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ODD FORMS ON A NON-ORIENTABLE
MANIFOLD

JAROSLAV STEFANEK
(Received February 26, 1988)

Abstract. In this paper we give a description the space of odd forms on a non-orientable mani-
fold by means of ordinary forms on its double cover. In its second part we prove a relation between
the integral of an odd form on the manifold and the integral of its canonical lift to the double
cover.

Key words. Double cover of a manifold, odd differential form, integral of an odd differential
form.
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1. INTRODUCTION

This paper deals with some questions arising from extending the theory of
integral of differential forms to non-orientable manifolds.” The theory of odd
differential forms (see e.g. [3], [4]) enables us to define an integral on a non-
orientable manifold. It seems moreover that the integration theory of odd
differential forms contains, as a special case, the integration theory of ordinary
forms.

The fundamental concept is the double cover of a manifold (see e.g. [2]). This
is a manifold which is always orientable and is topologically simpler than the
initial manifold. In Section 3 we describe, using the double cover, the relation
between the space of usual forms and the space of odd forms on a manifold X,
and between the cohomology groups of these spaces.

We can imagine the double cover a: Or X — X of manifold X as a “area* of X
(for more detail see [2]). Then a question arises what is a relation between the
integrals [ ®, [ o*o, that is a relation between the “volume* and *“area* of X.

X orX
We prove in Section 4 that 2 [ 0 = | o%w.
' X orx . .
There is moreover an analogous relation for the boundaries d OrX, 0X, namely
2fn=_[ o*n
X  00rx
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2. NOTATION

The notation concerning odd forms is taken from [3] with the difference that
Q(X) = 2, QY(X) (resp. Q(X) =2, Q(X)) denotes the graded real vector space of
smooth differential forms (resp. odd smooth differential forms) on X. We note that
most concepts and propositions adopted for manifolds in [3] can be formulated
in the same way for manifolds with boundary. The graded vector cohomology
spaces of differential spaces (Q(X), d), (@(X), d) are denoted by H(X) = X, H(X),
HX) = z; H{(X).

The definition and the basic properties of the double cover of a manifold X,
which will be denoted by 6: OrX — X, can be found in [2]. The canonical involu-
tion OrX — OrX will be denoted by ¢, and its value at the point x € OrX will
be sometimes denoted by —x. (The double cover of a manifold with boundary
can be introduced in the same manner as for a manifold without boundary.) If X
is a manifold, we define

Q,(0rX) = {ne Q(OrX)| t*n = n},
Q(OrX) = {n € Q(OrX)| t*n = —n},
Q,(0rX) = Z, @, (0rX),
Q_(OrX) = 3, @ (OrX).
The graded cohomology space of the vector diﬂ'ere'ntial space (Q,(0rX),d)
(resp.(R_(0r X),d)) will bé denoted by H (OrX) =3, H'.(Or X) (resp. H_(Or X) =

= X, H (OrX)).
Finally, N denotes the set {1, 2, ...} of positive integers.

3. STRUCTURE OF SPACE OF ODD FORMS

In this section we will describe the structure of the space of odd forms on a mani-
fold X with the help of an ordinary forms on X.

If X is orientable, the situation is simple. In this case there exists a smooth field
of unit odd scalars d on X (see [3], Theorem 1.2.), and the mapping 2(X)3¢ +
P»oQoe Q(X) is an isomorphism of vector spaces. From the definition of an ’
~ extetior derivative it follows that this mapping is an isomorphism of differential
- spaces (22(X), d), QX), d) as well. Thus we have: :

Proposition 3.1. Let X be an orientable manifo(d. Then
o) = AX),  HX) = HX).
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ODD FORMS ON A NON-ORIENTABLE MANIFOLD

If the manifold X is non-orientable, the situation is more complicated. Let X
be a connected non-orientable manifold, let J be a field of unit odd scalars on OrX.
(A field like this exists because the manifold OrX is orientable.) Let w e 9P(X)
be any odd p-form on X. For the odd form o*w € @?(OrX) there exists a unique
element, let us denote it by y(w), belonging to space 2°(OrX) such that o*w =
= § ® y(w). In this way we get a correctly defined mapping x: A(X) » Q°(0:X).
This mapping is obviously linear.

