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A FOUR-POINT PROBLEM FOR DIFFERENTIAL 
EQUATIONS OF THE SECOND ORDER 

I R E N A RACHONKOVA 

(Received October 12, 1987) 

In honour of the 60th birthday anniversary of Prof M. Rdb 

Abstract The paper deals with the four-point problem u" =- f(t, u, u'), u(c) — u(a) =• A9 

u(b) — u(d) =- B, where a, b, c, d, A, B e R, a < c < d < b. The sufficient conditions for the 
existence of solutions of this problem are established. 

Key words. Four-point boundary value problem, a priori estimate, Carath6odory conditions. 

MS Classification 34 B 10. 

The questions of existence and uniqueness of solutions of the two-point boundary 
value problem for differential equations of the second order have a long history, 
going back to Picard (1893). 

The boundary problems 
(0.1) u" =f(t,u,u')9 

(0.2) £ (a^'Ka) + buu
u^(b)) « Ci, 1 - 1 , 2 , 

I=-i 

where a, b9aij9bij9cie( — cQ9 + oo), a < b9 and / is a continuous function or 
satisfies the local CarathSodory conditions, are solved for example in [3], [5j* [7], 
[8], [12],. In [10], [12] the linear conditions (0.2) are generalized for the case of 
nonlinear ones. 

The three-point problems for differential equations of the second order were 
studied in [1], [2], [9], and [11]. The problem of existence of solutions of the 
equation 

u'=f(t9u)9 

satisfying the conditions 

H(0) a u(a) = u(2a)9 ae(—oo,+oo) 

is solved in [1], [2]. 
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I. RACHCTNKOVA 

The theorems of existence and uniqueness of solutions of the equation (0.1) 
satisfying the conditons 

«(*) = cl9 u(b) = u(t0) + c2, a, b9109 cl9 c2 e ( - o o , +co), a < t0 < b9 

are proved in [11] and for the linear differential equation in [9], 

Our paper deals with the problem of existence of solutions of the equation 

(1.1) u" =f(t9u9u')9 

defined on the interval [a9 b] and satisfying the conditions 

(1.2) u(c) - u(a) = A9 u(b) - u(d) = B9 

where A9 B e ( - oo, oo), — oo<a<c<d<b< +oo. 

We shall use the following notations: 

R = (-oo, +oo), -R+ = [0, +oo), D = [a9 b]xR2
9 D+ = [a9b]xR2

+9 

(max {c - a, b — c} for d — a > b - c, , . 2 0 , 
T H }, \ ,{ <. , ^ , g0(*) = <*' + pt + y9 where 

(max {d - a9 b - d) for d - a = b - c, * o w 

a = (5/(6 - d) - ^/(c - a)) (b - c + d - a)*"1, 

£ = (A(b + rf)/(c - a) - 5(c + a)/(b - d))(fc - c + J - n)"1, 

y e JR, r0 = max {| g0(/) \ : a g> t ^ b}9 rt = max {| go(0 I : a =; / ^ fc}. 
ACx(a9 b) is the set of all real functions which are absolutely continuous with 

their first derivatives on [a9 b]. 
Carioc(i>) is the set of all real functions satisfying the local Carath^odory condi

tions on D9 i.e. / e Car,oc(2>) iff 
/(•» x9 y) : fa, b] -» R is measurable for every (x9 y) e R2

9 

f(t9.,.) : R2 -» R is continuous for almost every t e [a9 b]f 

sup {| / ( . , x9 y) | : 1 x 1 + 1 y 1 ^ Q} e L(a, 6) for any Q e (0, + oo). 

Definition. A function w e ACx(a9 b) which fulfils (1.1) for almost every t e [a9 b] 
will be called a solution of the equation (1.1). Each solution of (1.1) which satisfies 
the conditions (1.2) will be called a solution of the problem (1.1), (1.2). 

In the whole paper we suppose t h a t / e Carloc(2>) and A 6 {—lf 1}. 

