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ON THE AXIOMS PRESERVED
BY MODIFICATIONS
OF TOPOLOGIES WITHOUT AXIOMS
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Abstract. Under a topology on a set P we understand a topology without axioms on P, i.e.
a mapping u: exp P — exp P. If u and v are two topologies on P, then u is called finer (coarser)
than v if uX € vX (vX S uX) holds for every subset X < P. Let f be a topological property. Then
a topology possessing f is said to be an f~topology. The coarsest (finest) of all f~topologies on P
which are finer (coarser) than a given topology u on P is called the lower (upper) f~modification
of u. We consider the topological properties f given by means of the well-known axioms 0, I, M,
A, U, K, B*, B, S. In the present paper the axioms are determined which are preserved by the
ndividual f~modifications.

Key words. Topology (without axioms), O, I, M, A, U, K, B*, B, S-axioms, lower modification
of a topology, upper modification of a topology.

MS Classification. Primary 54 A 05, 54 A 10

INTRODUCTION

If Pis a set and u :exp P — exp P a mapping fulfilling the following three
axioms (Dud =0, Q)X <sP=>XcuX, Q)X YS P=uX c uY, then v is
called a Cech topology on P. Some modifications of Cech topologies are studied
in [2], [3], [4]), and the axioms pieserved by these modifications are fully dealt
in [57. We shall consider the topologies obtained by omitting all three axioms in the
definition of Cech topologies. Some modifications of these generalized topologies
are investigated in [6]. The piesent pape1 completes [6] by determining the axioms
preserved by the modifications described in [6]. The results of both these papers
generalize certain results of [3], [4], [5] and have many applications because
generalized topologies occur in various branches of mathematics (see [6]).

A topology without axioms (briefly a topology) # on a set P is a mapping
u :exp P — exp P. A set P provided with a topology u on P is called a topological
space and denoted by (P, u). We consider the following axioms for topologies u
on a given set P: '
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J. SLAPAL

lL.Lud =9 : O-axiom,
2 XeP=XcuX v I-axiom,
lXcsYcP=>uX<cuY M-axiom,
4 X, YcP=>uXvuY)cuXuuY A-axiom,
5.X< P =uuX < uX U-axiom,
6. x,ye P, xeu{y},yeu{x} > x =y K-axiom,
7. x,yeP, xeu{y} = ye u{x} " B*-axiom,
8. xe P = u{x} c {x} B-axiom,
9.9 Xc P=>uXc |Ju{x} S-axiom.
xeX

-Letfe {O,1 M, A, U, K, B*, B, S}. If a topology u fulfils the f~axiom, then it is
called an f~topology. We talk about an fg-topology u if u is an f~topology and g-topo-
logy simultaneously. Analogously fgh-topology etc. can be defined. For a topology u
on a set P, the lower f-modification u, of u (i.e. the coarsest f-topology on P which
is finer than u) and the upper f~modification u’ of u (i.e. the finest f~topology on P
which is coarser than ) are studied in [6]. Of course, for given topologies u and v
on a set P we say that u is finer than v or that v is coarser than ¥ when X < P =
=>uX < vX.

1. 0-MODIFICATION

Theorem 1. Let (P, u) be a topological space, let f€ {0, I, M, A, U, K, B*, B, S},
and let u be an f-topology. Then it holds:
a) uq is an f-topology.
b) If u® exists, then it.is an f-topology.
Proof. a) According to [6], Theorem 1, a), u, always exists and it is defined
by: ’
0 # XS P=>uX =uX,
U0 = 0.

Let us suppose that u is an f~topology. For f = 0 the assettion is obvious, and for
f = I its proof is trivial.

