Archivum Mathematicum

Jarostaw Morchato
Asymptotic and integral equivalence of functional and ordinary differential equations

Archivum Mathematicum, Vol. 26 (1990), No. 1, 37--47

Persistent URL: http://dml.cz/dmlcz/107367

Terms of use:

© Masaryk University, 1990

Institute of Mathematics of the Academy of Sciences of the Czech Republic provides access to
digitized documents strictly for personal use. Each copy of any part of this document must contain
these Terms of use.

This paper has been digitized, optimized for electronic delivery and stamped
with digital signature within the project DML-CZ: The Czech Digital Mathematics
Library http://project.dml.cz



http://dml.cz/dmlcz/107367
http://project.dml.cz

ARCHIVUM MATHEMATICUM (BRNO)
Yol. 26, No. 1 (1990), 37—-47

ASYMPTOTIC AND INTEGRAL EQUIVALENCE
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Abstract. The main results gives conditions under a one-to-one, bicontinuous correspondence
cxists between g-bounded solutions of a linear differential system and such solution of perturba-
tions of the system.

Key words. System of differential equations, functional differential equations, asymptotic
cquivalence.
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The purpose of this paper is provide conditions for asymptotic equivalence and
(g, p)-integral equivalence for g-bounded solutions of systems

n w' () = AW u(®) + F(1,u,)
and '
(@) _ v'(f) = A(1) v(7).

In the present work, we prove the cxistence of a homeomorphism between the
sets of g-bounded solutions of (1) and (2). The asymptotic equivalence problem (1)
and (2) has been studied by Hallam [4], Kenneth L. Cooke [2], Morchalo [8].
The problem of integral equivalence of an ordinary and a functional differential
equations has been studied by Futak [3], Haitak, Svec [5], Hasak [6], Mor-
chato [7].

We remark that the present results extend those of Futak and Kenneth L. Cooke
as we prove here the existence of a homeomorphism through the contraction
mapping princi:le. In [3] and [2] the basic tool was Schauder’s fixed point theorem.

In equations (1) and (2) u, v and F are n-dimensional vectors and A4 is an nxn
matrix. We let | . | denote any norm in n-dimensional space R". The letter b denotes
a positive number, and C,, is the space of continuous functions mapping {—b, 0)

into R" with norm || ® || = sup | D(s)|. If u is any function on (¢, — b, ),
—b5380
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J. MORCHALO

(to = 0) into R", then for each 7 € {t,, o0) the symbol u, denotes the element of C,
defined by u(s) = u(t + s) for —b < s <0. If u is a real valued measurable
function on R, = (0, ©), then by the symbol u € L,(R,), (1 £ p < ) we denote

that [|u(?)|”dt < oo. Let M, (1 £ p < o) consist of all functions measurable
0
in te J = {t,, o) for which

t+1 1
1 zlp,, = su?( [ 1z(s)|Pds)? < o0.
te t

Let g: {t, — b, ooj — (0, o0) be a continuous function.

Definition 1. We will say a vector function z: J — R" is g-bounded on J, if
sup | g71(1) 2(1) | < 0.
ted

Definition 2. We will say that the equations (1) and (2) are g-asymptotically
equivalent if for each solution u defined on (¢, — b, ) of (1), there exists a solu-
tion v defined on J of (2) such that

(&) lu(d) — o) | = 0(g(®)) as 1> o0

and conversely.

Definition 3. We will say that the equations (1) and (2) are (g, p) integrally
equivalent on J(p > 1) if for each solution u defined on (¢, — b, ) of (1) there
exists a solution v defined on J of (2) such that

@ I =10 [u(®) — (0] | € L(7)

and conversely.

