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A NOTE ON NONLINEAR INTEGRAL EQUATIONS 

A.A.S. ZAGHROUT AND Z.M.M. ALY 

(Received February 2, 1986) 

Abstract. This paper is devoted to the existence, uniqueness, and growth of the solutions of 
a system of triple nonlinear integral equations of the form: 

t 
x(t) + f f(t, s, x(s), y(s), z(s)) ds = p(t\ 

0 
t 

y(t) + j" g(t, s, x(s), y(s), z(s)) ds = q(t\ 
o 
t 

z(t) + J h(t, s9 x(s), y(s), z(s)) ds = r(t). 
0 
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1. INTRODUCTION 

The mathematical literature on this subject provided a good information 
concerning the existence, uniqueness, stability of various classes of nonlinear 
Volterra integial equations, see for example ([1—5]). 

In this paper, we study the existence, uniqueness, and growth of solutions of 
a more general system of three nonlinear Volterra equations of the form: 

*(0 = P(t) - J f(t, s, x(s), y(s), z(s)) ds, 
0 

(1-1) y(t) = q(t) - } g(ř, s, x(s), y(s), z(s)) ds, 

z(t) = r(t) - J h(t, s, x(s), y(s), z(s)) ds, 
0 

where x(t) = (xl(t),.... x»(t)), y(t) = (yl(t),.... / ( 0 ) , 
z(t) = (z\t), ...,z"(t)),p(t) = (p\t),...,p\t)), 
q(t) = (q\t), ..., q»(t)),r(t) = (r^t), ...;r"(0) 
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are w-dimensional vector valued functions and continuous on / = [0, T], T > 0 
and 

fit, s, x(s), y(s), z(s)] = (/*[*, s, x^s),..., x»(s), 
y1(s),...,yn(s),zi(s),...,zn(s)l..., 
P[t, s, x'(s),..., x"(s), y\s),..., yn(s), 
z\s),...,zn(sy]), 

g[t, s, x(s), y(s), z(s)] = (gl[t, s, x\s),..., x"(s), y*(s),..., 

/(s),z^s),...,z"(s)],---> 
g"[t, s, x1^), ..., *"(*), 
y1(s),...,yn(s),z1(s),...,zn(s)']) 

and 
h[t, s, x(s), y(s), z(s)] = (hllt, s, x\s),..., xn(s), y\s),... 

yn(s),z1(s),...,zn(s)l..., 
hnt,s,xi(s),...,^,(s),y1(s),..., 
/ ( s ) , ^ ^ ) , . . . , ^ ) ] ) 

are /i-dimensional vector valued functions defined and continuous on domain 

D = {0 Ik s <, t ?k T, || x ||, || y ||, || z || ^ b; T, b < Co}, 

where ||. || denotes a convenient norm defined in Rn, the /i-dimensional vector 
space. 

2. MAIN RESULTS 

In this paper, we shall employ the notation of upper and lower solutions to 
investigate the existence and uniqueness of the solutions of (1.1) and describe 
how these functions become upper and lower bounds of the solutions to the 
system (1.1). Throughout this paper, without further mention, we assume that all 
inequalities between vectors are componentwise. 

Definition 1. A triple of functions (u, v, w), u,v,we C[/, Rn] is called an upper 
solution 0/(1.1) if 

t 

«(0 + J /( ' , s, «(s), v(s), w(s)) ds £ p(0, 
0 

(2.i) m + i g(t, s, rn, m, m)& * q(o, 
o 
t 

W(t) + J h(t, s, u(s), V(s), w(s)) ds £ r(.), 
o 
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and similarly, a triple function (u, v, w), u,v,we C[7, .R"] is called a lower solution 
of (I.I) if the inequalities in (2.1) are reversed. 

Definition 2. The pairs of functions (z, y, z) and (x, y, z) are called maximal and 
minimal solutions 0/(1.1) respectively, if every other solutions (x, y, z) 0/(1.1) 
satisfies the relations: 

x(t) ^ x(t) < x(t), y(t) S y(t) £ y(0, z(t) £ z(t) S z(t), te J. 

Our main hypotheses are: 
(i) The pairs of functions (u, v, w) and (u, v, w), u, v, w, u,V,we C[/, .R*] with 

u(t) _§ u(t), v(t) ;__. v(t), w(t) _g w(t) for all t e J are lower and upper solutions 
of (1.1). 

(ii) For each i, f(t, s, x, y, z), gt(t, s, x, y, z), rt(t, s,x,y,z), i e {1 , . . . , n} are 
monotone decreasing in x, y and z for fixed t,se J, and 

u(t) S x £ u(t), v(t) £ y £ e(0, H>(0 S z ^ w(t), on J. 

(iii) For each t,se J, x, y,z,ke Rn, 

V | | x | | , | |y | | , | | z | | , || k || Zb<ao, 
\\f(t, s, x,y, z) - f(t, s, k, y, z) || £ A \\ x - k ||, 

|| g(t, s, x, y, z) - g(t, s, x, k, z) || £ B || y - k ||, 

|| h(t, s, x, y, z) - g(t, s, x, y, k) || ^ C || z - k ||, 

where A, B, C are non-negative constants. 
We defined the following sequence which will be used in proving the existence 

of maximal solution of the system (1.1): 

w„(0 + J /(*, s, un^x(s), v„-x(s), wn.x(s))ds = p(t), 
0 
t 

(2.2) v„(t) + J g(r, s, u„_,(s),»._,.(-), w„_.(s)) ds - .1(0, 
0 

t 

*«(*) + J h(t, s, un-x(s), i?w-i(s), w ^ W ) ds = r(0, 

with u0 « w, t>0 = v, w0 = w on 7, V || w ||, || i? ||, || w || < b. 
Now, we will state and prove the existence of a maximal and minimal solution 

of (1.2). 