S=M: Let X< Y < P be subsets. If X # 0, then X = uXCuY—uo
Otherwxse, supposmg X = 0 we have o X = 0 < u,Y. Thus, u, is an M-topology.

f= A Let X, Y < P be subsets. It X # 6 # Y, then uo(X L ¥) = u(X v Y)c
S uXvuuY = u,XuuyY. If one of the sets X, Y is non-empty and the other is
empty, then clearly up(X U Y) € uoX U uoY. Finally, let X =Y = 0. Then
u(Xu Y)=uf =0 < upX U uyY. Thus u, is an A-topology.

f=U: Let X < P be a subset and suppose X # 0. Consequently, uotoX =
= uouX. Now, if uX # 0, then uuX = uuX < uX = yyX, and if uX = 0, then
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1]

uguX = u,0 = 0 < u,X. Otherwise, supposing X = 0 we have ugupX =0 < uoX
Thus u, is a U-topology.

fe {K, B*, B}: In these cases the assettlon follows from the fact that u,{x} =
= u{x} for every x € P. .

f = S: As evident, u, is an S-topology.

b) According to [6], Theorem 1, b), u® exists iff « is an O-topology, and then
ul = u.

2. I-MODIFICATION

Theorem 2. Let (P, u) be a topological space. Then it holds:

a) If fe {O,I, M, A, U, K, B*, B, S} and u is na f-topology and if u; exists, then u,
is an f-topology.

b) If fe{O,I, M, A, AU, K, B*, B, S} and u is an ftopology, then W' is an
f-topology.

Proof. a) According to [6], Theorem 2, a), u; exists iff u is an I-topology, and
then u; = u.

b) According to the same Theorem, b), u’ always exists and it is defined by:

XcP=>uX=uXuX

Let us suppose that u is an f~topology. For f = O the proof is trivial, and fo1 f = I
the assertion is obvious.

f=M: Let X< Y < P be subsets. Then WX =uXUXSuYu Y= u'y,
and thus « is an M-topology.

f=A: Let X,Y< P be subsets. Then ¢/ (XU Y)=uXuY)uXuYc
cuXuXuuYuY =u'Xuu'Y. Hence u' is an A-topology.

f=AU: Let X< P be a subset. Then u'u'X = u’(uXu X)=uXuXu
vuuXuvX)cuXuXvuuXuuX =uXu X =u'X. Thus &' is a U-topology
and, according to the previous part of the proof, «' is an AU-topology.

f=K: Let x,ye P be points, xeu'{y}, yeu’{x} Then xeu{y} or x —y, :
and y e u{x} or x = y. Consequently, x = y and u' is a K-topology.

f = B*: Let x, y € P be points, x € u’{y}. Then x € u{y} or x = y and thetefore
yeu{x} ory = x, i.e. ye u'{x}. Hence, u' is a B*-topology.

f = B: In this case the assettion is proved already since v is a B-topology iff it is
a KB*-topology.

f=S:Let® # X < P be a subset. Then u'X = uX U X = U u{x}uU{x} =

= U @x}u{x}) = U u'{x}, and thus ' is an S-topology.
xeX .

Remark 1. The upper I-modification of a U-topology need not be a U-topology ‘
in general — see the following example: Let P = {x, y, z} and put uX = X for any
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subset X < P fulfilling {x} # X # {x, y}, u{x} = {¥}, u{x, y} = P. Then clearly u
is a U-topology (but not an A-topology) on P. It is u'u'{x} = u(u{x} u{xhu
v u{x} U {x} = P while u'{x} = u{x} v {x} = {x, y}. Therefore u' is not a U-to-
pology.

3. M-MODIFICATION

Theorem 3. Let (P, u) be a topological space. Then it holds:

a) Iffe {0, I, M, A, U, K, B, S} and u is an f-topology, then uy, is an f~topology.

b) If fe{0,1, M, A, OK, IK, OB*, IB*, OB, IB, S} and u is an f-topology,
then u™ is an f-topology.