Theorem 1. Let there exist r e (0, + oo) such that an the set D the inequalities 

(1.3) A[/(t, x, y) - 2a] sgn x ^ 0 for | x | > r, 
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A FOUR-POINT PROBLEM 

(1.4) \At,x,y)\£«*t,\x\,\y\)' 

are fulfilled, where co e Carloc(D+) is a non-negative function, non-decreasing with 
respect to its second and third variables and satisfying the conditions 

1 b 

(1.5) lim sup — J co(t, Q(b - a), Q) dt < 1. 
Q-+ + oo Q a 

Then the problem (1.1), (1.2) has at least one solution. 

Corollary, Let there exist re(0, + oo) such that on the set D the inequalities 
(1.3) and • 

(1.6) l f( ' ,x ,y) | Shx(t)\x\ + h2(t)\y\ + co(t,\x\ + \y\) 

are fulfilled, where ht,h2e L(a, b) are non-negative functions satisfying 

(1.7) (b-a)$h1(t)dt+'jh2(t)dt<l 
a a 

and co e Carloc ([a, b]xR+) is a non-negative function, non-decreasing with respect 
to its second variable and satisfying the condition 

1 b 

(1.8) Urn — + j(o(t,Q)dt=:0. 
Q-+ + CO Q a 

Then the problem (1.1), (1.2) has at least one solution. 

Theorem 2. Let there exist re(0, + oo) such that on the set D the inequalities 
(1.3) and 

(1.9) \f(Ux,y)\^ai\x\+a2\y\ + (o(t,\x\ + \y\) 

are fulfilled, where a1,a2e (0, + oo) satisfy 

(1.10) at(2(b - a)/n)2 + a2(2(b - a)/n) < 1 

and co is the function from Corollary. 
Then the problem (1.1), (1.2) has at least one solution. 

Theorem 3. Let there exist r e (0, + oo) such that on the set D the inequalities 
(1.3) and (1.9) are fulfilled, where a1,a2e (0, + oo) satisfy 

(1.11) atx(b - a) (2/n)2 + a2x 2/n < 1 

and co : [a,b]xR+ -* R+ is a function such that 
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co(., Q) 6 L2(a9 b) for any QG R+9 

a)(t9.) e C(R+) is non-decreasing, 

lim l(ia>20,c)d01 / 2 = 0. 
c-> + oo if a 

Then the problem (1.1), (1.2) has at least one solution. 

II 

Lemma 1. ([6], Theorem 256, p. 219). Zffe AC(tx, t2),f' e L2(tx, t2) and f(t0) = 
=- 0, where — oo < tx < t2 < + oo, t0 e [tt, / 2 ], t/te/i 

.j72(od. = (2o2 - .!)/7t)2 Tr\t)At. 
n ti 

Lemma 2* Let e e (0, + oo) satisfy the inequality 

(2.1) fiT(6 - a) (2/TT)2 < 1. 

TAen the problem 

(2.2) t>* = Xev9 

(2.3) i<c) - K«) = 0, v(b) - Kd) = 0 

Aoy 0/1/y /Ae trivial solution. 
Proof. Let t> be a solution of the problem (2.2), (2.3). By (2.3), there exist 

tx e (a, c)9 t2 6 ( i , 6) such that vf(tt) == t>'(/2) = 0. Therefore, in view of (2.2), 
we have t0 e (ti9t2) such that t?"(f0) = v(t0) == 0. It follows from Lemma 1, that 

rJt;'2(0d^(2T/7c)2Ji?' , 2(0df 
a a 

and 

(2.4) J v2(t) dt £ (2/TC)4 (T(6 - a))2 J v,,2(t) dt. 
a a 

Hence, by (2.2), (2.4), we find, that 
6 b 

• J t>"2(0 dt £ (e(2/ir)2 T(6 - a))2 J »"2(0 df 
a a 

and by (2.1) (2.4), we find, that i<0 •» 0 for t e [a, b]. 

