
Archivum Mathematicum

Pavol Hell; Jaroslav Nešetřil
Universality of directed graphs of a given height

Archivum Mathematicum, Vol. 25 (1989), No. 1-2, 47--54

Persistent URL: http://dml.cz/dmlcz/107338

Terms of use:
© Masaryk University, 1989

Institute of Mathematics of the Academy of Sciences of the Czech Republic provides access to
digitized documents strictly for personal use. Each copy of any part of this document must contain
these Terms of use.

This paper has been digitized, optimized for electronic delivery and stamped
with digital signature within the project DML-CZ: The Czech Digital Mathematics
Library http://project.dml.cz

http://dml.cz/dmlcz/107338
http://project.dml.cz


ARCHIVŮM MATHEMATICUM (BRNO) 
Vol. 25, No. 1 - 2 (1989), 47-54 

UNIVERSALITY OF DIRECTED GRAPHS 
OF A GIVEN HEIGHT 

PAVOL HELL and JAROSLAV N E S E T R l L 
(Received April 20, 1988) 

Dedicated to the memory of Milan Sekanina 

Abstract. We consider the classes of directed graphs which are determined by the existence of 
a homomorphism into (or from) a fixed graph. We completely answer the question when a class 
of this type is universal. 

MS Classification. 05 C 20 

1. INTRODUCTION 

In this paper we deal with directed graphs (without loops and multiple arcs) 
Graphs may be infinite. 

Given graphs G = (V,E), H = (W, F), a homomorphism f: G -• H is a mapping 
V -> W which satisfies (f(x), f(y)) e F for every (x, y) e E. We also may say that 
G maps into H and we denote it by G -• H. 

Denote by GRA the category of all graphs and all their homomorphism. Any 
category X for which there exists an embedding of GRA into X is said to be 
universal (binding), see [5], [3]. A universal category is very rich m the sense that 
every concrete category may be embedded into it. 

One of the main streams in the study of universal categories is formed by efforts 
to find simple examples of universal categories, see [1], [2], [5], [8], [9] for numerous 
examples in various areas of mathematics. 

In this context perhaps it is worth to mention the following. Some time ago 
M. Sekanina and the second author investigated the universality of classes of 
graphs related to Sekanina's characterization of Hamiltonian powers of graphs 
[12]: 
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Let k be a positive integer, let G = (V, E) be an undirected graph. Denote 
by G(k) = (V, E(k)) the graph defined by 

[x, >>] e £<*> iff x * y and dG(x, y) ^ k. 

Here dG(x, y) is the distance of x and j> in G. We call G(fc) the k-th power of C7. 
Among the result which S^kanina and Ne§etfil obtained and which were not yet 
published is the following: 

1.1. Theorem. Let k be a positive integer. Then the class Gra(k) of all k-th powers 
is a universal category. 

In this note we consider the following classes of graphs from the point of view 
of their universality. Let A be a graph. We introduce the following special subclasses 
of the class Gra: 

->A= {G; G-+A}y 

+>A = {G;G++A}, 
A - = {G-9A-+G}9 

A +-> = {G; A +-> G}. 

These classes were investigated previously in various context: in [10] from the 
point of view of algorithmic complexity and in [15] from the point of view of 
algebraic properties (such as the existence of products). 

In [2] and [1] we considered the classes of undirected graphs which contain 
a given graph as a subgraph. As an easy modification we get from this the 
following: 

1.2. Proposition. For every graph A the classes ++ A and A -» are universal. 
For the remaining two cases we do not get always an affirmative answer and 

we give a full solution in this paper. This is stated below as Theorem 3.1 and 3.2. 
The motivation of this paper,is two fold: First we want to complement the 

research for undirected graphs [1], [2]. Secondly the questions considered in this 
paper naturally arised in the study of directed rigid graphs, see our companion 
paper [4]. Our results support the common belief that the directed graphs although 
sometimes easier to construct are in the context of categorial representations 
mostly more difficult to analyse. 