Proof. a) According to [6], Theorem 3, a), u,, always exists and it is defined
by:

XcsP=uyX= [\ uZ
xczcre

Let us suppose that u is an f~topology. For f = O the proof is trivial.

f=1I Let X< P be a subset. Since X <€ Z < P = X c uZ for any set Z, we

have X € [\ uZ = uyX. Thus, u, is an I-topology.
Xczcp

f = M: Obviously, u,, is an M-topology.

f=A:Let X, Y = P be subsets, ze up,(X U Y) a point. Then ze uZ for any
set Z with XU Y < Z < P. Suppose z ¢ uu X U u, Y. Consequently, there exist
sets X', Y with X< X' P, Y< Y’ < P such that z¢ uX’ and z¢ uY’. Thus,
z¢uX v uY',and we have z ¢ u(X’' U Y')since (X' U Y') < uX’' v uY’. But thisis
a contradiction because Xu Y < X'u Y’ c P. Therefore ze uyX U u,Y, and
the inclusion u (X U Y) = uy, X U uy Y is proved. Hence, u,, is an 4-topology.

f = U:Let X< Pbe asubset, x € upyuy, X a point. Since upupy X = N uy,

n uZCYCP
XCczZcp

we have x e uY for each set Y fulfilling () uZ € Y < P. Now, let V be a set with
XcZcp

Xc Ve P Then (| uY< uV < P, and thus xeuuV < uV. Therefore xe
XcyYcp

€ n uV = uyX. Consequently, uyu,X = uyX. Hence, uy is a U-topology.
XcvcP

f=K: Let x,ye P be points, x € uy{y}, yeuy{x}. Then xeu{y}, yeu{x},
and therefore' x = y. Thus u, is a K-topology.
f = B: Let xe P be a point. Then uy,{x} = [\ uZ < u{x} < {x}, so that u,,

xeZCP

is a B-topology.
f=S:LetXc Pbea subset y € uy X a point. Then y e uZ for any set Z with
X c Z < P. Suppose z ¢ |J uy{x}. Consequently, for any point x € X there exists
xeX

a set Y, with xe Y, < P such that y ¢ uY,. Thus, y¢ |J uY,, and we have y ¢
’ xeX
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¢ul) Y,,since uJ Y, = U uwY, follows immediately from the S-axiom. But this

xeX xeX xeX
is a contradiction because X = {J Y, = P. Therefore z € |J uy{x}, and the in--

xeX xeX
clusion uy X = | up{x} is proved. Hence, uy is an A-topology.

xeX

b) Accoiding to [6], Theorem 3, b), u™ always exists and it is defined by:
: XcP=>uMXx=uZ

zZcx
Let us suppose that u is an f~topology. For f = O the proof is trivial.

f=1 Let X< P be a set. Then X = J Z < U uZ = uMX. Therefore uM
Zcx  zZcx
is an I-topology.
f = M: Obviously, uM is an M-topology.

f = A:LetX, Y < Pbesubsets. Thenu™(Xu ¥Y) = |J uZ. Butfor every subset
ZcXcy

Zc XuYsomesubsets X'c Xand Y Y (X' '=XnZ, Y =YnN Z) exist

fulfilling Z = X' U Y’ and consequently, uZ < uX’ v uY’. This implies |J uZ <
Zcxuy
c Uux'v U uY =uMXuUuMY. Thus u™ is an A-topology.
X'cx Yy'cy
fe€ {OK, IK}: Let x, y € P be points, x € uM{y}, ye uM{x}. Then xe uf U u{y} =

= u{y} and yeub U u{x} = u{x}. Therefore x = y, and ¥™ is a K-topology.
Hence, uM is an OK-topology for f = OK, and it is an IK-topology for f = IK.

f€ {OB*, IB*}: Let x, y € P be points, x € u™{y}. Then x € ud U u{y} = u{y} =
= ye u{x} = ub U u{x} = uM{x}. Therefore, u™ is a B*-topology. Thus, uM
is an OB*-topology for f = OB*, and it is an IB*-topology for f = IB*.

fe {OB, IB}: As u is a B-topology iff it is a KB*-topology, the assertion is
proved in these cases already.

f=S:Let0 # X< P be asubset. ThenuMX = | uZ=wbu | uZc

ZCcX g*ZCX
cudu U U ulx} =udou U u{x} = U 9 U u{x}) = U uM{x}. Hence, u™ is
B+¥ZCXxeZ xeX

an S-topology.