Lemma 3. let a1,a2e (0, + oo) satisfy (1.10) and hlth2e Ua, b) be such that 

(2.5) | hit) | £ a„ i = 1,2, a£t£ b. 
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Then the problem 

(2.6) v" = ht(t) v + h2(t) v', 

(2.7) v(t0) = v'(tx) = 0, t0, tt e (a9 b\ 

has only the trivial solution. 
Proof. Let v be a solution of the problem (2.6), (2.7). Then, by Lemma 1, 

we have 
b b 

(2.8) J v,2(t) dt = (2(6 - a)ln)2 J v"2(t) At 
a a 

and 
b b 

(2.9) J v2(t) dt = (2(b - a)lnf J t/'2(0 dr. 
a a 

Therefore, by (2.5), (2.6), (2.8), (2.9), we obtain 

(jv2(0dt)1 / 2 ^ ((ax 2(b - a)/n)2 + a22(b - a)ln)(Jv"2(t)dt)112. 
a a 

From the last inequality, according to (1.10) and (2.9), it follows v(t) = 0 for 
te[a9b]. 

Lemma 4. Let g e Carloc(D) and e e (0, 4- oo) satisfy (2.1). If there exists g* € 
G L(a, fc) such that 

\g(t9x9y)\ ^g*(t) onD , 
then the problem 

v" = Aet; + g(t9 v9 v')9 (2.3) 

is solvable. 

Proof. See [4] or [8], Theorem 2.4, p. 25. 

Lemma 5. Let al9a2e (0, + oo) and let for any hl9h2e L(a9 b) satisfying (2.5) 
the problem (2.6), (2.7) have only the trivial solution. Then there exists such y 6 
e (0, + oo), that for any hl9h2e L(a9 b) satisfying (2.5), the inequality 

(2.10) ЄG(t, s) 
õt + | G(t, s)\UУ, aйt,sѓb 

is fulfilled, where G is the Green function of the problem (2.6), (2.7). 

Proof. See [8], Lemma 2.2, p. 12. 
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III 

Lemmas for a priori estimates 

Lemma 6. Let r e (0, 4- oo) and co e Cari0C(Z>+) be a non-negative function, non-
decreasing with respect to its second and third variables and satisfying (1.5). 

Then there exists r* e (r9 + oo) such that for any function v e ACi(a, b) the con
ditions 

(3.1) • v(a) = v(c), v(d) -= v(b), 

(3.2) Xv"(t) sgn v(t) > 0 for \ v(t) \ > r,te[a, b], 

(3.3) | v"(t) | g co(t, | v |, L v' |), for a < t < b 

imply the estimate 

(3.4) | v(t) | + | v'(t) | ^ r* for a^t ^ b. 

Proof. The condition (3.1) implies the existence of t1,t2e(a,b) such that 
*>'('i) = v'(t2) = 0. If | v(t) | > r on (a, b) then, by (3.2), v' has to be strictly mono
tonous on (a, b) and we get the contradiction. Therefore there exists t0 e (a, b) 
such that | v(t0) L ^ r . 

Put Q0 == max {| v'(t) |: a ^ t ^ b). Integrating the inequality | v'(t) \ g Q0 from 
to to t, we have | v(t) L ^ r + (b - a) Q0. Let /* e [a, b] be such that | v'(t*) | = £0. 
Integrating (3.3) from t± to t*, we get 

b 

(3.5) e2o ^ J <K'> r + (b - a)Q0, Q0) dt. 
a 

Hence, by (1.5), there exists <5 > 0 such that 

1 * 
(1 -f- 8) lim sup — J co(t, Q(b - a), Q) dt < 1. 

Q-* + oo Q a 

Consequently there exists Q* > 0 such that for any Q > Q* the inequalities 

r + Q(b - a) S (1 + <5) Q(b - a) 
and 

1 * 
(3.6) — J co(t, (1 + S)(b - a)o, (1 -f S)Q)dt < 1 

(? a 
are satisfied. By (3.5) and (3.6), we obtain Q0 S £*• Putting 

r* -=r + ( t - a + l)e*, 
we get the estimate (3.4). 

Lemma 7. Let re (0, + oo), al9a2e (0, + oo) jtftfs/y (1.10) and co e Carloc([a, b] x 
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x R+) is a non-negative function, non-decreasing with respect to its second variable 
and satisfying (1.8). 

