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THE EX1ISTENCE AND ASYMPTOTIC BEHAVIOUR
OF SOLUTIONS OF CERTAIN CLASS
OF THE INTEGRO DIFFERENTIAL EQUATIONS

'ZDENEK SMARDA
. (Received May 19, 1986)

Abstract. This paper is concerned with the existence and asymptotic behavior of solutions
of the integro-differential equations

x N
gy =y+ I i) - 01,(5) Y'(x) . y'($)] ds
0+ itf=

in a ncighbourhood of the singular point [0%, 0].
Key words. Wazewski’s topological method, strict egress point, strict ingress point, retract.
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1. INTRODUCTION AND BASIC NOTIONS

The asymptotic behaviour of solutions of the ordinary differential equations
in a neighbourhood of the singular point were studied by Kiguradze [1], Cetik [2],
Diblik [3, 4], Konjuchova [5, 6]. The integro-differential equations have different
propertics from ordinary differential equations even in the simplest cases (see [7]).

Therefore known qualitative methods of investigation of the ordinary differential
cquations, e.g. Wazewski’s topological method, cannot be applied to integro-
differential equations. This paper generalizes the theorem of the existence and
asymptotic behavior of solutions of the integro differential equation

x N
(1) gx)y' =y +OI [ > 1) 0(5) Y'(x) y'(s)] ds

+ it+j=
in a neighbourhood of the singular point [0*, 0] —see [8]. This theorem was
proved on behalf of the strong assumption of the existence of a region through
each paint of which only one solution of the equation (1) goes. We can find this
region only in the linear case.



Z.SMARDA

Notation

(@) f(x) = O(g(x)) for x — x% denotes that there exists K >0 such that

S(x)
200 < K on some right hand neighbourhood of the point x,.

(i) f(x) = o(g(x)) for x - xq denotes that lim ___jg"gi =

(iii) f(x) ~ g(x) for x — x} denotes that lim S éx; =

(iv) Lert {(p,,(x)} Y be a sequence of functions such that ¢, (x) = o(p(x)) for
X x5,i>1, then () ~ }_‘, a,0(x) for x — 4\0 denotes [ f(x) — Z a;. p(N)] =

= O(@p+1(x)) for x - x5, ne N a; = const.

Definition. Every function y(x)e C'(0, x,] satisfying (1) for each x e (0, x,]
will be called a solution of the equation (1).

If the conditions of existence and uniqueness of solution of the equation (1)
are not fulfilled in a point [x,, yo] then this point will be called the sirgular point
of the equation (1).

2. THE CONSTRUCTION OF A FORMAL SERIES
SATISFYING THE EQUATION (1)

We shall seek the solution of (1) in the form of an one parametric series
@ y(x, C) = Z fulx) 9" (x, C),
whcre ¢(x, C) is a general solution of the equation g(x)y’ = y so that
¥ odt
p(x, C) = Cex — ,
# C) P Lo g(T)—]
f[1(0) = L, fi(x), h = 2 are unknown function, C # 0 = const. Denote

ya(X) = }:lf;.(x) @"(x, ©),

N i
Kx(x, s) s‘ PRI OTTOI D D Ulf”’(x) P™(x, ) | x

+j=2 at+p=h i
azhpzj kg‘,‘wnﬂa

J
I 140060,

Y vs=p
k=1
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where

o w . Ofora%0,i+j<h,
Y I fu®e™x.0) = {1 in the other cases,

s=1

~

4o

We=a

k=1

0f01ﬁ#0,i+]<h’

r=1

p 1 in the other cases,

<
o~

5 nnxmwwn={
X ll’k

Jw.» [, are functions from (2), 4 > 2.

Put
L, =L(fis fas s So-1) = (P-h(x, ) J. K(x, s)ds, h=2,
0+

Tz = Ez(fl),

T= 5, T o) for B2,

We formally differentiate the series (2) and substitute into (1). Comparing the
coefficients of equal powers of ¢(x, C), we obtain for unknown functions f,(x)
the system of the recurrence equations

30 ﬂﬂﬂ=ﬂ—Mﬁ+¢Wn@jMWQM, Nz 2.