Remark 2. a) The lower M-modification of a B*-topology need not be a B*-topo-
logy in general — sée the following example: Let P = {x, y}, uf = 0, u{x} = {y},
u{y} = {x}, uP = {y}. Then uis a B*-topology and up{x} = {y} while uy{y} =
= 0. Thus, u,, is not a B*-topology.

b) The next example showes that the upper M-modification of a U-topology
need not be a U-topology in general: Let P = {x, y,2}, u0 = u{y} = u{z} =
= u{y, z} = uP = 0, u{x} = {x}, u{x, y} = {z}, u{x, z} = {y}. Thenuis a U-topo-
logy, and u™{x, y} = {x, z} while uMuM{x, y} = uM{x, z} = {x, y}. Therefore uM
is not a U-topology.

But, if a U-topology u on a set P fulfils uZ = Z for any subset Z < P, then u™
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is a U-topology. Namely, Zc P, uZc Z = uMuMX = U uY= | uYc
YCuMX Ygz v }z
€ U uY= U uY = u™X for any subset X = P. Especally, if a U-topology u

Ycuz Ycx
Zcx

is moreover a BS-topology, then « is a U-topology.

Now we shall show that the assertion b) of Theorem 3 does not hold for any
fe {K, B*, B} in general. On that account, let P = {x, y, z}, ud = {y, z}, u{x} =
={x}, uly} =u{z} =9, u{x,y} =u{x,z} = u{y,z} =uP =P. Then u is
a B-topology, i.e. a KB*-topology. Since uM{x} = P and v™{y} = u™{z} = {y, z},
uM is neither K-topology nor B*-topology. Consequently, u™ is not a B-topology.

‘ 4. A-MODIFICATION

Theorem 4. Let (P, u) be a topological space. Then it holds:

a) If fe{0,1, M, A, MU, K, B*, B, S} and u is an f-topology, then u, is an
J-topology.

b) If fe {O,1, M, A, U, K, B*, B, S} and u is an f-topology and if u* exists,
then u* is an f-topology.

Proof. a) According to [6], Theorem 4, a), u, always exists and it is defined
by:

XcP>uX=N{ZcPZ= UuX,, UX, X, meN},
=1

where N denotes the set of all positive integers. Let us suppose that u is an f~topo-
logy. For f = O the proof is trivial.

f=1I:Let X < Pbe a subset, x € X a point. Then for any system of sets {X;|i =

=1,...,m} (m e N) fulfilling U X, = X, there exists an index iye {l, ..., m}

such that x e X, . This implies x € uX,, and consequently, x € | uX,. Therefore
i=1

x € u, X which yields X < u,X. Thus u, is an I-topology.
f=M: Let- Xc Y < P be subsets, xeu,X a point. Let {Y,|li =1, ..., m}

(m e N) be a system of sets such that U Y;=Y. Put X;=Y,n X for each

i e{l .,m}. Then U X=X and thus er uX, c U uY,;. Consequently,
=1

x€u,Y. Therefore uAX c u,Y,ie. u,is an M-topology
S = A: The assertion is obvious.

‘ n
f = MU: Let X < P be a subset, xe u,u,X a point. Then x e |J uY, for any
’ i=1
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n
system of sets {Y||i = 1,...,n} (neN) fulfilling Y ¥, =u,X. Let {X||i =
. i=1

m
= 1,...,m} (me N) be a system of sets such that {J X, = X. Put ¥, = u,X,

i=1

m
for each ie{l, ..., m}. Since u, is an MA-topology, we have U Y, =

m .
= U uX;=uy, U X; = u,X. Therefore xe U uY; = U uu X, S U uuX; < U uX;
. = i= i=1 i=1
Consequently xe uAX which implies u, u X < u,X. Thus u,is a U-topology and
hence an MU-topology.

fe {K, B*, B, S}: Clearly, for any point x € P it holds u,{x} = u{x}, and from
this the assertion follows in these cases.

b) Accordingto [6], Theorem 4, b, u* exists iff u is an A-topology, and then u# =
= u.

