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Abstract: Ordinary differential equations are studied in the case when the concept of Perron 
integral is involved. An equivalent description is given for a certain class of such equations 
introduced recently by R. Henstock. N 
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The common concept of solution of the differential equation 

(0.1) *=A*,x) 

goes back to C. Caratheodory, who in [1] linked the equation (0.1) with the 
concept of the Lebesgue integral* The Caratheodory solutions of (0.1) are 
simultaneously solutions of 

(0.2) x(t) = x(r) + (L) J f(s9 x(s)) ds. 
r 

The existence of solutions of 

(0.3) x(0 = x(r) + (P)J/(s,x(s))ds 
r 

— (P) indicates that the concept of the Perron integral is involved—was proved 
under various assumptions in [3], [5], [4]. In [5] a theory of (0.3) is given under 
the restriction that / is linear with respect to x, i.e. / ( / , x) = A(f) x, A(t) being 
an rtxn-matrix; this theory yields necessary and sufficient conditions fdr the 
existence and uniqueness of solutions of (0.3). 
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In [4] an existence theorem for the nonlinear equation (0.3) is established, 
however one of its assumptions is rather complicated. In Section 1 a simple form 
of this assumption is given; the result consists in the fact that the assumptions 
of the local existence theorem from [4] are fulfilled if and only if the function / 
can be written in the form 

/(*, x) = *(/) + h(f9 *), 

where g is Perron integrable and h fulfils the usual Carath6odory assumptions. 
Section 1 is concluded by comments to the underlying convergence theorem 
from [4] and to a similar convergence theorem from [6]. A short information 
on Perron integrable functions and their indefinite integrals (primitives) can be 
found in Section 2. 

1 

The following local existence result for the equation (0.1) was proved in [4j 
{Theorem 19.1). 

1.1. Theorem. Assume that the following conditions are fulfilled for f: [0,1] x 
x[09l]

n-+Rn: 

(1.1) /( / , . ) is continuous for almost all t e [0,1], 
i 

(1.2) the Perron integral J f(t9 z) dt exists for every z e [0,1]", 
o 

(1.3) for a compact set S c Rn
9 some gauge 5 on [0,1] and all 5-fine partitions 

£>*= {{o»?i»€if"9{fc-i»T*, £*} o / [ 0 , l ] (see Section!) and all func­
tions w: [0,1] -*• [0,1]B we have 

IftoMidHtt-ti-iUS. 

Then for every v e (0, 1)" there is an a > 0 and a y: [0, a] -• [0, l ] n such that 

(1.4) y(t) = v + (P)lf(s9y(s))ds 
o 

/ o r f e [ 0 , a ] . 

Note 1. y is necessarily an ACG* function on [0, a]; see Sections 2.5, 2.6 
arid 2.7. 

. N o t e 2. Itshould be mentioned that the condition (1.2) is not stated in [4j 
explicitly, but it is evidently used in the proof of Theorem 19.1 in [4]. 
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1.2. Proposition.The function f: [0, lj x [0, 1]" -V Rn fulfils (1.1), (1.2) and (1.3) 
if and only if 

(1.5) /(/, x) = git) + h(t9 x) for te [0,1] x [ 0 , 1 ] \ 

where 

(1.6) g : [0, 1] -» J?" is Perron integrable 

and h : [0, 1] x [0, 1]" -> Rn fulfils 

(1.7) h(t9.) is continuous for almost all t e [0,1], 

(1.8) h(.9 x) is measurable for x e [0, ljn , 

(1.9) there exists such a measurable m : [0, 1] -• [0, oo] 

I 

that Jmdf < oo 
o 

and 

II h(t, x) || ^ w(0 /or x e [0, ly^md^abttQSt all t. 

(We put || y ||2 = '£ y) for y - (y l f . . . , yJeR"). 

Proof. We shall prove only the "only if" part, since the converse is obvious. 
Let/fulfil (1.1), (1.2) and (1.3), ve[09 l]rt. 

Put 

g(t) = f(t, v)9 h(t9 x) = fit, x) - g(t) for t e [0,1], x e [0,1]». 

