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Abstract. We study the behaviour of the *-Ricci tensor o* and the Ricci tensor Q of some com­
pact symplectic manifolds and prove that, in general, o* is neither symmetric nor skewsymmetric. 
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1. I N T R O D U C T I O N 

Many examples of compact symplectic manifolds with no Kahler structure are 
now knowp (see [12], [13], [3], [4], [5], [8], [16]). In the non-compact case, it is 
well known that the tangent biindle of a non-flat Riemannian manifold admits 
a non-Kahler almost Kahler structure (hence, a symplectic structure) (see [7], [14]). 

Recently, M. Fern&ndez, M. Gotay and A. Gray ([8]) gave the first examples 
of compact 4-dimensional manifolds that have symplectic structures but no 
complex structures (see [15], [18], [2] for another examples of almost complex 
manifolds with no complex structures). These manifolds E* are circle bundles 
over circle bundles over a 2-dimensional torus. 

As it is well known, the. *-Ricci tensor Q* and the Ricci tensor Q of a Kahler 
manifold coincide. Then Q* is symmetric for a Kahler manifold. The same is true 
for the Kodaira and Thurston manifolds (see [l]). 

However, Q* is neither symmetric nor skewsymmetric for the tangent bundle 
of a Riemannian manifold (for a proof, see [1]; this fact can also be deduced from 
[9]). In this paper, we study the behaviour of Q* on the compact symplectic mani­
folds E4 and prove that Q* is neither symmetric nor skewsymmetric. 
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2. THE M A N I F O L D S K4 ([8]) 

Let us recall the following theorem due to Kobayashi: 
Theorem ([10], [11]). Let M be a manifold. Then there is a one to one correspond­

ence between equivalence classes of circle bundles over M and the integral cohomology 
group H2(M, Z). Furthermore, given an integral 2-form Q on M there is a circle 
bundle n: E -+ M with connection form co such that Q is the curvature ofco (that is 
7i*0 = dco). 

Now, let a and /? be parallel (hence harmonic) 1-forms on T2 such that [a] 
and [/?] are generators of Hx(T2

y Z) = Z © Z. Then for any integer n there is 
a circle bundle n: E% -+ T2 with connection form y such that dy = nix A p. (Let us 
agree to use the same notation for differential forms on T2 and their pullbacks 
to E\. In fact we shall presently consider another bundle E4 -> E\ then we consider 
forms on T2 and E\ to be forms on K4 as well). When n = 0 the space El is the 
3-torus; when n =£ 0, E3

n is a compact quotient Tn\Hn, where Hn is the Lie group 
of matrices of the form 

and Tn is the subgroup of Hn consisting of those elements for which a, b and c 
are integers (see[8]). In the following we only consider the case n ^ 0. 

Now, Kobayashi's theorem says that the circle bundles over E\ a-re classified 
by H2(El, Z). But the Gysin sequence can be used to compute the integral coho­
mology groups H\Elt Z) of E*n(n * 0): 

H°(El Z) = Z9 H\El Z) = Z@Z9 

H2(E3
n9Z) = Z®Z® ZM, H\E\9Z) = Z. 

Hence we can use Kobayashi's theorem and conclude that for every pair of in tegers p 
and q there is a circle bundle is4 -• El with connection form t\ such that dt\ = 

= pa A y + qP A y. (We note that pa A y + qP A y is not exact on E3
n but OILB4 

we have drj -=paA rj + ?J8A y). 
As consequence, the minimal model of E4 is M(E4) = {a, /?, y, *//da = djS =• 0, 

dy = «aA /?, dri =paA y + ^JSA y} for n ^ 0 (see [8]). 
Since M(E4) is not formal if p or q is different from zero, we have, from the 

Main theorem of [6] that£4 can have no Kahler structure. Furthermore, if p ^ 0 
or q # 0, the first Betti number of E* is even, say bt(E*) = 2. Hence, froma re­
sult of Kodaira (see [12], theorem 25), we deduce that E* can have no complex 
structure. 
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Nevertheless E4 has many symplectic forms. For example, 

F = (aoc + bfi) A y + («x + //») A fj, 

where a, b, e,fare constants such that ft? — eq = 0 and af — be ^ 0, is a symplectic 
form on E*. 