Definition 4. We will say that the equations (1) and (2) are (g, M) integrally
equivalent on J, if for each solution u defined on {t, — b, o) of (1) there exists
solution v defined on J of (2) such that

®) lg '@ [u(®) = v(®] e M, for teJ

and conversely.
Let G, be the space of all functions z continuous and g bounded on {#, — b, c0)
such that

izly= sup [g7'()z(1)] < 0.
(to—b, )

Let G,, = {z:2e€G,, | z], < r for all te{t, — b, ®0), 0 {r = const.}.
Let B, , and B, ; be the sets of g-bounded solutions of (1) and (2) respectively.
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ASYMPTOTIC AND INTEGRAL EQIUVALENCE

It is necessary to impose hypotheses upon the linear equation (2) based on the
decomposition of R" into the direct sum R* = X; @ X,, where X; (i = 1, 2) are
determined in the following manner: denote v(t, f,, x,) the solution of (2) starting
from vy at ty; then vy € X; if and only if the solution v(ty, #o, vy) is bounded on
{ty, ©); X, is the direct complement of X,. We denote by P, (i = 1,2) the
corresponding projections i.e. P,R" = X, (i = 1, 2).

First, we assume the following:

H;. F(t,®): R, xC, - R" satisfies the Carathéodory conditions, i.e. F(t, ®) is
measurable in ¢ for any fixed @ € C, and continuous in @ for any fixed re R, ,
and for every (¢, ®)), (t, ®,) € R, xC,

l F(t’(pl) - F(t’ ¢2) I é L(’) II ¢1 - 452 ”’
where L: R, — R, is continuous.

H,. Let ¥ be a fundamental matrix for equation (2).
H;. A(¢) is an nx n matrix locally integrable on R, .

Theorem 1. Suppose H,, H, and H; hold. Suppose also that:
(i) there exists r,q, K(r, K > 0, 1 < g < o0) such that

n to+k+1

Y g v P yTies) A+
k=0 totk

t+k+1

£ 3 C T 170 v Py @149 S K <
k=0 t+k

(i) sup g(t + s5) = Ngo(r) for te J, 0 < N = const.
-b<ss0
t+1 t+1

(iii) 2KN 51:15)( [ (L(s) go(5))? ds)'/? < 17 ,p+q=pq. Kfu?( [ 1 F(s,0) |7 ds)t/r <

<L,
=73

Then there exists a one-to-one bicontinuous mapping Q from the set B, , into the

set B, .
Proof. We first show that Q is well defined. Given ve B, , N G,,,, define the

operator Ru = w, where
w(to) for telty — b, ty),
— t ©
©) wi) = ot) + V(@) PV (s) F(s, u)ds — [ V(O PV (s) F(s,u)ds, tel.
to t

Forue G, ,,, w = Ru it follows from (6) that

e O R (B)| < 7 +‘§' &40 V() PV 6) | L(s) | ds +
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+§ 7O VO PV O IF60) ds+ [1g7 O VO PV 1L6) 6, 1 ds +
+[1g VO PV O 1F6,0lds 5 7+ 2rN'_i 1§ () V) PV i) [ %
X LO) (9 ds + 17O VO PV O 1F6,0)1ds +
+ 20N 18740 VO PV 70 1L6) 8o6) ds +

+ flg O VW PV S| | FGs,0)[ds < 7 +

n to+tk+1 to+k+1
+2rNY ( f 127 OV P VT 17d) ([ (L(s) go())7 ds)'” +
k=0 to+k totk
I: fot+k+1 totk+1
+Y ( § Qg OVEOPYTIOI)VI( | | F(5,0)|7ds)'” +
k=0 tot+k to+k
o tt+k+1 t+k+1
+2INY, ( f 17 OVOPY TSI [ (L(s) go(s)"ds)'” +
k=0 t+k t+k
o t+k+1 t+k+1

