) and % < p £ 3. Therefore {e™ "}, , extends
to a coniraction semigroup on these PQUE). e~‘*u satisfies the heat equation

5 e~y = —Ae "u for all ue?QUE), and {e~*},,, is the unique semigroup
ot , .
with these propertfes Jor -3— <p<3.

~ Proof. The proof is performed quite analogous to that of 4.1 essentially using
34,35.0

Corollary 4.3. The assertions of 4.2 are valid for ordinary q-forms in each of the
. following cases.

a. ¢-= 1 and Ricci curvature = 0.

b.g=1and R°? 2 0.

c.g=1, M" C. R**? as an isometric immersion, n = 2k, sectional curvature
‘K2 0 and at some point x€ M, K > 0.

d. g = 1, sectional curvature K = 0 and M has pure curvature operator. 0
Finally we turn to the initial value problem for the heat equation

(CH)) | —a%—v = —dvon MxR,, v(x, 0) = ug(x) on M.

Theorems 4.1, 4.2 immediately imply

Theorem 4.4. Suppose (M", g) open, complete, (E, h) - M a Riemannian vector
bundIe, 5 <P< 3. Then the initial value problem @4.1) is solvable in the following

cases.
a v( , ) e?Q%T, ® E) and u, € PQ%T: @ E).
b. u( , t) € PQUE) and u, € PQ%E) and ¢ 2 0, in particular in all cases of corol-
lary 4.3.0

The remaining open question is the uniqueness which is partially answered by
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Theorem 4.5. Suppose (M", g) open, complete, (E, k) - M a Riemannian vector
bundlé,—;- < p < 3, v(x, t) a solution of the heat equation with v( , t) € PQ%(T" ® E)

or v( ,t) e?QUE) and ¢ 2 0, respectively. Assume further ?||v( ,0)|| £ a. €.
Then there exists a uniquely determined uy € *PQ%T: @ E) or u, € PQYE), res-
pectively, such v = e~ " u,.

Proof. We treat both cases simultaneously, denoting the corresponding solu-
tion space by L,. If uy = lim o( , #,) in the weak star topology, u = v — e™ " y,,
then B0

42) flu, )1l S ae

and

4.3) u( , ) —>0 B
tx—~0

in the distributional sense. Furthermore, u satisfies the heat equation since each
term does. We have to show # = 0. To do this we consider the Laplace transform

wa(x) = [ e~ " u(x, ) dt of u. According to (4.2) the integral converges absolutely
V]

for sufficiently large 4 and almost every x. Moreover, wie L,. Next we show
Awi = —Aws in the distributional sense. For any & € Q3(T! ® E) or & € Q4(E),
respectively, .

4.4 (&L Aw) ={4F, w;) = Fe'”(d&’, u( , t)>dt.

 According to (4.2) the double integral (4.4) converges absolutely for large A. Using
the heat equation

0
{44, u( s t)) = “7{'(‘5” u( > t)>’
we obtain by integration of parts

(& dwy = [ Lo yae =
_ 3 t

N 0
= —lim [e™*— (&L, u( ,))dt=
gooa 00 |

N ‘ )
= —1lim [A[e ™ (L, u( , 1)) dt + e M (FLu( ,N)) — e (P, u( , ()] =
1~ 0 | %
- N-w

— A fe (S, ul , D) dt
0 ' .
since e (&, u(, N)) - 0 by (42) and e~* (&, u( , ) - 0 by (4.3). Alto-

23



gether Aw. = — Awa in the distributional sense. Now w. = 0 by 3.2 or 3.4 respect-
ively. From the uniqueness of the Laplace transform we conclude u(x, 1) = 0 for
almost every x, i.e. u = 0. If v = e™" u, then '

-~ ! - - — ]
45) llug—ugllsle "’u(,—u0||+||uo—e M“o"'*‘"e Muo"e M”o”-

The first two terms of (4.5) tend to zero if # - 0, the third term equals to zero by
assumption. Therefore u, = ug. O

Concluding remarks. For g-forms in our approach the assumption ¢ = 0 or
the modified versions of this were very essential. In [2] Dodziuk proved a unique-
ness theorem for the initial value problem (4.1) in Q7 under the assumption that
(M", g) has Ricci curvature bounded from below and ¢ = 0. On the other hand,
Strichartz has shown in [5] that on the hyperbolic plane H2 | for ¢ = 1{e™**},5,
is not a contraction semigroup on ?Q!. This altogether supports the hypothesis
that some kind of nonnegativity of the curvature should be connected with the
contraction property.
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