The key to our analysis is the study of balanced graphs. This is contained 
in Section 2 where we define invariants X(G) and A(G); A(G) is called the height 
of G, In Section 3 we state our main results. It appears that it suffices to consider 
the case -* A as the case A -H- is a byproduct of our proof. 

A bit surprisingly the universality of a class -> A is fully characterized by a fact 
whether it contains (just) two mutually rigid graphs. A graph G is rigid if the 
identity is the only homomorphism G -+ G. Two rigid graphs G and H are said 
t& be mutually rigid if they are rigid and there are no homomorphisms G -* H 
and H ~» G. 
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2. BALANCED GRAPHS 

Definition 2.1. A cycle is balanced if it has the same number of arcs going one 
way as going the other way (with respect to a fixed transversal of the cycle). A directed 
graph G = (U,E) is balanced if each of its cycles is balanced. The net length of 
a path is the number of arcs going forward minus the number going backwards. 

A directed path of length n (i.e. with n + 1 vertices) will be denoted by Pn. Finally', 

P^ denotes the doubly infinite directed path. 

Proposition 2.2. For a directed graph G the following two statements are equivalent; 
1. G is balanced, _^ 
2. there is a homomorphism G .-> P^. 
Proof. Since the homomorphic image of an unbalanced cycle must contain 

an unbalanced cycle, it suffices to prove that 1. implies 2. Without loss of 
generality let G be a connected balanced graph. Any two, paths with a fixed 
beginning and a fixed end have the same net length. Let x be a fixed vertex of G 
and let f(y) be the net length of any path from x to y. One can check t h a t / i s 

a homomorphism G ~> P^. 

This leads to the following: 

Definition 2.3. Let G be a balanced graph. Let A(G) be the minimum n such that 

there exists a homomorphism G -• Pn. (Possibly n = oo). We call A(G) the height 
of G. Denote also .A(G) the maximum n such that there exists a homomorphism 

Pn - G. Clearly A(G) g A(G). 
Let us remark that it follows from the above proof of Proposition 2.2 that 

for a connected graph G a homomorphism / : G -• P^ is uniquely determined 
by the value f(x) for any one vertex x of G. It follows that for a connected 

—> 
balanced G with finite height A there exists unique homomorphism/: G -+ PA. 
This homomorphism will also be denoted by A. By convention, we let A denote 

an arbitrary homomorphism G -> P^ if G has infinite height. 
This has several corollaries. We want to mention the following results explicitly 

as we shall need them later: 

Lemma 2.4. Let G be a connected balanced graph with finite /1(G). Then A(x) = 
= max {A(P) | P is a path in G which terminates in x}. 

a 

Lemma 2.5. Let G and H be balanced, f: G -* H a homomorphism. Then A(G) £ 
SA(H). 

a 
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Lemma 2.6. Let G and H be connected balanced graphs with A(G) = A(H) < oo, 
and letf:G-*Hbea homomorphism. Then f preserves A. (Explicitely AH(f(x)) = 
= AG(x) for every x e V(G).) 

D 

Finally we have 

Proposition 2.7. Let G be a rigid balanced graph with finite /1(G). Then G contains 
a rigid path P with A(G) = A(P). 
Proof. Let P be a shortest path (i.e., having the fewest arcs) with X(P) == X(G). 
(It exists by 2.4). Then P can be seen to be rigid by 2.6. 

n 

Remark. Of course 2.7 need not hold for infinite A. 
An antidirected path is a path P with k(P) = 1. Denote by a(G) the maximal 

length (number of arcs) of an antidirected path in.G. We put a(G) = oo if there are 
arbitrarily long antidirected paths. As we shall see below the numbers a{G) may be 
used for testing the existence a homomorphism. 

We begin our investigation of balanced rigid graphs of small height with an 
analysis of rigid trees. 