+.Z,o( 'gk lg™'® V) P,V (5) 17ds)!*( !:‘ | F(s, 0)|7ds)!'? <

t+1 t+1

= 1+ sup [2rN( § (L(s) go(s))"ds)/? + ( § | F(s, 0) Pds)!"] %
tedJ t t

L] fo+k+1

xY ( f lg'OVEPVT(s)|ds)' +
k=0 to+k '
t+1 t+1
+ sup [2rN( § (L(s) go(s))"ds)"? + ( | | F(s, 0)|" ds)* /"] x
telJ t - t
oo t+k+1

x ¥ (f 1g ' OVOPYHs)|"ds)* <
k=0 t+k
t+1 t+1

S r+ K{2rN sup ( | (1.(s) go(s))?ds)"/" + sup ( | | F(s, 0) |"ds)"/?} < 2r,
teJ t teJ t

hence R maps G, ,, into itself. Moreover, by H, we have
) t+1 '

lg7' ) [(Ru') (1) — (Ru?) (N]] < NK SUJD( § (L(s) go(s))" ds)"/7) fu' — u |,

and hence R is a contraction in B, ,,.
We have a well defined function Q: Q(v) = u where u is a solution of (1).
Suppose v;e B, , N G,,, (i = 1,2) and Q(v;) = Q(v,) i.e.

- v(t) + ;‘ V(t) P,V ~(s) F(s, u)) ds —‘}) V(t) P,V (s) F(s, u,) ds, tel,
u(t)  for tety — b, to.

u(t)
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ASYMPTOTIC AND INTEGRAL EQUIVALENCE

By subtraction we find that v; = v, and that Q is consequently one to one.
Finally, Q and Q™! are continuous as is shown by the following inequalities:

g7 ') [Q) — Q)] | < 1g7'(0) [04() — v(D] | +

+ {1 O V) P ) L) | ul — | ds +
+ {187 O VO PV ) ILe) [ v — u? [ ds <

<17 (O [o(0) — 0:(0] 1 + N'I L&~ () V() PV (s) | L(s) gols) x

x sup g™ () [Q(vy) — Q(v)] I ds + N?lg‘l(l) V({t) P,V () | L(s) go(s) x
x sup | g7(s) [Q(vy) — O(v,)] | ds.
Hence
1 Q(v)) — Q(vp) |, £ (1 — NK sup (‘?1(’L(S) 2o()"ds)!")) 7 oy — 0,
and

lg” ' [Q7 ) = Q7'@)] I = g7 ' () [v, — ;]I
S O - O]+ [1e7 O VO PV | | F(s,u3) — Fs,u3) | ds +

+ §° L~ O VW) PV ()| | EGs, ul) — Fs, u?) | ds <

t+1

<187 (O [W!0) — v O] 1 + NK sup (] (L(s) go()7ds)""? | u" = ],

Hence

t4y
107 Y — 07" (W), S [1 + NK sup ( [ (L(s) go(s))"ds) 2 [u* — u?|,.
teJ ¢t
This completes the proof of the Theorem.

Theorem 2. Let the assumptions H,, H,, Hy be satisfied. Furthermore, suppose
that*

@) sup |g(t + s|= Ngut) for teJ,0 < N = const.
to—b<s30
t k+1 -1
(ii) Y (17 OV PV IO 1°(LGs) gols))* ds) /" x
k=to k
k+1

x( i‘ g~ () V() PLV ™ (s)|" ds) /P +
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o k+1

+k2=:t ( ;‘: | g‘l(t) V() PZV_I(S) ¢ (L(s) go(s))qu)l/ax

k+1

x([lg” (VO PV ()" ds)!? +
k

] k+1
+ Y ([ 1g7' V)P VTSI F(s, 0)|ds)!*x
k=0 &k
1
X(k} F OOV ASNOI DR
k
o k+1
+ Y ([l @ V@) PV (s)I°] F(s, 0)|"ds)' x
k=0 &k
k+1

x(f g7 VO PV '(s)|"ds)'” £ K < oo,
k

where a, c are real numbers such that a,ce R,,1 < c <a < o,

1 c\1 1

— =)l _=1-= <g<

p (a>p 1 o 1<g=Zp<oo,
11t 1 e 1_t_ 1 <L+;+L=I),
p o« B a ap Yy 49 p a By

t+1 ,: t+1 1
(i) Ksup ( | | F(s, 0)*ds)!/" < 5 2NK sup (| (L(s) go(s))*ds)'? < 5 -
teld t telJ t