Lemma 3.1. Let X be a connected non-orientable manifold. Then Im y = Q7 (Or X).

Proof. Let (V, ¥), ¥ = (»") be a chart on X, let (U, ¢), ¢ = (x') be a chart on
OrX such that o |y : U —» V is a diffeomorphism and that ¢ = Y og |y. Let us
denote —U = (U), where 11 OrX - OrX is the canonical involution. Set ¢~ =
=@ot|ly=(x).

Let we QP(p = 0), let v = oy, ...i,¥ @ dy" A ...A dy’ be the chart expression
for @ with respect to the chart (V, ). Then the coordinate expression for o*w
with respect to (U, 9) is o*w = (0, i, 00 |y) $ ® dx" A ...A dx™, and the
coordinate expression for g*w with respect to (—U, ¢7) is 0*w = (®;,, 4, ©
ool_p) ~ ®dx"A ...A dx' (see [3], p. 166).

Let § be a field of unit odd scalars on OrX, let &,,&,_€{—1,1} be such
integers that on U (resp. on —U), £, = J (resp. &, ¢~ = 6). Then the coordinate
expression of ¢*w with respect to (U, @) (resp. to (— U, ¢7)) is given by ¢*w =
=06 ®[&. (@, i, 00 |p)dx" A ...A dx*] (resp. 0*0 =6 @ [&,-(vy,..,1, ©
0d|_p)dx" A ...A dx']). Thus the coordinate expression of y(w) with respect
to (U, ¢) (resp. to (— U, 7)) is given by y(@) = & (w;,,....i, 00 |p) dx"' A . A dx*
(resp. x(@) = &,_(@;,,..,1, 00 |_p) dX* A ... A dX*),

Now it is enough to compare the coordinate representation of the forms ¢*y(w)
and x(w) on (U, ¢). For any point xe U and any vectors &y, ...,¢,e T, OrX
it holds

(@) (%) 45 -5 &) = (@) () Ty, ..., Tedp);

an elementary calculation shows that

(@) (X) (€15 ees &) = Eo-(@yy, .01, 00 |-p) (Ux)) . dXF' A ...
o A dXP(TeE g, on, TiEy) = &y (04,1, 00 lp) (x) dx" A v A dXP(E, o, &)

If X is connected and non-orientable, then the canonical involution ¢: OrX — OrX

changes the orientation (see [2], Proposition 5.14.). Then it holds ¢, = —¢&,.
From this it follows that (*x(w) = —x(w) on (U, ¢). Since the charts are arbitrary,
we have i*y(w) = —x(w) so that y(w) € Q2(0rX). O

Proposition 3.2, Let X be a connected non-orientable manifold. Then the mapping
x: &(X) - Q_(OrX) is an isomorphism of graded differential spaces.
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3. STEFANEK

Proof. Linearity of the mapping y is evident. Thus it is enough to prove that x
is a bijection and that y od = d o y. First let us prove a bijectivity of x. The
mapping ¢ is a surjective local diffeomorphism and so ¢ * as well as y is an injection.

Let n € Q2 (0rX) be any form. Let (V, ¥), (U, @), (—U, ¢~) be the charts from
the previous lemma. Let the expression of n relative to (U, ¢) (resp. to (—U, ¢7))
be given by n =1, ., dx"A . A dx" (resp. n =1, i, dF" A .. A dEP).

-From our assumption :*n = —n it follows that n; ;= —my, i, 0tl-u-
Let &, ¢ -, be integers from the proof of the previous lemma, let us set w,,,..,i, =
= €¢"h,....lp ool -

Define an odd form ® on ¥ by w = @, ;¥ ® dy A ...A dy'. Then

€¢(r’h.....ip 0(0 IU)_I) = "éq’—(—ﬁi:,....ip ot IU 0(0' |U)_1) =
= &p-Miy,.pi, o (0 |-0)™ "

Consequently, for the given choice of (¥, ), w is defined correctly.