Consider the following assumptions:
Ay, g(x) € C'(0, x0], g(x) > 0, limg(x) = 0, x, > 0, g'(x) ~ Yy(x).g"(x) for
x—=0+
x—=0% 1, >0, limy,(x).g(x) = 0, t is here and in the scquel any positive

x—+0*
number.

Ay, T, e CO0, Xo], Ty = boy(x) - 8(x) + O(byu(x) . g **(x)), & > 0, lim by,(x) .
x-0+
. gt(x) = 0’ i= 0) la bOh(x) € Cl(o) x0]¢ bOh(x) 7& 0’ bc;h(x) ~ ‘I/Zh(x) . glzu(x)

for x - 0%, 25, + 1 > 0, lim ¥,,(x) . g'(x) = 0, lim [bo,(x)]~" . g'(x) = 0,
h>2. x=or x+0* ’

Ay, There exists constants v, € (A, 4, + min {1;, 4,, + 1, &, — 4%_.}), where
A:—l = max(dl, ceny Ah—i)’ Ah‘l = ;'h‘l + 8,'_‘ -_— Vh_x, Al = O,h 2 2. .

A‘, uu(x), vu(x) € CO(O, xo], lim “u(«x) . (P(x, C) = 0, lim 5 | vu(s) I ds < 00,
x-=0¢

x—+0¢ x -
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As, p(x) € C°0, x,], p(x) = bo(x) . g"(x) + O(b(x) . g"**(x)), & > 0, lim by(x) .

x—=0+
-8() = 0,i=0,1,bo(x) € C(0, xo], bo(x) # 0, bo(x) ~ Pa(x) . g"(x) for
x=0% 2 + 1 >0, limy,(x) . g(x) = 0, lim g°(x) . [bo(x)]_! = 0.

x=0+ x—=0+

In the sequel we shall use the results of the papers [4], [8], which we can
formulate for our purposes in the following way:

Lemma 2.1. S.uppose that (A,), (As]) hold. Let q be a constant, q < 0. Then the
equation

gx).y" =q.y+ p(x)
has a unique solution on an interval (0, x,] satisfying the relations
-1
q

on an interval (0, x,], 0 < X, < X, v€ (4, A + min {4, 1, + 1, &}). For the proof
see [4].

yx) = bo(x) g(x) + O(g'(x)),  ¥'(x) = 0(g" ' (x)),

Theorem 2.1. Let assumptions (A,), (A,), (A;) hold. Then coefficients f,(x) of the
series (2) possess the asymptotic form

(4 Si(x) = bou(x) g‘h(x) + O(gv"(x))a Sux) = O(gvh_l(x)),

on an interval (0, x,,], 0 < x,, < Xx,.
Moreover, the functions f,(x) are uniquely defined as solutions of the recurrence
equations (3,) and

5 A =T {[exp [ dz] 060 [k, u)du}ds
x 0+

o Q) . 8(s)
hold for x € (0, x,]-
For the proof see [8].

3. THE EXISTENCE AND ASYMPTOTIC BEHAVIOUR
OF SOLUTIONS OF THE EQUATION (1)

The technique used for the existence and asymptotic behaviour of solutions of the
equation (1) is based on the well-known Schauder's fixed point theorem and
Wazewski,s topological method (see [9]).

The Schauder’s theorem. Let E be a Banach space and S its nonempty convex
and closed subset. If P is a continuous mapping of S into itself and PS is relatively
compact then the mapping P has at least one fixed point.

10
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Theorem 3.1. Let assumptions (4), i = 1,...,4 hold
Then for each value of a parameter C 3 O there exists a solution y(x, C) of the
equation (1) such that

(6) [y(x, C) — y24(x, O S 31 (f(x) 0"x, ONP | i=0,1
on an interval (0, x,], & > 1 a constant, x, depends on 8, C, n and f,(x) has the form
of (5,)-

Proof.

1. We shall define the Banach space E and a subset S of E with required
properties.

2. We construct a mapping P of S into itself.

3. We prove the continuity of a mapping P and relative compactness of PS.

1. The concrete Banach space which appears in the following is the space
C°[0, xo] of all continuous functions on the interval (0, x,], xo > 0, with the
usual norm

h(x) = max | h(x)]|.
xe[0, xo]

A subset S of the Banach space C°[0, x,] will be the set of all functions A(x) from
CO[0, x,] satisfying the inequality

@) [h(x) = Yu-1(x, C) | < 6. fi(X) . 0"(x, C) |.

