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A FOUR-POINT PROBLEM FOR DIFFERENTIAL
EQUATIONS OF THE SECOND ORDER
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In honour of the 60™ birthday anniversary of Prof. M. Rdb

Abstract. The paper deals with the four-point problem 4" = f(t, u, w), u(c) — u(a) = A,
u(b) — u(d) = B, where a,b,c,d, A, BER, a < ¢ < d < b. The sufficient conditions for the
existence of solutions of this problem are established.
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The questions of existence and uniqueness of solutions of the two-point boundary
value problem for differential equations of the second order have a long history,
going back to Picard (1893).

The boundary problems

(0.1) u’ = St u,u'),
2 ,
0.2) > (auu(j—l)(a) + bu“(j,;]- “(b)) = i=12,
Jj=1 )

where a, b, a;;, by, c,e (=0, +®), a < b, and f is a continuous function or
satisfies the local Carathéodory conditions, are solved for example in [3], [5], [7],
[8], [12],. In [10], [12] the linear conditions (0.2) are generalized for the case of
nonlinear ones.

The three-point problems for differential equations of the second order were
studied in [1], [2], [9], and [11]. The problem of existence of solutions of the
equation

u' = f(t,u),

satisfying the conditions

u(0) = u(@) = u(2a), ae(—oo, +»)
. is solved in [1], [2]. ’
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1. RACHUNKOVA

The theorems of existence and uniqueness of solutions of the equation (0.1)
satisfying the conditons

u(a)=c11 “(b)=u(to)+cz, a’b, tmcucze('—w, +CD),0< to <b,

are proved in [11] and for the linear differential equation in [9].
I

Our paper deals with the problem of existence of solutions of the equation

(1.1 u' = f(t,u, v),
defined on the interval [a, b] and satisfying the conditions
1.2 u(c) — u@ = 4, ud) — u(d) = B,

where A, Be (-, ®), —0 <a<c<d<b< +o0.
We shall use the following notations:
R= (-, +m®), R, =[0,+x), D = [a, b] x R?, D, = [a,b] xR,

_Jmax{c —a,b—-c} ford—a>b-c
" |max{d —a,b~d} ford—as<b-c,

«=B/(b-d—Ac—-a)b—c+d—a)?,
B=Ab +d/(c—a)—Bc+a))b-aA)b—-—c+d-a)?,
y€R, rg=max{lg|:a<t<b}, r =max{lg)l:ast=b}

go(f) = at* + Bt + y, where

AC*(a, b) is the set of all real functions which are absolutely continuous with
their first derivatives on [a, b].

Car,,(D) is the set of all real functions satisfying the local Carathéodory condi-
tions on D, i.e. fe Car,, (D) iff

J(., %, ) : [a, b] - R is measurable for every (x, y) € R?,

/@, .,.) : R* - R is continuous for almost every ¢ € [a, b],

sup {| f(,x,»)|:1x1+1yl < Q} € L(a, b) for any g € (0, + ).

Definition. A function u € AC'(a, b) which fulfils (1.1) for almost every ¢ € [a, b]
will be called a solution of the equation (1.1). Each solution of (1.1) which satisfies
the conditions (1.2) will be called a solution of the problem (1.1), (1.2).

In the whole paper we suppose that fe Car, (D) and A€ {—1, 1}.

Theorem 1. Let there exist r € (0, + o0) such that on the set D the inequalities

1.3) ALf(t, x,y) — 20]sgnx =2 0 for | x| >r,
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A FOUR-POINT PROBLEM

(1.4) | f(t, x, )| < ot | x],1p])

are fulfilled, where w € Car(D.) is a non-negative function, non-decreasing with
respect to its second and third variables and satisfying the conditions

(1.5) lim sup-;— | w(t o(b — a),0)dt < 1.

e+

Then the problem (1.1), (1.2) has at least one solution.

Corollary. Let there exist r € (0, + o0) such that on the set D the inequalities
(1.3) and *

(1.6) [f&x, | =@ x|+ Oyl + o x]+]y)

are fulfilled, where h,, h, € L(a, b) are non-negative functions satisfying
b b
(1.7 (b—a)[hy()dt + [hy(t)dt <1

and w € Cary, ([a, b] x R,) is a non-negative function, non-decreasing with respect
to its second variable and satisfying the condition

(1.8) lim ——é- + jw(t o) dt =

e~ +o

Then the problem (1.1), (1.2) has at least one solution.