Theorem 2.1. Let the assumptions (i) and (ii) hold. Then, the sequence {w,-, Vn, W„} 
given by (2.2) with u0 = u, €0 = v, i?0 = vp, converges uniformly from above to the 
maximal solution (£, y, z) 0/(1.1) while the sequence {uH,vm, wH} given by (2.2) with 
uo == w, r0 = v, w0 = w, converges uniformly from below to a minimal solution 
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(x, y, z) 0/(1.1). Furthermore, if any solutions 0/(1.1) such that 

u<\ x t\u, v <\ y t\v, w < z < w, 
then, 

ut\U\ t\u2 t\ ... t\ un < ... ^ x_\ X g 2 <: ... < un <_ ... _\Uit\ux t\u, 
v t\v i t\v2 t\ ... t\ vn _\ ... ^ y t\ y t\ y t\ ... t\vnt\... t\v2 <\vx t\v, 

(2.3) w < ^ 1 ^ ^ 2 < . . . ^ v v r t ^ . . . ^ z ^ z ^ z ^ . . . < v v I I ^ . . . 
... _i w2 _i wt _l w on J. 

Proof. Define Rt(t) = un(t) - ut(t), / ' monotone nondecreasing in u,v,w, 
for fixed t,se J and pl, i = 1, ..., n vector valued functions and continuous on 
/ = [0, T\ T > 0. Hence, we have 

Ri(t) = p\t) - J J\t, s, u(s), v(s), w(s)) ds - p\t) + 
o 

t 
+ j /'(*, 5, M(S), v(s), w(s)) ds = 0, 

0 

which implies u(t) _l un(t) on /. In the same way, we can show that 

v(t) t\ vn(t) and w(t) _l wn(t) on /. 

By following on induction argument, we have: 

w„-i(0 t\ ujt), vn.,(t) _\ vn(t), wH^(t) _l wn(t), 

for all n on /. By the same technique, we can show that: 

Unit) ^ Un-xU), Vn(t) <, V^^t), Wn(t) t\ Wn^(t) 

for all n on /. 
Also, now define Rt(t) = ut(t) — w,(f), and using the fact that: 

u(t) _l u(t), v(t) _l v(t\ w(t) ^ w(t), V 16 /, 
we have: 

t 

Ut) ti p\t) - J /'(*, 5, «(s), v(s)> *(«)) ds - p\t) + 
0 

t 

+ f S\U s, u(s), v(s), w(s)) ds = 0, 
0 

where px, i = 1,.. . , n vector valued functions, continuous on / =*= [0, T~\, T > 0, 
/ ' monotone nondecreasing in u, V, w for fixed t,se J, which implies ux _\ w*(0 
on /. 

As before, by using an induction argument, we have un(t) <; un(t) for all n on /. 
Similarly, we can show that vn(t) _l dH(t), wn(t) ^ wn(t) foi all n on /. Thus, the 
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sequence {(un, vn, wn)}9 {(un, vn, wn)} are monotone nondecreasing respecti­
vely and 

u ^ un ^ un ^ u, v ^ vn ^ vn ^ v, w g wn ^ wn ^ w on / . 

Furthermore, using standard arguments used by Candre and Davis [1], it follows 
that these sequence converge unifoimly and monotonically to the solutions (x, y, z) 
and (z, y, z) of (1.1). 

Let the triple (x, y, z) be any solution of (1.1) such that u^x^u, v^y^v, 
w^z^w. Then, by the induction argument, it is easily seen that x ^ un,y ^ vn, 
z g wn, for every n = 0, 1, 2, 3,... 
Thus, we have: 

x < ; ; c < 2 , y ^ y ^ y and z g z ^ z. 

This shows that the triple (z, y, z) is a maximal solution and the triple (x, y, z) is 
a minimal solution of (1.1). This completes the proof of the theorem. 

Remark 1. We remark that the maximal solutions established in the above 
theorem are not necessarily the same. If/, g and h in the system (1.1) satisfy the 
conditions in our hypothesis (iii), then we have the following uniqueness result. 

Theorem 2.2. If the hypotheses (i), (ii) and (iii) hold, then the maximal solution 
(x,y, z) and the minimal solution (x, y, z) obtained in theorem 2.1 coincide on / , 
that is 

x(t) = x(t), y(t) = y(t), z(t) = z(t) foi 1e / . 

Proof. Let (%, y, z) and (x, y, z) be the maximal and minimal solutions of the 
systems (1.1) respectively. Then, we have: 

(2.4) x(t) + J f(t, s, x(s), (s), ž(s)) às = p(t), 
o 

t 

(2.5) ӯ(t) + J g(t, sҖs), ӯ(s), ž(s))ds = q(t), 
o 

ř 

(2.6) ž(t) + í KU sҖs), ӯ(s), ž(s)) ds = г(0, 
0 

and 
t 

(2.7) x(t) + J f(t, s, x(s), y(s), z_(s)) ds = p(t), 
0 

ř 

(2.8) y(0 + J g(t, s, x(s), y(s), z(s)) ds = q(t), 
0 

t 

(2.9) z(t) + J h(t, s, x(s), y(s), г(s)) ds = r(í), 
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Define R(t) = \\x(t) - x(t) ||. Then from (2.4), (2.7), (2.3), and hypotheses 
(ii) and (iii), we obtain 

t 

R(t)^A\R(s)As. 
o 

Note that i*(0) = 0. This implies z(t) = x(t) foi t e / . Similarly, we can prove 
that y(t) = y(t) and z(t) = z(t) for all f e / . This completes the proof of the 
theorem. 

Remark 2. The above technique can be easily applied to similar system of 
rt-integral equations. 
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