It remains to show that in this way it is possible to define an odd form w on the
whole manifold X, i.e. that this definition does not depend on the choice of the
chart (V, ¢). Then let (4, y), y = (g°) (resp. (B, 1), T = (¢')) be other charts on X
(resp. OrX) such that ¢ |z: B'— A is a diffeomorphism and that 7 =y oo |5.
Let ANV = C # 0. Express n with respect to (B, 1) by n =7, :, d"" A ...
... A dt*», The construction described above defines the odd form @ = a;,,..,;,7 ®
®dg" A ...A dg", on A, where @,,, ., = EMyy,..,1, 0 (6|5~ We must prove
that on C, ® = @. Let us denote the set Bn U by D. On D it holds 7,,..,;, =

ox ox'F =

= PR —a——j;n,“m,,, and then on C it holds
t t

Djirnndp = 6'?["}1,--"1» ° (0 ID)-I] =

i _ a ip _ - _
=¢, [%° (CAP 6;" o (olp) 1] (s, ....1,0 (@1p) b.

Further,
(Dyo:-1) 0T 0 (0 1p) ™! = (Dy o ooy~ o (@lmror-1) © T 0 (0 1p) ™" = (Dyoy-1) 07

Thus for any indices i, j,

ox’ oy’

-1_ 9 .
' '5;5 o (¢ ) “ P}
From that it follows
: oy 5.}’"): -1
= —_—— T ".....p°(0|) .
. w,l____,,, é,(ag“ 6gj" y0e0nd] D.
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Moreover ¢, = (signdet D, .-1) & = (sigadet D,,,-1) &, so that

ot oyt -
®j,. .. i, = &(signdet D, - 1)( YT "'@)"h (@)™t =
ayn ayi,)
signdet Dy, -, . Dy, ipe
( g Yoy~ )<ag_“ agj i

We see that the components of w transform like the components of an odd
differential form; therefore, on C, @ = @w. Then we can construct the form
globally and the form constructed in this way fulfils 6*w = § ® 1, i.e. y(w) = 1.
Thus a mapping g is surjective. This completes the proof of bijectivity of .

It remains to prove that dy = yd. Let w € §2(X), let (V, ¥), (U, ) be charts
on X, OrX such that ¢ |y : U - V¥ is a diffeomorphism and that ¢ =y o0 |y.
Let w = a)“,_“,,plll ® dy** A ...A dy’ be the chart expression for w relative to

(V, ¥). Then the coordinate expression for dw is
aw i i
do = ——a’—’H// ®dy'A dy" A ...A dy".
y

On (U, ¢) it holds .
1(dw) = (a—aﬁa‘——E o0 |v)f dx’A dx"A ...A dx'?,
y

dy(w) = ¢, %(wil,,_,,ip o0 |p)dx'A dx"A ...A dx'7;

0 ow;, .. 7} .
'&7(60:1,...,.',, 00 |y) = <—a—y‘;“z o0 |v) (?xT ()’k oo lv)) =

k
oy

since

ot oy

we have dy(w) = x(dw). Since w and the charts we use are arbitrary, y is an -
isomorphism of differential spaces.

o

Corollary 3.1. Let X be a connected non-orientable manifold. Then Q(X) =
~ Q_(OrX), H(X) =~ H_(OrX). Moreover Q(OrX) = Q(X) ® Q(X), H(OrX) =
~ HX)® HX).

Proof. It is a direct consequence of Proposition 3.2. and the relations

Q(O0rX) = 2,(0rX) @ 2_(0rX),
H(OrX) = H, (OrX) ® H_(OrX),
QX) = Q,(0rX), H(X) = H;(OrX),

which are proved in [2], part 5.7. o
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Let us denote by H.(X) the space of smooth differential forms with compact
support on a manifold X, let H,(X)* be the dual vector space of H,(X).

Corollary 3.2. Let X be a connected non-orientable manifold. Then ﬁ(X ) =
~ H(X)*. _
Proof. It is known that if X is connected, non-orientable manifold, then
H_(OrX) = H(X)* (see [2], part 5.14, Corollary 2). On the other hand, in
Corollary 3.1., we have proved that H(X) = H_(OrX). Consequently, H(X)
x H(X)* . a

4. INTEGRATION OF ODD FORMS
ON THE DOUBLE COVER

The aim of this chapter is to compare the integrals | @, [o*o for an odd n-form
X Ox

o on an n-manifold X with boundary. Similarly as in the proof of Lemma
3.1, let us introduce the following notation. For the chart (U, @), ¢ = (x%)
on OrX, denote —U = «(U), ¢~ = ¢ o t|_y = (X').