Denote by Ta the path of length 2a -F 3 which contains an antidirected path 
of length 2a -F 1 and does not contain directed path of length 3. It is easy to see 
that Ta is uniquely determined (up to isomorphism). The path T3 is depicted 
in Fig. 1 (where all arcs are directed upwards). 

N.\K! K j x l ^ 
« * - Tig, 2 

Similarly, Ta%h will denote a path of length 2a + 2b + 4 and height 4, as illustrated 
in Fig. 2. 

Proposition 2.8. For a fixed A the following two statements are equivalent 
L There are mutually rigid trees T9 T\ A(T) = A(T) = A, 
2. A £ 4 . 
Proof. 2. => 1. Consider trees Ta$b. 
Then, using 1.6 there exists a homomorphism f:Tab-+ Ta>v if and only if 

a <> a\b g V Thus Ti2 and T2 t are mutually rigid. It is easy to extend these 
to T2t and T[2 respectively, so that T2i and the T[ 2 remain mutually rigid, 
and have the required A. 

L => 2. Exhausting a few cases one can check that all rigid trees with A ^ 3 are 
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directed paths with A = 2 and the graphs Ta, a ^ 1. (In the only non-trivial case 
.4 = 3, this also follows from the next Proposition.) 

D 

The next result characterises rigid graphs with height ^ 3. Recall that a. retract 
of a graph G is a subgraph H of G such that there exists a homomorphism G .-* H 
with / ( # ) = h for all h e V(H). 

Proposition 2.8. (1) Let G be connected and balanced, A(G) = 3. Then there 
exists an a such that G has a retract isomorphic to Ta. (2) Let G be connected and 

— • • 

balanced, A(G) = /, i = 0, 1, 2. Then G has a retract isomorphic to Pt. 
Proof. Let a be the minimal such that Ta is a subgraph of G. Put V(Ta) = x0> 

*i<o)> *2(o>> xi(i)> •••> *i(a)> *2(a>- *3- We show that Ta isaretract of G. Define 
r : G -• Ta by the following: 

r(z) = the unique vertex £ of Tfl with A(cj) = A(z) and with the distance (# arcs) 
to x0 at least min ((2̂ r + 3), d2) (where dz is the minimum distance between z 
and any vertex v with A(v) = 0 in G). 

This r maps all z with -4(z) = 0 to x0, all z with A(z) = 3 to x3 (by minimality 
of a) and all other vertices "as far away from x0 as possible". It is easy to see 
that r is a homomorphism, and that r(z) = z if z e Ta. 

The proof of (2) is easy. Since Pt -» G -* Pf is rigid, G -• P,- must be a retraction* 

3. MAIN R E S U L T S 

Now we can formulate our main results: 

Theorem 3.1. For a directed graph A the following three statements are equivalent: 
1. Either A is unbalanced or A(A) = 4; 
2. There are two mutually rigid paths Pt and P2 of height 4 which admit homo­

morphism into A; 
3. The class -> A is universal. 

Theorem 3.2. For a directed graph A the following two statements are equivalent: 
1. Either A is unbalanced or A(A) ^ 3; 
2. The class A +-> is universal. 
First, we shall prove Theorem 3.1, Theorem 3.2 will be proved similarly. 
We shall make use of the following: 

Lemma 3.3. Let P be a rigid finite path, A(P) ̂  4. Then there are mutually rigid 
paths Pt, P2 such that P is a homomorphic image of both Pt and P2. 

Proof. Put a(P) = k. An antidirected path in P is called of type 1 (type 2> 
respectively) if it contains only vertices x with A(x) = 1 and 2 (A(x) = 2 and 3y 
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respectively). (Note that every antidirected path contains vertices with two values 
of A only.) Let Px (P2 respectively) be the path which is obtained from P replacing 
every antidirected path of length a of type 1 (type 2 respectively) by an antidirected 
path of length k + a. It is easy to check (using 2.6) that Px, P2 are rigid, that 
there is no homomorphism Px -* P2 and P2 -» Px, and that P is a homomorphic 
image of both Px and P2. 

a 

Proof of Theorem 3.1. 1. <=>2. is a combination of Lemma 3.3 and Proposi­
tion 2.8. Next, we prove 3 => 2, which is easier. Of course it follows from 
universality that there are 2 mutually rigid graphs Gx, G2 which admit homo-
morphisms to H. Using Proposition 2.8 and Lemma 2.6 we get A(H) ^ 4. Combin­
ing Proposition 2.7 with Lemma 3.3 yields 2. 