Remark 3. The lower 4-modification of a U-topology need not be a U-topology
in general — see the following example: Let P = {x, y, z}, uf = {y}, u{x, y} = {z},
uX = X for any subset X < P fulfilling # # X # {x, y}. Then u is a U-topology,
and u,{x, y} = {», z} n {z} n {x, y} = 0 while wu,{x, y} = u B = {y}. Thus u,
is not a U-topology.

5. U-MODIFICATION

Theorem 5. Let (P, u) be a topological space. Then it holds:

a) If fe {M, OM, IM, MA, MU, MK, MB*, MB, MS} and u is an f-topology
and if uy exists, then uy is an f-topology.

b) If fe {M, OM, IM, MA, MU, MB, MS} and u is an f-topology, then u' is an
J-topology.

Proof. a) According to [6], Theorem 5, a), if u is an M-topology, then uy
exists iff u is an U-topology, and then uy = u.

b) According to the same Theoiem, b), if u is an M-topology, then uU exists
and it is defined by:

XcP=>uwX=N{Z<cPuX<c ZuZc Z}.

Let us suppose that u is an f-topology.

f=M:Let X< Yc P be subsets, xe u'X a point. Then xe Z for every
set Z c P fulfilling uX = Z and uZ < Z. Let T < P be a set with Y = T and

uT < T. Then uX < uY = T, and thus x e T. Therefore x e #"Y, and we. have
proved the inclusion VX < «VY. So-that 4V is an M-topology.

S {OM, IM}: The proof is trivial in these cases.

.209



J. SLAPAL

f= MA: Let X, Y < P be subsets, xe u/(Xu Y) a point. Then xe Z for
every set Z < P fulfilling u(X U Y) € Z and uZ < Z. Thus, x € Z for each set
Z c PwithuXuvuY c ZanduZ = Z. Let T, U = P be subsets fulfilling uX < T,
uTc T,uY < U,uUc U ThenuXvuY<c TuU,andu(T v U) < uTu uU <
€ Tu U. Therefore, xe Tu U, i.e. xe T or xe U. Consequently, xe u'X or
x e uVY. From this x € uYX U 4"Y, and we have proved the inclusion ¥Y(X U Y)
c uYX U u'Y. So that 4Y is an A-topology and hence an MA-topology.

fe{MU, MB}: The proof is trivial in these cases.

f= MS: Let 8 # X < P be a subset, ze VX a point. Then ze Z for every
set Z < P fulfilling uX = Z and uZ = Z. Thus, ze Z for any set Z = P with
Uu{x} = Z and uZ c Z. Let {Y, < P|xe X} be an arbitrary system of sets

xeX

such that u{x} = Y, and uY, c Y, for each xe X. Then J u{x} = U Y, and
) xeX xeX
since u is an S-topology, we have uJ Y, = U uY, < |J Y,. Therefore ze J Y,
xeX xeX xeX xeX

and consequently, a point x, € X exists such that ze Y, for any above defined

system of sets. Hence z e uY{x,} = | 4¥{x}, and the inclusion u'X = U uY{x}
xeX xeX

is proved. So, uY is an S-topology, and thus an MS-topology.

Remark 4. From [5], 2.10, it follows, that the assertion b) of Theorem 5 does
not hold for any fe {MK, MB*} in general.

6. K-MODIFICATION

Theorem 6. Let (P, u) be a topological space. Then it holds: If fe {0, I, M, A,
U, K, B*, B, S} and u is an f-topology and if uy or uX respectively exists, then ug or u*
respectively is an f-topology.