Then there exists r* e (r, + oo) such that for any function v e ACl(a9 b) the condi
tions (3.1), (3.2) and 

(3.7) \v"(t)\ ^ax\v(t)\ +a2\v'(t)\ + co(t9\v\ + \v'\)9 te(a9b) 

imply the estimate (3.4). 
Proof. From (3.1), (3.2) it follows that there exist t09tl9t2e (a9 b) such that 

v'(tt) = v'(t2) = 0 and v(t0) = c09 where | c0 | <; r. Put y(t) = v(t) — c0 for 
a ^ t ^ b and consider the equation 

(3.8) y" = ht(t)y + h2(t)y' + h0(t)9 

where ht(t) = at. k(t) v"(t) sgn v^x\t)f i = 1,2, Ao(0 = o>(f, | v | + | v' \) k(t) v"(t) + 
+ hx(t) c09 k(t) = (ax\v\ + a2\v'\ + co(t91 v \ + | v' I))"1. Since | ht(t) \ = at9 

i = 1, 2, it follows from Lemma 3 that the problem 

(3.9) y* = Ai(dy + Aa(')/, 

(3.10) ;Kt0) = y'('i) = 0 

has only the trivial solution. Consequently, by Lemma 5, the solution 
b 

y(t)= $G(t9s)h0(s)ds 
a 

of the problem (3.8), (3.10) satisfies 

\y(t)\ + \yXt)\^yi\h0(s)\ds^y(l + r)$(\hl(s)\+<o(s9r + ]y\ + \y'\))ds. 
a a 

Let e0 = max {| y(t) \ + | / ( / ) | : a ^ t £ b}. Then 

(3.11) Q0 £ y(r + 1) J (| ft.(s) | + G>(S) r + <?0))ds. 
a 

In view of (1.8) there exists Q* > 0 such that for any g > g* the inequality 

(3.12) y(l + r) J (| *,(!) | + co(t9 r + Q))dt<e 
a 

is satisfied. From (3.11), (3.12) it is clear that Q0 ^ Q*. Putting r* = <>* + r, 
we get the estimate (3.4). 

Lemma 8. Let re (0 , +oo), ^ , 0 2 6 ( 0 , +00) satisfy (1.11) awf co : [a, 6Jx 
+ .R+ -• JR+ satisfy (1.12). 

TTie/j t/iere exj.yte r* e (r, + 00) such that for any function v e ACx(a9 b) the condi
tions (3.1), (3.2) and (3.7) imply the estimate (3.4). 
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Proof. In the same way as in the proof of Lemma 6 we can find zeros of v' 
and the point t0 such that | v(t0) 1 g r. By Lemma 1 we obtain 

ь ь 
(3.13) (J v'2(t) dt)1'2 £ 2T/TT(J v"2(t) dt)1/2 

a a 

and * 

(3.14) (J(t>(0 - v(t0))
2dt)1,2^(b - a)(2/n)2(\v"2(t)dt)112. 

a a 

b 

Let us put Q0'*S (fv"2(t)dt)1/2.1 Then, by the Holder inequality, we get 
a ' 

(3.15) | t>'(.) | - I } tf"(s) ds | £ Q0(b - a)1'2 

tl 

and 

(3.16) | v(t) \£\S v'(s) ds\ + r^ Qo(b - a)*%+ r. 
to 

From (3.7) it follows, by virtue of (3.13), 3.14), (3.15) and (3.16) 

Q0^ (axx(b - a)(2/n)2 + a22x/n)Q0 + atrjb- a + 

+i(i
c°2^r + Qo(b-a + l)2)dt)1/2

{. 

In view of (1.11) and (1.12), there exists Q* > 0 such that for any Q > Q* the 
inequality 

(axx(b - a)(2/n)2 + a22x/n)Q + axr^b - a + 
b 

+(J co2(t9 r + Q(b-a + l )2d01 / 2 < Q 

is valid and consequently Q0 % Q*. Putting 

r* = r + Q*((b ~ a)112 + (b - a)3/2), 

in accordance to (3.15), (3.16), we get the estimate (3.4). 