Theorem 2. Let there exist r e (0, + o0) such that on the set D the inequalities
(1.3) and

1.9) x| Salxl+alyl+otlx]+1y])
are fulfilled, where a, , a, € (0, + ©©) satisfy
(1.10) a;(2(b — a)/n)* + a,(2(b — a)/m) < 1

and o is the function from Corollary.
Then the problem (1.1), (1.2) has at least one solution.

Theorem 3. Let there exist r e (0, + o) such that on the set D the mequahtle:
(1.3) and (1.9) are fulfilled, where a,, a, € (0, + ) satisfy

(1.11) a;1(b — a) (/1) + a,72/n < 1

and o : [a, b)) x R, — R, is a function such that
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1. RACHUNKOVA

J w(-»@) €L*a,b) foranygeR,,

(L.12) w(t, ) € C(R,) is non-decreasing,

l lim %(jb 0?(t, @) d)!'* = 0.

g+

Then the problem (1.1), (1.2) has at least one solution.

II

Lemma 1. ([6], Theorem 256, p. 219). If fe AC(t,, t,), f’ € L*(t,, t;) and f(t,) =
=0, where —0 < t; <1, < +o, ty€[ty, t,], then

of 70 ds = @, - a)/u)’j’f"(r) d.

Lemma 2. Let ¢ € (0, + o) satisfy the inequality

2.1 et(b — a) 2/n)* < 1.

Then the problem

2.2) v" = lev,

.3 . v(c) — v(a) = 0, v(d) —v(d) =0

has only the trivial solution.
Proof. Let v be a solution of the problem (2.2), (2.3). By (2.3), there exist

t,€(a,c), t, €(d,b) such that v'(t,) = v'(¢;) = 0. Therefore, in view of (2.2),
we have #y € (#;, 1,) such that v"(¢,) = v(¢,) = 0. It follows from Lemma 1, that
b b -
e 020 dt < 2t/m)* [ () dt
and

249 f 02(‘)'& < 2/m)* (x(b — a))? f 0"2(") dt.
Hence, by (2.2), (2.4), we find, that -

f v"2(1) dt < (e(2/n)* 2(b — a))’ 5 v"(1) dt
and by (2.1) (2.4), we find, that o(¢) = 0 for t e [, b].

Lemma 3. Let a,, g, € (0, + ) satisfy (1.10) and h,, h, € L(a, b) be such that
(25) 'hl(‘)l.s_ah i=12, astsh
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A FOUR-POINT PROBLEM
Then the problem
(2:6) v =h()v + ()0
2.7 u(te) =v'(t) =0, 15,1, €(a b),

has only the trivial solution.
" Proof. Let v be a solution of the problem (2.6), (2.7). Then, by Lemma 1,
we have

2.8) fu'z(t) dt £ (b — a)/n)? j':v"z(t) de
and
.9 fvz(t) dt £ (b — a)/m)* }v"z(t) dz.

Therefore, by (2.5), (2.6), (2.8), (2.9), we obtain
(f v"%(t) d)''? < ((ay 2(b — a)/7)* + a, 2(b — a)/n) (} v"2(1) d)*/2,

From the last inequality, éccording to (1.10) and (2.9), it follows v(f) = O for
te[a, b].

Lemma 4. Let g e Car, (D) and ¢ € (0, + 00) satisfy (2.1). If there exists g* €
€ L(a, b) such that
| &(t, x,»)1 < g*(f)  on D,
then the problem
v" = lev + g(t, v,0"), 2.3)
is solvable.
Proof. See [4] or [8], Theorem 2.4, p. 25.

Lemma 5. Let a,, a, € (0, +©) and let for any h,, h, € L(a, b) satisfying (2.5)
the problem (2.6), (2.7) have only the trivial solution. Then there exists such y e
€ (0, + ), that for any hy, h, € L(a, b) satisfying (2.5), the inequality

0G(t, s)

5| T16L )=y, astssh

(2.10)

is fulfilled, where G is the Green function of the problem (2.6), (2.7).
Proof. See [8], Lemma 2.2, p. 12.
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1L
Lemmas for a priori estimates

Lemma 6. Let r € (0, + o) and w € Car,,.(D.) be a non-negative function, non-
decreasing with respect to its second and third variables and satisfying (1.5).