For the given smooth structure of the manifold with boundary on X (resp. OrX)
it is obviously possible to-choose an atlas &y (resp. &o,x) such that the following
conditions are satisfied: '

(C,) Atlases &, x and &, have the form
Horx = {(Uin @) | ieN} U {(=U;, ¢7) | ie N},
o x {(Vi,¥) | ieN}.
(C) o(U) = Viand ¢ |y, : U; — V, is a diffeomorphism for each i e N. More-
over for each ie N, it holds y; = ¢, o (¢ |y) .

]

(C,;) Atlases &, x, o are locally finite and all sets V; are connected.

In order to guarentee the existence of integrals, we will work only with continuous
odd forms and compact manifolds with boundary. Let us remark that the double
cover of a compact manifold with boundary is again a compact manifold with
boundary.

Proposition 4.1. Let X be a compact n-manifold with boundary, let « be a continuous
odd n-form on X. Then

foto=2fo.
OrX X

Proof. Let oo, x, & be atlases on orX, X fulfilling conditions (C,), (C2), (C5)-
Let (U, @), ¢ = (x') be a chart from &, x, let (¥, ¥), ¥ = (") be a corresponding
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ODD FORMS ON A NON-ORIENTABLE MANIFOLD

chart from &/x. Consider a continuous odd n-form w on X. Let = w,§ ®
® dy' A ... A dy" be the chart expression for o relative to the chart (¥, y). Then
the coordinate expression of the odd form ¢ *w relative to (U, @) (resp. to (= U, ¢ 7))
is given by o*w = (0, 00 |p) @ @ dx'A ...A dX" (resp. o*w = (W, 00 |_p)0~ ®
® dx'A ...A dx") (see [3], relation (1.3.15)). Then according to the definition,

_fa)zjcol,,ol//—l: .“ ww°(“iu)°¢_l=jw.p°0'°¢_l,
1 4 ¥(v) @o(alv)~ (V) o(U)

IO’*(D‘ J‘O),I,oao(p 1,

o(V)
foto= [ w,o(@|-p)o(@ ) ' = [ wyo00lol™ o™ '= [ w0000 !
-U o(U) o) o)

Then on the whole j'co = Ia*w = [o*o= [ wy00 00"
-U o(U)

Now we can proceed to the comparison of integrals on the whole manifold X
and on OrX. Let {y;|ieN}u {y; |ie N} be a partition of unity on OrX
subordinate with the atlas /o,y such that supp x; € U;, supp x; < —U,. For
each i e N define a functxon A; X > R by the formula

A(x) = y[x.-o(alu,)“+x;o(a|_,,i)-1](x), xev,
o x¢ V.

We will show that the system {4;| i e N} is a partition of unity on X subordinate
with the atlas o/y. A,(x) # 0 holds for xe V; iff y;0(a1y) ' (x) # 0 or x o
o (0 |_y) ™" (x) # 0. Then supp A; = a(supp x;) L a(supp x; ) S o(U) L o(—U) =
= V;. But on V;, the function 4, is smooth, i.e. 4; € C*(X). Evidently, 0 < 4; < 1.
It remains to show that ¥i; = 1. Let x € X be any element. Let i;, je {1, ..., k}
be those indexes from N, for which xe V. Denote {¢,, —&,} = ¢7'(x). Then
only for the indexes i,, j = 1, ..., k it holds ¢, e U;, or {, € — U, . Then

ZNA (x) = Zl.,(X)= > 2@ 1) ™! (X))+ qu((al-m,)"l(x))

Let us divide the indexes i, , ..., i, into two disjoint sets {oty, .., &}, {a, .1, --o» %}
so that (0]u,) ' (x) =&, for I=1,...,p and (6|v,)"" (x) = =&, for /=
=p+1,...,k Then ‘

¥ Ax)= —[Zxa.(ﬁx)+ Z X~ é‘x)+me( 5x)+ Z x,,(f,)]
ieN

1=p+1

It holds ¢, €U, for I =1, ..., p, and —fxe U, for I =p + 1, ..., k. Then, by
condition (C2)3 éx ¢ Uau (l =p+ 1, vy k)’ —Cx¢ Uul (I = 1’ ’p) Thus we get
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1 k k k _ k _
Z }.‘(X) = ? [ Z Xa,(éx) + Z Xm(—cx) + Z Xm(—éx) + 2 XM(EX)] =
ieN =1 =1 1=1 I=1

= ST 0 + T @) + (R a~6d + %47 (~EN] =2+ 1) = 1.
ieN ieN ieN ieN

Therefore the system {4, | i € N} is a partition of unity on X subordinate with the
atlas o/ y.