Furthermore F is the Kahler form of the almost Hermitian structure « , >, J) 
over E4 where <, > is the Riemannian metric given by 

<,> = a2 + p2 + y2 + n
2 

and J is the almost complex structure on EA given by 

JX = aZ + eT, JY = bZ + fT, 

JZ = -aX - bY, JT = -eX- fY, 

{X, Y, Z, T} being the orthonormal basis of vector fields on EA dual to {a, /?, 7, t]} 
and the constants a, b, e,f satisfying the additional relations 

a2 + b2 = b2 +f2 = e2 +f2 = a2 + e2 = 1, ab + ef= ae + bf= 0. 

Since F is symplectic then (F4, <, >, J) is an almost Kahler manifold. 

3. THE *-RICCI TENSOR OF (£4, <, >J) 

In the sequel, we denote by V the Levi — Civita connection on (E*f(,},J)-
A simple computation shows that V is determined by the following relations: 

VХУ = - v r x = -^-z, n 

т 
-r-ţг. v-i"} 

v xт = vгл: = ^-z, 2 

VrZ «- - y Ä ' - -Јr, VZУ = - x +1-r, 

v r т = v г y = | -z, 

VZГ = V Г Z = - | - Л ' - - | - У , 

being zero the other covariant derivatives. 
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Hence the curvature tensor R of V is given by 

R(X,Y,X, Y) = | - n 2 , 

R(X, Y, X, T) = R(Y, Z, Z, T) = 1 np, 

R(X, Y, Y, T) = -R(X, Z, Z, T) = ~nq, 

R(X,Z,X,Z) = -^-n2 + ~p2, 

R(X, Z, Y, Z) = -3R(X, T, Y, T) = ^-pq, 

R(X,T,X,T)=-^p2, 

R(Y,T,Y, T)= ~q2, 

R(Y, Z, Y,Z) = - i - n 2 + -i<r\ 

R(Z, T, Z, T) = - l ( p 2 + q2). 

Next, we compute the *-Ricci tensor of (£*, <, >, J). Let us recall that the 
*-Ricci tensor Q* of the almost Hermitian manifold (E*, <, >, .0 is given by 

Q*(U, V) = R(U, X, JV, JX) + R(U, Y, JV, JY) + R(U, Z, JV, JZ) + 
+ R(U, T, JV, JT). 

A long but straightforward computation shows that Q* is given by 

Q*(X, X) - --^-a V + i ( 3 a 2 - e2)p2 - efpq, 

Q*(Y, Y) =- - 1 b2n2 + 1 (36 2 - / - ) q2 - efpq, 

Q*(Z, Z) = -~n2 + ^a2p2 + ~b*q2 + ~-abpq, 

Q*(T, T)=-±.(ep + fq)2, 

Q*(X, Y) = - l a 6 n 2 - efp2 + i-(3fcJ - f2)pq, 
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Q*(X, Z) = -Q*(Z, X) = - 1 benp - ~ bfnq, 

e*(X, T) = - e*(T . X) = -^-e/np - l / 2 n g , 

e*(y, X) = - l a f c n 2 - efq2 + 1 (3« 2 - e2)pq, 

Q*(Y, Z) = -<?*(Z, y) = -̂ -a<>«p + -£-«/ng, 

Q*(Y, T) = -e*(T, 1') = ±.e2np + ^efnq, 

Q*(Z, T) = - 3g*(T, Z) = 1 aep2 + 1 6 / q 2 + • ! ( « / + fte) M . 

These identities show that, in general, Q* is neither symmetric nor skewsym-
metric. In fact, if we put a =/= q = 0, b2 = e1 -= 1, p 7-= 0, « 7-= 0, then we 
have 

<?*(X,A-)=- l i> 2 *0 

and 

Q*(Y,T)= -Q*(T, y) = -J-np*0. 
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