The set S is obviously nonempty and, as it is easy to see, is convex and closed.
2. Now we shall construct the mapping P. Let ho(x) € S is an arbitrary function.
Substituting Ay(s) instead of y(s) into (1) we obtain the differential equation

x N
®) gy =y+ [ 3 u()uys)y'e ho(s)] ds.
Set
(91) )’(x) = yn—-l(x’ C) + (P”_l(x9 C) . YO’
) Y'(x) = yp-i(x,C) + [¢" '(x, O)] Yy,

n—1
where new variables satisfy the differential equation

(10) gx) Yo =1 —-n).Y, +.Y,.

It follows from (7) that

(11) ho(X) = y,—1(x, C) + Hy(x),  Ho(x) < | f(x). ¢"(x,C)|.
Substituting (9,), (9,), (11) into the equation (8) and by means of (3,), we get

(1) Y= Yo+ o(x, O, + 0! ~(x, ©) [ s, 5, Yo(x), Hos)) ds,
0+

11
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where

2n
(13 Q,= M)g \ 1P.m(x) @"(x, C) Y5 (%) Ryay(5) 0" (s, C) H3(s),

4
14 =Y i,,i@) = (iy, ..., iy), Pia)(x) is the polynomial with respect to arguments
n=1

u;i(x), fu(x), Rya)(s) is the polynomial with respect to arguments v;;(s), f,(s),
h=1,...on—1,i+j=2,.., N
Substituting (12) into (10) we obtain

(14) g(x) Yo =(2 = n) Yy + o(x,O) L, + ¢' 7"(x, C) } Qu(x, 5, Yo(x), Ho(s)) ds.
0+

We shall prove that (14) has at most one solution satisfying conditions Y,(0*) = 0
and | Yo(x)| < 8. £,(x). ¢(x, C) | on an interval (0, x,].

In view of (9,), (9,) it is obvious that solution of (14) determine the solution
of (8).

In the sequel we shall use the Wazewski’s topological method. Investigate the
behavior of integral curves of (14) with respect to the boundary of the set

Qo = {(x, Y0): 0 < x < Xq, tp(x, Yo) < 0, up(x, Yo) = Y2 — [.£,(x). o(x, O)]*}.
We calculate the derivative #y(x, Y,) along the trajectories of (14) on the set

Uy = {(x, Yo) : 0 < x < xq, to(x, Yy) = 0}.
We obtain from the definition uy(x, Y,) and (14) that

ty(x, yo) = E?T) [2—=n) Y3+ Yoo (x, C) X, + Yo' "(x, C) x

x 5 0,(x, 5, Yo(x), Ho(s)) ds — 85,(0) 97(x, ©) (gx) £ + £,)].

The relation g(x) . f, = (1 — n). f, + Z, yields
. 2
“o(x, .Vo) = g—('x—)‘ [)’0(0(’-': C) En - 62fn(x) (pz(x’ C) zn +

15) + Y9! (5, O ] Q4w 5, 7o), Holo) ds]

By L'Hospital’s rule and from the fact that g’(x) ~ ¥,(x) . g*'(x) for x - 0* we

obtain that lim _"if('_?. = 0, ¢ is arbitrary real number.
x-0+ g(x

The assumptions of the theorem 3.1. and the relation lim 90 = 0 imply

x=0+  g(x)
that the powers of the function @(x, C) influence in decisive way the convergence

12
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to zero of single terms of (15). It is obvious that the first two terms in (15) are of the
second order with respect to ¢(x, C). Estimate the integral terms in (15). Using
the relation (11) and the definition Yy, ¢(x, C), Q,, we obtain

| Yoo! ~"(x, C’i 0,05, 5, Yo(x), Ho(s)) ds | =

=|Yp'"(x, O f Y Piay(x) 9" (x, C) Y5(x) Rya(s) 9"(s, C) Hi(s) ds | 5

0+ I(4)=n+1

2n x
S0 ", C)I Y 0 WAx, ©) Pyyy(x) | «Sf.,(x)"of Riy(s) | fu(s)|" ds |.
(4)=n+1 +
The last term is of the third order at least with respect to ¢(x, C).
Hence, because of f, . X, ~ (n — 1). b2,(x) . g***(x) for x - 0%, we have

(16) sgn to(x, ¥o) = sgn (—£,(x) . Z,) = —1

for sufficiently small x, depending on C, 6, n.