Then there exists a one to one bicontinuous mapping Q from the set B, , into the
set B, ;.
Proof. We show that RG, ,, = G, ,,. From (6) we obtain

n totk+1
& O RWO] S 7 + 20N DR TROTOINS 1) [P(L(S) gos)) 7] x
c l
X1 O VO PV O G32 (Ls) o) G 77 ds +
n totk+1 c
+3 ] 1 OVOr, V15 | Fs 0) 15 180 V) Py i) G o)
’(_1__1) o t+k+1
< P, 0T as 2Ny T L&) V(1) PaV™(5) [7 (L(S) gos))? x
M X180 VO P16 [ (16s) 2ol P s +
o t+k+1 c p I_L
+3 I OVOPYTOR 1F6 01 g0 VO Py 016w

x| F(s, 0) |’(%'5) ds.
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ASYMPTOTIC AND INTEGRAL EQUIVALENCE

Using Hoélder’s inequality (see Futak [3]) on (7) (with respect to «, B, ¥), we have

lg”' () (R ()] < 2r.

Morcover we have
t+1

g™ 'O [(Ru") (1) — (RuD (D] S N sup ( g (L(s) 8o(5))*ds) /" x

n totk+1

< (Y C {1870 VO PV L) 8649
(T e OV Py s +
to+k
t+k+1

+k§° ( -_!k | g“l(t) V(t) sz_l(s) |C (L(S) go(s))q ds)l/ax

t+k+1

<( [ 17 OVOPY IO ) ut - ),

and hence R is a contraction in B,, ,,. The rest of the proof follows by the similar
argument as in the proof of Theorem 1 and hence we omit the details.

Theorem 3. Under the assumptions of Theorem 1 if in additions

1° lim ('}I(L(S) go(5))"ds)'/" = 0,

t— o0

t+1
2° lim ( { | F(s, 0)|7ds)"/? = 0,
t

t— 0

3% lim | g~} (®) V() Py | = 0.

t— 00

Then for every ve B, ,
lim | g~ (t) [u(t) — v(®)]| = O,
12w

where u = Que B, ;.-
Proof. According to conditions 1°, 2° for a given ¢ > 0, we can choose t, > ¢,
such that for ¢ > t,, the following relations hold:

t+1 t+1
2N J (L6S) go))" ds)P < 2=, ([ | F(s,0)17ds)"" < -,
; 3k : 3k
(r is defined in Theorem 1).
Hence we can choose #; > f,, such that for ¢ > ¢; we have
t2
I8 O VP 1PV () F(s,0)|ds < 5.

to
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So
g™ ) [u®) — v < [1g7 'O VIO PV (s)| | F(s, u,) | ds +

+ (1~ O VW PV Is), | F(s, uy) | ds <

t2
S1g 'OV P [IP V() F(s, u) | ds +
to

n ty+k+1 ta+k+1
+22NY C [ 17 @OVOPYTISDC [ (L(s) gols))” ds)'/? +
k=0 tat+k ta+k
n tytk+1 ty+k+1

+ Y0 [ 1 OV PV () 17ds) (| | F(s, 0) |7 ds)'? +

k=0 t2+k t2+k
o t+k+1 t+k+1

+2NY ([ 1g7 (V) PV (s) | ds)!( L (L(5) go(s))” ds)'/” +

k=0 t+k
o t+k+1 t+k+1

+k§40( _{k |g_1(t) V(t)PzV*l(s)[qu)”‘l( ‘;“k | F(s .O)I"ds)"'l’ <

<187 O VO Py 1PV ™Hs) FGs, ) | ds +

t+1 t+1

+2rN sup ( | (L(s) go(9))"ds)""? + K sup ( J | F(s, 0) [P ds)'”” < e.