IV 

Proofs of Theorems 

Proof of Theorem 1. Let e0 e (0. + oo) satisfy 

ь 
(4.1) e0(Ь - a)2 + lim sup— J co(t9 Q(Ь - a), Q) dt < 1 

в-> + oo [« ð 

and r* be the constant constructed by means of Lemma 6 for the function 
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<b(t> \x\9\y\) - o)(t9 \x\ + r0,1 y | + rt) + e0 \ x \ + 2 | a | and for the constant 
r = r + r0. Put 

1 for0£s£r*9 

X(r*9 s) = < 2 - sir* for r* < s < 2r*, 
0 for s ^ 2r*, 

*(', x9 y) = /(/, x + g0(t)9 y + g0(t)) - 2a, 
g(t, x9y) = x(r*9 \x\+\y \)g(t9 xyy) 

and consider the equation 

(4.2) v" = Xev + g(t9 v9 v')9 e e (0, e0J. 

Since e and g satisfy the assumptions of Lemma 4, the problem (4.2), (2.3) has 
a solution v. Clearly v satisfies (3.1). Let v(t) > r for some t e [a9 b]. Then v(t) + 
+ go(*) > r a n d 

Xv"(t) - XX(r*9 \v\ + \v'\)(f(t9v + g0(t)9 v' + g0(t)) - 2a) + ev(t) > 0. 

Analogously, if v(t) < — r, then t?(/) + g0(0 < — r and At?"7) < 0. Consequently v 
satisfies (3.2) with the constant r. Further 

I V(t) | ^ | /( / , v + g0(t)9 v' + g'0(t)) - 2a | + a | * 0 I £ 
.^ eo(t, | v | + r0, | v' | + rx) + 2 | a | + e0 | v(t)\ == &(/, || * |, It>' |). 

According to (4.1) there exists 5 > 0 such that 

1 b 

(4.3) e0(fc - a)2 + (1 + 8) lim sup — J co(t9 Q(b -a)9Q)dt<l. 
0-f + co (? a 

It follows from (4.3) that there exists Q* > 0 such that for any Q > Q* the in
equalities 

r0 + c(6 - a) £ (1 + <5)(>(fc - a)9 rt + Q£(1 + 5)Q> 

*o(b -a)2 + — $(<o(t,(l + 8)Q(b - a)9(l + S)Q) + 2\a\)dt < 1. 

The latter inequality implies that to satisfies (1.5). Hence, by Lemma 6, the estimate 
(3.4) is valid and v is a solution of the equation v" -= Xev + g(t9 v9 v'). Thus u 
= v + g0 is a solution of the equation 
(4.4) W = Xe(u-g0(t)) + f(t9u9u') 

and satisfies the conditions (1.2). Therefore for any e e (0, e0] there exists a solu
tion ut of the problem (4.4), (1.2) satisfying the estimate | w, | + | u't | g r* + r0 + 
+ rx for a ^ t ^ b. From this it follows that all functions of the set {uB: e e (0, e0]} 
are uniformly bounded with their derivatives and so also equi-continuous on 
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[a, b]. Therefore, by the Arzel&—Ascoli lemma, there exists a sequence (fik)*Llf 

ek -• 0 for k -> co, and a sequence (weic)*=1 uniformly converging together with 
( O A ^ I on [a, b] such that u0(t) = lim t/fik(0 is a solution of the problem (1.1), (1.2). 

Jfc-*oo 

Proof of Theorem 2. Let e0 e (0, + oo) satisfy the inequality e0(2/n)2 (b — a)2 + 
+ a&ln)2 (b - a)2 + a2(2/n) (b - a) < 1 and r* be the constant constructed 
by means of Lemma 7 for the function c5(t, | x | + | y |) = <o(t, \ x \ + | y \ + 
+ r0 + rO 4- axr0 + fl2ri + 2 | a | and for the constants ax + e0, a2, r = r + r0. 
Then, using Lemma 7, we can prove Theorem 2 in a similar way as Theorem 1. 

Proof of Theorem -3. Theorem 3 can be proved in the same way as Theorem 2, 
only by means of Lemma 8. 
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