(1.5) —(1.8) are obyiously satisfied. We have to prove (1.9). Denote f(t9 x) .= 
*= (/i(/, x) , . . . , fn(t9 x)) with fj(tyx)eR. It follows from (1.3) that there exists, 
such an M > 0 that 

i i /A, iKt i ) )«f-«i- i ) isM 
and 

I S * / T , , I K T I ) ) « I - * I - I ) I H 

for j = 1,.. . , «, any <5-fine partition D of [0,1] and any w : [0,1] -> [0, l ] \ 
(5 is the gauge given in (1.3).) • 

Given y, D9 w9 put w+(Tt) = W(T,), w"(xt) = v if/}(i„ wdj)) > / / t , , i?), w+fo) ** 
= t>, w~(ii) = w(rf) otherwise. We have * 

i (//t,, W+(T,)) ^m, VMS, - -{..j-s 2M, 
i = l 
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Z (//*„ v)- fj(.xt, W-(T ()))(^ - ft.O ^ 2M 

the summands being nonnegative. Thus 

1 1 Wt> ^ i ) ) - / / t i , v) | (ft - ft_x) S 4M 

and finally we conclude that 

0.10) Ill*(T„w<Ti))| |tf«-&-i)£C = 4Mii 
i « l 

for any 5-fine partition Z> of [0, 1] and any w : [0,1] -* [0,1]". 
Put Af(0) = 0 and 

(1.11) M(s) = sup{ f i| h(xi9 w(xf)) |i (ft - ft^)}, 5e[0,1], 

where the supremum is taken over all 5-fine partitions {£o> t^ £ j , . . . , rfc, ft} 
of [0, s] and all functions w : [0, 1] -> [0, 1]". 

Since for every sl9 s2 such that 0 ^ st < s2 ^ I there exists a 5-fine partition 
of [^, J 2 ] (see Section 2.3) we evidently have 

(1.12) M(Sl) £ M(s2) 

and also (cf. (1.10)) 

(1.13) 0^M(s)£C9 se[09 1]. 

Let t, si9s2e [0,1], s± < s29 t - 5(0 < st S t ^ s2 < t + 5{t). If ^ > 0 and 
if the triple (sx, t9 s2) is added from the fight to a <5-fine partition of [0, s{\9 a <5-fine 
partition of [0, s{\ is obtained and therefore 

M(sx) + || h(t9 x) || (52 - sx) £ M(s2) for any x e [0, 1]", 
i.e. 

(1.14) || h(t9 x) || (s2 - sx) ^ M(s2) - M(st) for x e [0, l]n . 

Obviously the derivative ildf(0 exists almost everywhere. Putting 

= {c ^ fildf(0 if #(*) exists, 
10 otherwise, 

we get 
II KU x) || S m(t) for x e [0,1]" and almost all /; 

moreover, (L) J m dt g M l ) < oo and (1.9) holds, 
o . 
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1.3. In [5] necessary and sufficient conditions for the existence and uniqueness 
of ACG* solutions of x = A(t) x were formulated as conditions on the matrix 
function A; the entries of A need not be Perron integrable, i.e. (1.2) need not hold. 

1.4. Observe that 

(1.15) x=g(t) + h(t,x) 

can be transformed to the form of a Caratheodory type differential equation by 
using the transformation y = x — G(t)9 G being a primitive to g, provided 
(1.6)-(1.9) are satisfied. 

1.5. In [3] the existence theorem for the equation (0.3) is proved under the 
assumption that (1.1), (1.2) and 

(1.16) || f(u x) - f{Uy) || ^ L(t) || x - y ||, t e [0,1], x,ye [0,1]", 
I 

J L(f) d* < oo 
o 

hold. Obviously (1.16) implies both (1.3) and (1.5) with (1.6) - (1.9). 
1.6. In the proof of Theorem 1.1 in [4] a convergence result for Perron integrals 

was used (see Theorem (9.1) in [4]). A special form of this result is the following 

I 

Theorem. Let xj/j, <p : [0, l j -> R, let (P) J ij/j dt exist for jeN, if/ft) -• <p(0 a.e. 
o . 

for j -• oo and let the following condition hold: 

(1.17) there exist such a gauge 5 and such B,C € R that 

t = l 

holds for every j e N and for every S-fine partition o/[0, 1]. 

I 
Then (P) J q> At exists and 

o 

lim(P)jV,df = (P)Jpci<. 
r-+oo 0 0 

In a similar way as in Section 1.2 it can be proved that (1.17) is satisfied if 
and only if 

(1.18) I ilf/t) - M / ) | ^ m{t) a.e. in [0, l ] , 
• ' I * * 

where j e N and J m dt < oo. In the more general case which is treated in [4] an 
o 

analogous argument makes it possible to conclude the following: 
the condition (9.5) from [4] holds if and only if 
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(1.19) there exist such a superadditive interval function A with values from 
[0, oo] and such a gauge 8 on [0,1] that 

\ffr)-A(x)\k(I,x)gA(I), jeN, xeE 
provided x e / c B(x, 8(x)) (B(x, 8) denotes the ball with center x and 
radius 5, J being an interval in E). 