The relation (16) implies that each point of the set U, is a strict ingress point
with respect to the equation (14). Change the orientation of the axis x into opposite.
Now each point of the set U, is a strict egress peint with respect to the new system
of co-ordinates. Let Q,, be a sct of all strict egress point.

Let Z(x) € Q¢ n Qy,,

Z(x) = {(x, Yo) : x = Xq0,0 < X0 < Xo, Uo(x, ¥o) < 0}.

Then U, n Z(x) is not a retract of Z(x). For, if there exists a retraction m : Z(x) —
— Uy N Z(x), then there exists a continuous map of Z(x) into itself, x - —n(x),
without fixed points. This contradicts the Brouwer’s fixed point theorem. But
U, N Z(x) is a retract of U,, because we can choose a retraction n(x, Y,) =
= (Xo0, Y3g), Where uy(x00, ¥5) = 0, sgn Y, = sgn Yg.

By Wazewski's topological method there exists at least one point (x40, ¥o) €
€ Z(x) n Q, such that the solution of (14) remains in £, on its maximal interval
of existence to the left of x4,. It is obvious that this assertion remains true for
arbitrary function hy(x) € S.

Now we shall prove a uniquéness of the solution of (14) satisfying the given
conditions.

Let Y, be a solution of (14). Put Z, = Y, — Y,.

Substituting into (14) we obtain

A7) g(x) Yy = 2 — m) Zo + 0" C)of [0.(%, 5, Zo(x) + ToCx, Ho(s))—
- Qn(x9 Sy YO(X), HO(S))] d"‘

13
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Let Q, be a region 2, = {(x, Zy): 0 < x < x,, u;(x, Zy) < 0}, where u,(x, Z,) =

=Zy — [6.£,(x). ¢'%(x, O)]?, « > 0 is sufficiently small constant. Investigate

the behavior of integral curves of (17) with respect to the boundary of Q.
Using the same method as above, we have

(18) sgnu,(x, Zy) = —1

for sufficiently small x,. It is obvious that Q, = @,. Let Z,(x) be any nonzero
solution of (17) lying in Q, and (x,, Zy(x;) € Q, for 0 < x,; < Xx,.

Let &, > 0 be a constant 8, < & such that (x,, Zy(x,)) € 6Q,(5,). If the solution
Zo(x) lay in ©,(5,) for 0 < x < x,, it would have to be valid that (x,, Z,)) is
a strict egress point of 8Q,(8,). This contradicts the relation (18).

Hence, in Q, there is only the trivial solution of (17). The uniqueness is proved.
From (9,) we obtain

(19) l}’o(x) - yn—l(x: C)I = I (p"—‘(x) C) . Y() | < 6 . I/;,(.X) (P"(x’ C) I)

where yo(x) is a solution of (8).
Similarly from (9,) we have

| yo(x) = ya-1(x, CO) | =

o \(x, C) 0" l(x,C)
%O pi_9 O, o
) ‘ O

Since | Py | < 6. 0(x,0), 1 /,(x) + Z,1 =6.8(x). '~ "(x,C) . | (,(x) . ¢"(x, CO)) |,
it follows that

(20) [76(x) = ya-1(x, O) | < 6.1 (/i) . 9"(x, C))' |.

We enlarge the solution y,(x) continuously to the point x = 0. Introduce a mapp-
ing P as follows:

P : hy(x) = yo(x).
Evidently that P maps S into itself and PS < S.
3. It remains to prove that PS is relatively compact and P is a continuous
mapping.
It is easy to see, from inequalities (19), (20), that PS is the set of uniformly
bounded and equicontinuous functions for x € [0, x,].