Then there exists r* € (r, + o) such that for any function v € AC'(a, b) the con-
ditions

3.1 ’ v(a@) = v(c), v(d) = v(b),

3.2 W@ sgnov(®) >0  for |v()| > r, te]a,b),
3.3 [0 S o, |v],Lo'|), fora<t<b
imply the estimate

(3.4 lo@ | + 1’| sr*  forast<h

Proof. The condition (3.1) implies the existence of ¢,, ¢, € (a, b) such that
v'(t) = v'(ty) = 0.If | v(¢) | > r on (a, b) then, by (3.2), v’ has to be strictly mono-
tonous on (a4, b) and we get the contradiction. Therefore there exists ¢, € (a, b)
such that |v(f)) L £ .

Put g, = max {| v'(¢)|: @ < ¢ < b}. Integrating the inequality | v'(f) | £ g, from
totot,wehave |v() L < r + (b — a) go. Let t* € [a, b] be such that | v'(#*) | = g,.
Integrating (3.3) from ¢, to t*, we get

b
(3.5 00 = fo(t, r + (b — a) o, go) dt.

Hence, by (1.5), there exists 6 > 0 such that -
. :
(1 + &) lim sup% fo,eb —a),0dt <1.
e+ a
Consequently there exists ¢* > 0 such that for any ¢ > o* the inequalities
. r+eb-a=s(1+0)eb-a
and ‘

b
(3.6) fo(,(1+8)(b—a)e, - (1+d)o)dt<1

1
e
are satisfied. By (3.5) and (3.6), we obtain g, < o*. Putting
r*=r+(®b-a+1)oe*
we get the estimate (3.4).
Lemma 7. Let r € (0, + o0), a,, a, € (0, + ©) satisfy (1.10) and w € Car,([a, b] x
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x R,) is a non-negative function, non-decreasing with respect to its second variable
and satisfying (1.8).

Then there exists r* e (r, + o) such that for any function v e AC*(a, b) the condi-
tions (3.1), (3.2) and

GD 1Bl =a v +alv@®]l+otlol+]0]), te(abd)
imply the estimate (3.4).
Proof. From (3.1), (3.2) it follows that there exist #,, ¢,, ¢, € (@, b) such that

v'(t) =0v'(t;) =0 and o(ty) = ¢y, Where |co| S r. Put y(f) = v(f) — ¢, for
a £t £ b and consider the equation

(3.8) Y'=h(Oy + h (DY + ho(2),

where h,(f) = a;. k(D) v"(H) sgn vV, i= 1,2, ho(t) = (t, | v | + | v |) k() v"(¢) +
+h()co, k() = (ag o] +ay | 0| + ot |v] + |0 )7 Since | A1) | < ay,
i=1,2,it follows from Lemma 3 that the problem

(3.9) y'=h®Oy + b (0,
(3.10) (o) = y'(t,) =0
has only the trivial solution. Consequently, by Lemma 5, the solution
y@) = 5 G(t, s) ho(s) ds
of the problem (3.8), (3.10) satisfies
[y®Ol+ 1y = ?afblho(S)Ids v+ r)j(l hy()| + s, r + 1yl + 1y ])ds.
Let go = max {|y(®) | + | y'(f)| : a < ¢t < b}. Then
(3.11 00 = y(r + l)af(l hi(s) | + (s, r + @o)) ds.
In view of (1.8) there exists o* > 0 such that for any g9 > g¢* the inequality
3.12) 1 +7r) f(l h(@®| + o r+g)dt<o

is satisfied. From (3.11), (3.12) it is clear that g, < ¢*. Putting r* =o* +r,
we get the estimate (3.4).

Lemma 8. Let re (0, + ), a,,a, € (0, + ) satisfy (1.11) and o : [a, b]x
+R, = R, satisfy (1.12). ‘ ‘

Then there exists r* € (r, + o0) such that for any function v € AC'(a, b) the condi-
tions (3.1), (3.2) and (3.7) imply the estimate (3.4).
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Proof. In the same way as in the proof of Lemma 6 we can find zeros of v*
and the point #, such that | v(#5) 1 < r. By Lemma 1 we obtain

3.13 (.b[ YA dpL? < 21/7:(;: v"2(1) dn)/?

and ’ ‘ .
b b

(3.149) (J ((® — v(t))* A2 < 1(b — @) (2/m) (§ v"*(t) dr)*/2.

b
Let us put go'= ([ v"%(t) df)/2} Then, by the Holder inequality, we get

(3.15) V@) =| j v"(s)ds | < @o(b — a)'/?
and ‘ ' ’
(3.16) lo@)] <1 fo'(s)ds| + 7 < go(b — @)%+ r.