Now we prove 2. => 3. 
Let Pl9 P2 be two mutually-rigid paths of height 4. Explicitely, let Pt = (Vi9 E^ 

i =- 1,2. Let a?, at e V{ satisfy A(a*) = 0, A(a() = 3, i = 1, 2. Let k ^ 
^ max {a(Px) a(P2)} be a fixed odd number. Let G = (V, E) be a given anti­
symmetric digraph (i.e. such that (JC, y) e E => (y, x) e is). 

We shall construct a directed graph G* = (V*, is*) as follows: 

V* = (VxVx)v(ExV2)u(Ex{aX9...9ak9bl9...9bk}). 

The set of arcs consists of the following arcs: 

((v9 vx)9 (v9 v[)) where (vx, v[) e Ex, 

i(e9 v2)9 (e9 v2)) where (v2,v'2)eE2. 

Furthermore, for any e = (v9 v') e E9 let the vertices (v9 aj), (e9 ax)9 (e9 a2\ ...9(e9 ak\ 
(e9 a%) and the vertices (e, a\)9 (e9 bx)9 (e9 b2)9 ..., (e9 bk)9 (v\ a\) form an antidirected 
path of length k + 1 with ((v9 a°x)9 (e9 ax))eE* and ((e9 a\)9 (e9 bx))eE*. 

Thus the graph G* is obtained from G by replacing every vertex by a copy of Px 

and every edge of G by a copy of P2 and by joining appropriate copies by "long" 
antidirected paths. Obviously G* admits a homomorphism to H. See also Fig. 3 
(again all arrows upwards): 

1 NM J t 
I I I 
I l \ / \ / \ ' ^ / \ / ( l^/ 'N/ \ / \ / \ / | 

INN l\i N\> |\l ^ 

c- N ' l\N N |\M N 
l / \ / \ /V\/sl > l/N/\/N/\/s.l \ 

tifi 
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Now it should be clear that if G = (V, E) and G' -= (V\ E') are directed graphs 
andf: G -• G' is a homomorphism then f induces a homomorphism f* : G* -*• 
-> G*. The mapping f* may be defined by 

f*(v, v,) =- (f(i>), ^ ) , 

f*((v,v'),x) = ((f(v)9f(v')\x). 

On the other hand, if g : G* -> G'* is a homomorphism, then (using the mutual 
rigidity of Px and P2 and the assumption on k) we have 

g({v}xVx) = {v} xV,, 

g({e}xV2) = {e'}xV2. 

Put v = f(v). It is also clear from construction that e' = (f(v),f(v')) if e = (t;, t/). 
Thus g = f * . 

Consequently the homomorphisms between graphs G* fcnd G'* are in 1 — 1 
correspondence with homomorphisms between G and G'. This correspondence 
establishes the desired embedding of the category of all antisymmetric graphs 
into the category of all digraphs which admit homomorphisms to H. 

a 

Proof of Theorem 3.2. We do not need to worry about homomorphic image. 
Thus let P be a path indicated on Fig. 4: 

N l/l/t 
MM l/l 
i l 

Iig.4 

It is easy to show that P is a rigid graph. For a given antisymmetric graph G + 
-I- (V,E) we can construct a directed graph G* = (V*,E*) by replacing every 
edge of G by a copy of the path P. It is a routine to check that every homo­
morphism between G* and H* is induced by a homomorphism between G and H. 
This is similar (in fact easier) to the above proof, we leave the details. 
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