By Ascoli’s theorem (see [10]) ‘PS is relatively compact. Let {i(x)}* be an
arbitrary sequence in S such that

Il hy(x) — ho€x) || = & .ﬁm g, =0, hyx)eS.
-+ 00
It is obvious that the solution Y,(x) of the equation

@) gx)Yo=Q2—-n)Y, + o(x, O L, + ¢1'"(X,C)°} Q(x, 5, Yo(x), Hy(s)) ds,

14
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corresponds to the function A (x) and Y, (x) € Q,. Similarly, the solution ¥y(x)
of (14) corresponds to the function hy(x).
We shall show that | ¥,(x) — Yo(x) | - 0 uniformly on [0, x,]. Consider the
region
Q= {(x, Yp) ;0 < x < xo, ub(x, ¥o) < 0},

where u(x, Yo) = (Yo — Yo)? — [& - fu(x) . ' 7%(x, O)]>, « > 0 is sufficiently
small constant, k > 1. Evidently, Q, < Qf for any k and sufficiently small x,.
Investigate the behaviour of integral curves of (21) with respect to the boundary
of Qf.

Using the same method, as above, we obtain for trajectory derivatives

sgn up(x, Yo) = —1

for sufficiently small x, and any k.

By Wazewski’s topological method there exists at least one solution of (21)
lying in Q, where, of course, the solution ¥,(x) of (21) lies.

Hence, it follows that

| Vi(x) = Yox) | < & . | fulx) - ¢'(x,C)| S M .¢,

M > 0 is a constant depending on n, x,.
From (9,) we obtain '

[ 1) = o) | £ 0" (%, C) . | Fi(x) = Yo() | S &, M. 9"~ '(x,C) S &, . m,

on an interval [0, x,].

This estimate implies that P is continuous. We have thus proved that the
mapping P satisfies the assumptions of the Schauder’s theorem and hence there
exists a function A(x) € S with h(x) = P(h(x)), namely h(x) = y(x).

The proof is complete. . ‘

Theorem 3.1. Let assumptions (Ay), i = 1,...,4 are fulfilled. Then the next
asymptotic estimates of the solution y(x, C) of (1) hold.

y(x, €) z”‘_[,l L&) o' > O for x»0*%,i=0,1,
k=1

where f,(x) is function of (4,).
Proof. The assertions of the theorems (2.1), (3.1.) remain true, therefore it is
sufficient to show that

i@’ O1° o forjo0,1,h=2,..,n—1
x>0+ [f-1(x) "7 (x, )1 h P BT S .

16
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Using the theorem 2.1 and the relations lim M =0 angi lim [bo,,(x)]".

.8'(x) =

x=0+  gi(x)- x=0+
0,k=+1,h=2,....,n— 1, we get
X e'x,0) . bou(x) g*(x)

- = lim o(x, C) = 0.
20+ fr_ (x) 0" 1(x,C)  x-04 bg,_((x) g™ 1(x)

From (4,) we obtain

lim

DO _ o EDREIE o

s=0r o1 0", €)' xm0s g(0) Sy + (B = 1) fi(%)

= lim hbox(x) 8“(-")

,CO)=0.
x=0+ (h —1) bo,.—x(x) gah_l(x)(p (. Q)

The theorem is proved. '
Example. Consider the equation

xly' =y+ 0§+y(x) sy(s) ds.

In this case g(x) = x%, uy (x) = 1, v3,(8) =5, N=2, u;; = v; =0,

¢o(x, C) = Cexp (Tlo— -—-1—)

X

It is easy to see that assumptions theorems 2.1., 3.1., 3.2. fulfilled, e.g. for n = 4.
The recurrence equation (3,) have the form

¢:1=
@*: X’}
0% X%}

4, 2
¢ xS

Hence

16

1,

= —fs + ¢7%(x, ©) [ s0(x, C) (s, C) s,
0o+

Il

=23 + 9735, ©) [SL19) (5, €) 965, ©) + £1(9) #°G, €) p(s, €]

=34 + o~ 4x, C)oj:s[fZ(x) 12(8) ‘pz(x, C) ¢’*(s, C) +
+/3(x) . 9*(x, ©) . 0(s, C) + f3(5) . 9°(s5, C) . 9(x, C)] ds.

Si(x) =1,

=% +06™),  f3=06"7), v e(% 2)’

, - 7
fS(x) a %XG + O(x2v_1), f; = O(xzn 2)) v3 E<39 "2—)v
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Ja(x) = Egz—x" + 0(x*™),  fi=0(x™"?), v4e<—g——, 5).

By theorem 3.2.,

Vx5 O & ¢ + (x° + 0G:™™) ¢ + (% x° + 0(x“’)> ¢’.
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