Proof. According to [6], Theorem 6, uy or u® respectively exists iff u is a K-topo-
logy, and then uy = u or u* = u 1espectively.

7. B*-MODIFICATION

Theorem 7. Let (P, u) be a topological space. Then it holds:
a) If fe {O, I, M, K, B*, B} and u is an f-topology, then ug. is an f-topology.
b) If fe {O, I, A, B*, B, S} and u is an f-topology, then u®" is an f-topology.
" Proof. a) According to [6], Theorem 7, a), up. always exists and it is defined by:
X < P is no one-point set = ugz. X = uX, '
. x€P = ug{x} = u{x} n {z € P|xeu{z}}.
Let us suppose that u is an f-topology. For fe {0, I} the prqof is trivial.
f=M: Let X< Y < P be subsets. If both X and Y are no one-point sets,
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then ug.X S ug. Y holds trivially. Let X = {x}. If Y is a one-point set, then X = y
so that ug. X < ug.Y is true. Otherwise, let Y be no one-point set. Let y € upeX =
= ug.{x} be a point. Then yeu{x} = uX and consequently, yeuY = up.y,
- Thus, in each case the inclusion uz. X = u. Y is valid. Therefore, ug. is an M-topo.
logy.

f = K: Let x, ye P be points, x € ug.{y}, y € ug.{x}. Then x € u{y}, y € u{x},
and this yields x = y. Hence, ug. is a K-topology.

For f = B* and, since B-axiom = B*-axiom, for f = B as well, the assertion ig
obvious.

b) According to [6], Theorem 7, b), u®* always exists and it is defined by:

X < P is no one-point set = u?'X = uX,
xe P = u"{x} = u{x} U {ze P|x e u{z}}.

Let us suppose that  is an f-topology. For fe {0, I} the proof is trivial.

f = A: Let X, Y < P be subsets. If X = Y or if at least one of the sets X, ¥
is empty, then u®' (XU Y) < u®"X U u®'Y holds trivially. Otherwise, let X # Y,
X#0#Y. Then XUY is no one-point set, and .therefore u?"(Xu Y) =
=uXuY)<suXvuYcu®”XuuPY. Thus, u®° is an A-topology.

fe {B*, B}: The assertion is obvious.

f=S:Let ¥ # X < P be a subset. Supposing X is a one-point set, we have
u®°X = | 4®'{x} tivially. Let us admit that X is no one-point set. Then u®°X =

xeX
= uX c U u{x} = U u®{x}. Therefore, u® is an S-topology.
xeX xeX

Remark 5. a) The assertion a) of Theorem 7 does not hold for any fe {4, U, S}
in general—for fe {4, S} see the example (26) and for f = A the example (27)
of [5]. :

b) We shall give some examples showing that the upper B*-modification of an
ftopology u need not be an f-topology for any fe {M, U, K} in general.

f=M:-Let P={x,y,z}, ud =0, u{x}=1{x}, ulpy} = {x,»}, u{z} =P,
u{x, y} = {x, y}, u{x, z} = u{y,z} = uP = P. Then u is an OIM-topology (i.e.
a Cech topology), and #®{x} = {x} U {y, z} = P while v**{x, y} = u{x,y} =
= {x, y}. Hence u?" is not an M-topology. This example confiims the following
fact introduced in Remark 4 of [6]: The upper B*-modification of a Cech topology
defined in [4], 2.5., is generally different from the upper B*-modification of
a topology (without axioms) defined in Theorem 7, b), of [6].

f=1U: Let P={x,yz}, u{x} = {x}, u{y} = {y}, uX =P for any subset
X < P with {x} # X # {y}. Then u is a U-topology, and u*'{x} = {x, z} while
uPuP*{x} = uP’{x, z} = P. Hence 4*" is not a U-topology. . ‘

f=K: Let P = {x, y}, u{x} = {x}, u¥ = u{y} = uP = P. Then u is a K-topo-
logy, and 4®*{x} = {, y} = u"™{y}. Therefore «* is not a K-topology.
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8. B-MODIFICATION

Theorem 8. Let (P, u) be a topological space. Then it holds:

a)Iffe {0, 1, OM, OU, K, B*, B} and u is an f-topology, then ug is an f-topology.

b)Iffe{0,1, M, A, U, K, B*, B, S} and u is an f-topology and if u® exists, then u®
is an f-topology.