Then, of course it holds
j o‘*cu—z [ro*o + 3 | tioto =

i Ui i Ui

= Z f“*[(lw(d lo)™ 1)60] + iz _.[] *[ (i 0(0|_U,)—1)w] =

i U
= Z J(Xi°(0|uf)-l)w+ Z I(Xx_ °(0|—U()_1)(D=
=Y [2hw=2% j',lw—ij O

i Vi i Vi

Lemma 4.1. Let X be a manifold with boundary. Then the manifolds 0 OrX and
Or 0X are diffeomorphic.

Proof. Let &, x, #x be atlases on n-manifolds OrX, X from Proposition 4.1.,
let|] ]] (resp. | |) be a norm on A"TX (resp. on A"~ ' T 0X)induced by the Riemannian
metric used for the construction of the double cover OrX (resp. Or 0X). Let v be
nowhere zero field of the exterior normal on the boundary dX of the manifold X.
Let (U, @) € Lo, x» (¥, ¥) € 5 be the corresponding charts on OrX and on X,
such that oV = ¥V n 0X # 0. (Let us remark that &, € o~ !(x) falls into 0 OrX
iff x € 0X). Then (0U, ¢ |,u), (OV, ¥ |5y) are charts on 6 OrX and 06X such that
0 |y : OU — 0V is a diffcomorphism.

Let ey, ..., e,—; be vector fields on.T 0V such that

e4N AN E_ AV
”e/\ Aen—lAv”.

(o |au)

Then the mapping
e4A .. €,
[I el/\ AN e,,._1|

SU=

is a continuous global section of the double cover @ lo-10w : @ 1(@V) - V of the
manifold oV (g : Or 8X — 8X is a double cover of the manifold 0X). The mani-
fold 8V is orientable, we can assume that 0V is connected (see condition (Cj)).
Thus its double cover is trivial and consists of two components, denoted by W, W,
diffeomorphic to 8V. Then s; = (¢ |y) ™!, where W is one of the sets W,, W,, is
a diffeomorphism.

To each chart (U, ¢) from o, x such that U dOrX # 0 we assigned an-

open set sy(0¥) and a diffeomorphism Ty : U — sy(0V ) defined by Ty = sy 00 |,y

4
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Moreover, the system {sy(oV)| Ue Ho,x, UN 3 OrX # B} covers Or dX. Let
us now define the mapping @ : d OrX — Or 4X as follows. If ze (U, @) € Forx,
z€ dOrX, then we set @(z) = Ty(z). This definition is obviously correct and €
is a bijection. The restriction of © on each chart from &/, is a difffomorphism;
hence O is a local difffomorphism. From the bijectivity it follows that @ is a diffeo-
morphism; that means that the manifolds d OrX and Or dX are diffeomorphic. O

Proposition 4.2. Let n be a continuous odd (n — 1) form on a compact n-manifold X
with boundary 0X. Then

[ o*n=2]n.
90rX oX

Proof. Denote by j : d OrX — OrX, k : 0X — X natural inclusions. Then

fn= [k, [ o*n = j*a*n.

X 0X . 00rX o0rX
Let ¢ : Or X — 0X be the double cover of the manifold dX. Then, according to,
Proposition 4.1, "

2(n=2[k*n= [ o*k*n.
ox ox orox
Moreover
J‘ o*k*n = j O*o*k*y.

OroX 00rX

(see [3], Theorem 1.4). Therefore,
2(n= | o* *k*r]— _f (kogo@) n=

ox 80rXx

= [ (ooj)*n= IJ*(G*'])— | o*n.
o0rX 00rX 00X
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