From (3.7) it follows, by virtue of (3.13), 3.14), (3.15) and (3.16)
20;< (a17(b — a) (2/m)* + a3 2t/n) o + ayr</b— a +
b
+([ 0, 7 + 0ob — a + 1)) dr)/2.

In view of (1.11) and (1.12), there exists ¢* > 0 such that for any ¢ > ¢* the
inequality

(ayt(b — @) (2/n)* + a; 2t/n) @ + a,r. /b —a +
b
+(f ot r + b — a + 1)2d1)* < ¢
is valid and consequently ¢, < o*. Putting —
r* =14 oG - @' + b - 0,
in accordance to (3.15), (3.16), we get the estimate (3.4).
v

Proofs of Theorems

Proof of Theorem 1. Let ¢, € (0. + o0) satisfy

X . b
4.1) eo(b — a)* + lim supl fo(t, ob — a),0)dt < 1
| F ¥ e+ @ a

and r* be the constant constructed by means of Lemma 6 for the function
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o, x|,y = o, [x|+ro,|y|+r1)+so|x|+2|a|andfortheconstant
F=r+ry Put

1 for0ss<re,
x(r*,8) = {2 — s/r* for r* <s < 2r%,
0 for s = 2r*,

g(t, %, ) = f(t, x + go(D),y + go(0)) — 22,
g, x,y) = x(r* | x| + |y e, x,

and consider the equation
4.2) v" = dev + g(t, v, ), e e (0, g).

Since ¢ and g satisfy the assumptions of Lemma 4, the problem (4.2), (2.3) has
a solution v. Clearly v satisfies (3.1). Let v(¢) > ¥ for some ¢ € [a, b]). Then v(f) +
.+ go(f) > r and

W) = Axr*, || + [V D (0 + go(D), V' + go(f) — 2a) + ev(?) > 0.
Analogously, if v(f) < —7, then v(f) + go(f) < —r and Av"?) < 0. Consequently v
satisfies (3.2) with the constant 7. Further

L@ | S 1f(1v + g(0), 0" + go() — 2¢| + elo() | =
Sot vl +ro, v +r)+ 2| +elod)]=a@llv], |0

According to (4.1) there exists > 0 such that
4.3 go(b — a)? + (1 + ) lim sup? jw(t o(b — a), @) dt < 1.
e*+te0 &

It follows from (4.3) that there exists ¢* > 0 such that for any ¢ > ¢* the in-
equalities

ro+eb-a=Q1Q+d0eb—-a), ri+es1+9do
eo(b — a)? +% f(w(t, (1 + e —a),(1+8)e)+2|adt <1.
] :

The latter inequality implies that ¢ satisfies (1.5). Hence, by Lemma 6, the estimate
(3.4) is valid and v is a solution of the equation v" = Aev + g(¢, v, v'). Thus u
= v + g, is a solution of the equation

44 u" = Ae(u — go(M) + f(t, u, )

and satisfies the conditions (1.2). Therefore for any ¢ € (0, &,] there exists a solu-
tion u, of the problem (4.4), (1.2) satisfying the estimate | u, | + |u,| S r* + 7o +
+ r, fora £ t £ b. From this it follows that all functions of the set {y, : & € (0, g0}
are uniformly bounded with their derivatives and so also equi-continuous on
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[a, b). Therefore, by the Arzeld —Ascoli lemma, there exists a sequence (g)z~,,

& — 0 for k —» oo, and a sequence (u,);-, uniformly converging together with

(u, )% on [a, b] such that uy(f) = lim u,,(#) is a solution of the problem (1.1), (1.2).
k=

Proof of Theorem 2. Let ¢, € (0, + o) satisfy the inequality g,(2/n)? (b — a)* +
+ a;(2/n)?> (b — a)® + a,(2/n) (b — @) < 1 and r* be the constant constructed
by means of Lemma 7 for the function w(t, | x| + {y]) = o(t,| x| + |y| +
+ ro + 1)) + a;ry + ayry + 2| «| and for the constants a;, + &y, a,, F =T + 1.
Then, using Lemma 7, we can prove Theorem 2 in a similar way as Theorem 1.

Proof of Theorem 3. Theorem 3 can be proved in the same way as Theorem 2,
only by means of Lemma 8.
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