Proof. a) According to [6], Theorem 8, a), up always exists and it is defined by:

X < P is no one-point set = ugX = uX,

. _ {x} for xe { },
xeP = ug{x} = {g for x¢l:l{f€}

Let us suppose that u is an f~topology. For fe {0, I} the proof is trivial.

S =OM: Let X c Y < P be subsets. If both X and Y are no one-point sets,
then upX < upY holds trivially. Thus, let X = {x} and let us admit that Y is no
one-point set. If x € u{x}, then upX = up{x} = {x} < u{x} = uX < uY = u,Y.
Otherwise, if x ¢ u{x}, then upX = uz{x} = 0 = upY. Next, let us suppose that X
is no one-point set and let ¥ be a one-point set. Then X = 6 and consequently’
upX = up0 = ud = 0 < ugY. Finally, suppose both X and Y are one-point sets-
Then X = Y so that uzX = uyzY is true. Thus the inclusion uzX < ugY holds
in every case. Therefore uy is an M-topology, and hence an OM-topology.

S = OU: Let X < P be a subset. Let us admit that X is no one-point set. Then
ugpX = uguX. If uX is not a one-point set, then uzuX = uuX < uX = ugX.
Otherwise, let uX = {x}. Now, if x e u{x}, then uzuX = up{x} = {x} = uX =
= ugX, and if x ¢ u{x}, then uguX = ug{x} = @ < uyzX. Thus, for any not-one-
point subset X = P we have ugugX < upX. Next, suppose X is a one-point set,
X = {y}. If y € u{y}, then ugupX = ugug{y} = up{y} = upX. Otherwise, if y ¢ u{y},
then wugupX = ugug{y} = uz® = ud = O < upgX. Thus, for every subset X < P
the inclusion ugupX < uzX holds. Therefore uy is a U-topology, and hence an
OU-topology.

Sfe {K, B*}: The pioof is trivial in these cases.

JS = B: The assertion is obvious.

b) According to [6], Theorem 8, b), u® exists iff u is a B-topology, and then
uf = u, '

Remark 6. The following examples show that the assertion a) of Theorem 8
does not hold fo1 any fe {M, 4, U, S} in general.

S=M:LetP = {x, y},ud = u{x} = {x}, u{y} = uP = P. Then uis an M-topo-
logy, and uz0 = {x} while uz{y} = {y}. Thus uy is not an M-topology.

fe{4,S}: Let P={x,y,z}, u{x} = {x,y}, u{x,z} =P, uX = X for any
subset X < P for which {x} # X # {x,z}. Then u is an AS-topology, and
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uglx, z} = P while ug{x} U ug{z} = {x, z}. Hence, up is neither A-topology nor
S-topology.

f = U:Let P = {x, y}, uX = {x} for any subset X = P. Then u is a U-topology,
and y,{y} = 0 while ugup{y} = {x}. Therefore up is not a U-topology.

9. S-MODIFICATION

Theorem 9. Let (P, u) be a topological space. Then it holds:

a) If fe {M, OM, IM, MA, MU, MK, MB*, MB, MS} and u is an f-topology,
then ug is an f-topology.

by If fe {M, OM, IM, MA, MU, MK, MB*, MB, MS} and u is an f-topology
and if u* exists, then v’ is an f-topology.