1.7. Another result of the same type is Theorem 5.5 from [6]. A special form 
of this result has the form of our Theorem 1.6 where (1.17) is replaced by 

(1.20) there exist a gauge w on [0,1] and c e R such that 
ft * 

| £ J <lfJt(t)dt\£c 

holds for every finite sequence of positive integers jifj29 •••>./* anc* f°r 

every w-fine partition of [0,1]. 

Again it can be proved in a similar way as in Section 1.2 that (1.20) is fulfilled 
if and only if (1.18) holds. In the more general case which was treated in [6] an 
analogous argument yields: the condition (B) of Lemma 5.4 from [6] holds if 
and only if 

(1.21) there exist a superadditive interval function A with values from [0, oo) 
and a gauge 8 such that 

| U/J, t) - £/,(/, 0 | ^ A(J) 

provided teJcz B(t, 6(t)) (J being an interval in K). 

2 

The original definition of the Perron integral relies on the concepts of major 
and minor functions to a given function. Here we shall give an equivalent defini­
tion, which is an immediate extension of the definition given by B. Riemann. 

2.1. Let a, b e R, a < b. A finite sequence 

-O 5= \£o> T i> £i» •••> sfc-i> T*» €*} 

is called a partition of [a, 6] if 

a = £a g r, ^ (t ^ ... £ &_! g xk S Zk = &> &-i < £* for i = 1, 2 , . . . , fc. 

A function 8 : [a, 6].-> (0, oo) is called a gauge on [a, &]. 
Let D be a partition of [tf, i ] and let 8 be a gauge on [a, ft], D is called 5-fine 

if t, ~ S(xt) <t { ^ {, < t, + 5(t,) for * = 1,. . . , fc. 
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2.2. Definition. Let a, b e R, a < b, u : [a, ft] -+ P, c e R. Then c is called the 
b b 

Perron integral of u (from a to b) and denoted by (P) J u(t) dt or (P) J u cU if for 
a a 

every e > 0 there exists a gauge 5 on [a, fc] such that 

b 
holds for every 5-fine partition D of [a, 6]. 

Ta a 

(As usual we put (P) J w df == 0 and (P) J u dt = ~(P) J « d/.) 
a 6 a 

2.3. Definition 2.2 is meaningful, since we have the following Cousin's lemma 
(cf. 3.4 in [6] or [7], p. 104): 

A 5-fine partition D of [a, b] exists for every gauge d on [a, 6]. 
This can be proved by an elementary supremum argument or by an argument 

relying on halving intervals starting with the interval [a, b]. 
b t 

2.4. Let (P) J u(s) ds exist. Then for every / e (a, b) the integral (P) J u(s) ds 
exists. . a * 

This is a consequence of Cousin's lemma. 
b t 

2.5. Let (P) J u(s) ds exist. Put U{t) = (P) J II(J) ds for f e (n, 6], £/(a) = 0. Then 
a a 

(2.1) the derivative V(t) exists and is equal to u(i) at almost every t e \a> 6], 

(2.2) for every set N cz [a, fo] of Lebesgue measure zero and for every e > 0 
there exists such a function 8 : N -* (0, oo) that 

Eiw-tf(«is« 
for every finite sequence £i, T ^ I ^ , f2» ^ i fa» •••»•&. t*, ifc fulfilling 

< 6 , ^ < T£ + <5<T;), I = 1,2, ...,fc. 

For the proof see [5], Theorem 3.8. 
2.6. Let U : [a, fe] '-» R fulfil (2.2) and 

(2.3) the derivative V(t) exists at almost every / e [a, b]. 

Let 1?: [a, fe] -• P, t>(r) = V{i) if #(/) exists, t?(/) arbitrary otherwise. Then the 
b 

integral (P) J v ds exists and is equal to U(b) — U(a). 
a 

This can be proved directly from Definition 2.1; see also [5], Theorem &£. 
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2.7. The concept of an ACG* function was introduced by A. Denjoy, A. Khint-
chine (see [8], p. 231) as a generalization of the concept of an absolutely continuous 
function. As was observed in [5], (3.19), we have an equivalent definition: 

U: [a, 6] -> # is an ACG* function on [a, b] if it fulfils (2.1) and (2.2). 
2.8. Definition 2.2 and the results from Sections 2.4—2.7 can be immediately 

extended to functions with values in Rn. Thus by 2.5, 2.6 and 2.7 we have 

(2.4) every solution x of (0.3) is an ACG* function on every compact sub-
interval of its definition interval; moreover, x fulfils (0.1) almost every­
where. 

(2.5) If x is an ACG* function on every compact subinterval of its definition 
interval and if x fulfils (0.1) almost everywhere, then x is a solution of (0.3). 
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