2ty ¢t 2t ot
Therefore

lim | g7'() [u(t) — v(®)]] = 0.

t— o0

Theorem 4. Under the assumption of Theorem 2 if in addition

r+1
lim ( f (L(s) go())?ds)"/" = 0,
=00 t
41
lim( | F(s,0)|?ds)'? = 0,
t— o t
lim | g~ '(t) V(t) P, | = 0.
t— 00

Then for every ve B, ,

,“f“ l&7 () [u®) — v(]] =0,

where ue B, ;.
Proof. [see Theorem 2 and 3].

Theorem 5. Let the following conditions be satisfied:
1° The assumptions of Theorem 1 hold.
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2° JTPVH$) | L(s) gols) ds < 0, [IPyVTHE) | | F(s, 0)|ds < oo.
° to
3° 'I s'PL(s) go(s) ds < o0, [s/?|F(s, 0)|ds < w0, (p = 1).
0 to

4° geXP(‘K—qf(g(s))—“ ds) dt < oo.
0

Then
| g7 (1) [u(r) — v()] | € L,({t,, ).

Proof. From (6) and 1° of Theorem we have

le™' ) [u() ~ v(®] 1 < 2rN | g7 (O V(1) Py | J}l PV ()| L(s) go(s) ds +
+1g7 () V(n) P, I‘f | P V™) | F(s,0)|ds +

+ 2rNK( F(L(s) go(s))7 ds)'/? + K(}ol F(s, 0) | ds)'/?.

Thus from 2°, 3°, 4° of Theorem and Lemma 1 [6], Lemma 3 [7] we get that this
terms belongs to L,({#y, c)). The proof of the Theorem is complete.

Theorem 6. Besides the conditions of Theorem 1 suppose that

t utl

‘I (Jle7' OV P Vi (9)['ds)'du S K,

L ]
o ut+l

{ (J1g7' OVOPY () |'ds) du S K for t 245,

(for convenience, all functions are assumed to vanish for all S < t;). Then
[g7 @) [u() — v(®] e M, foralltel.

Proof. From the estimates (recall that all functions vanich for ¢ < 7,)
8OO ~ w011 S 20N 1 OVOPY THOLLO) 89 ds +
+ [l OVOPY O LF60)1ds + 2N [ 1570 VO PV 0 x
% L) 86)ds + [ 187 ) VO PV 0| | Fis,0)ds

= 2N [ 187 O VO PV 1 L) 800 | duds +
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+ J1g7' vy PV (s)| | F(s, 0) ] 5 duds + 2rN°f| g N V() PV 1(s) | %
to -1 t

(0 ga(s) J duds + f1g7 O VO PYTOIIFG,0) | f duds

< 2rN j’ “ﬂ g~ () V(t) P,V ~1(s) | L(s) go(s) ds du +
to—1 u
t ut+l
+" '!—1 § 1871 (@) V(£) PV~ (s) | L(s) go(s) ds du +
+ 2rN }o “}ll g @) V(1) P,V (s) | L(s) go(s) ds du +
t—1 w
o u+l

+ [ T8O VO P01 6,0l dsdu s

t uti utl

SN (127 V@ PYTH()11ds) M ( § (L(s) gols)) ds)' /7 du +

t ut+l ut1

+ [ 187 V) PV (9 |*ds) (| F(s, 0)17ds) P du +

w utl ut1

+20N | ([ 170 VO PV 10179 5 [ (L) go(9)7 49" du +

o ut+i w1

+ [ CLIET OV PV @199 | [ F6,0) a9 du,

we conclude that | g~1() [u(r) — v(9)] | € M, for te J.
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