Proof. a) According to [6], Theorem 9, a), if uis an M-topology, then u, exists
and it is defined by:

u = ub,
0#XcP=>uX=u{x}
xeX

Let us suppose that u is an f~topology.

f=M:Let. X< Y < P be subsets. For X = @ = Y the inclusion #,X < 4, Y
holds trivially. Suppose X =0, Y # 0. Then uX = uX = uf < U u{x} = u,Y,

xeY

since u# < u{x} holds for any point x € Y. Finally, suppose X # @ # Y. Then
uX = U u{x} = U u{x} = u,Y. Therefore u, is an M-topology.

xeX xeY .

f = OM: The proof is trivial.
f=1IM:Let X < P be asubset. If X = 0, then X = u,X holds trivially. Suppose
X #9. Then X = { {x} = U u{x} = u,X. Therefore u, is an I-topology, and

xeX xeX

hence an IM-topology.
f= MA: Let X, Y = P be subsets. If at least one of the sets X and Y is empty,
then u(X v Y) € u X U u,Y holds trivially. Suppose X # 0 # Y. Thenu,(Xu Y) =
= U wix} = Uul{x}uvUu{x} =uXuuyY. Thus, u, is an A-topology, and
xeXUY xeX xeY .
hence an M A-topology.
S = MU:Let X c Pbe asubset. Suppose X = 0. Then yu X = uuX.IfuX = 0,

then uuX = uuX < uX = uX. Otherwise, let uX # 0. Then uuX = | u{x} c

xeuX

c uX = u,X, since x euX = u{x} < uuX < uX. Thus, for the empty set X we have
uu X < uX. Next, suppose X # 0. If u, X = 0, then we have u,u,X = uf < u X
(since u, is an M-topology according to the first part of the proof). Otheiwise,
let uX # 0. Then uu X = U u{x} = U ufx} = U U uf{x} =.

xeus X x€e U u{y} yeX x6u{y)
yeX u(y} * o
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= uu{y} c U uu{y} = U u{y} = U u{y} = u,X. Thus, fo1 every subset
u(y) * "] u{y) * 2 u{;)e* 2

X c P the inclusion »,u,X = u,X holds. Therefone u, is a U-topology, and hence
an MU-topology.

fe {MK, MB*, MB}: In these cases the assertion tollows from the fact that
u,{x} = u{x} for each point x € P.

J = S: The asseition is obvious.

b) According to [6], Theorem 9, b), if u is an M-topology, then u" exists iff v is
an S-topology, and then ' = u.

Remark 7. From the Theorems proved in the present paper and the corres-
ponding ones proved in [6] some results attained in [1], [3] and [4] follow. So,
Theorems 4 imply 3.1. and 3.2. of [3], Theotems 5 imply 3.7. and 3.8. of [3],
Theorems 6 imply 4.3. and 4.4. of [4], Theorems 7, a), imply 2.4. of [4], Theo-
tems 8 imply 3.3. and 3.4. of [3], Theorems 9, a), imply 26.A.4. of [1]. Many
results of [57] follow fiom those of this note, too.

Remark 8. Let f,ge {0, I, M, A, U, K, B*, B, S}. According to [5], we say
that the lower f~modifying and the lower g-modifying are commutative if for each
topology u it holds (us), = (u,),, provided that u,, u,, (u;),, (4,), exist. The
commutativity of the upper modifying is defined analogically. Although the modify-
ing of Cech topologies only is dealt in [5], all considerations contained in the
first paragraph of [5] aie valid fo. the modifying of topologies without axioms, too.
Particularly, the statement (7) of [5] implies:

A sufficient (necessary) condition for the lower f-moditying and the lower
g-modifying to be commutative is that for each topology u for which u,, u, (u,, u,,
(up)y (1 )f) exist, the following two conditions hold:

(1) If uis a g-topology, then u, is a g-topology.

(2) If u is an f-topology, then u, is an f-topology.

For the upper modifying the analogical assertion is valid.

Thus, the 1esults attained in the present- article solve the problem, under which
conditions the lower (upper) modifying of topologies without axioms is com-
mutative.

Acknowledgment. The author would like to express his gratitude to Professor
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