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FINITENESS OF THE SET OF SOLUTIONS
OF SOME BOUNDARY-VALUE PROBLEMS
FOR ORDINARY DIFFERENTIAL EQUATIONS

L. BRULL and J. MAWHIN
(Received August 5, 1986)

Abstract. It is shown that for second order ordinary differential equations with analytical non-
linearities and Dirichlet or Neumann boundary conditions, there exist a most finitely many solutions
if they are a priori bounded. Similar results hold for first order ordinary differential equations with
periodic boundary conditions.

MS Classification. 34 B 15, 34 C 25

I. INTRODUCTION

The obtention of existence results for nonlinear boundary value problems by
topological degree methods require in general the obtention of a priori bounds
for all possible solutions of a family of problems containing the original one
(see e.g. [1, 5, 6] for a survey and the literature therein).

In this note, we show that for second order ordinary differential equations with
analytical nonlinearities and Dirichlet or Neumann boundary conditions, a priori
bounds for their possible solutions imply the existence of at most finitely many
solutions. This is a consequence ot a shooting type argument and of the properties
of zeros of real analytic functions. This argument fails in the case of periodic
boundary conditions because the corresponding Poincaré mapping is an analytic
mapping of two variables. However, the method can be applied to the periodic
problem for a first-order scalar differential equation and provides, as special case,
a very easy proof of a result of Pliss [9] for polynomial right-hand sides.

Finally, we can mention that our results can be motivated by a special averaging
method given in [2].
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II. FINITE NUMBERS OF SOLUTIONS
FOR THE DIRICHLET AND NEUMANN PROBLEMS

Let us consider the second order differential equation

1 x4+ flt,x,x) =0
with the boundary conditions

@ ‘ x(0) = x(m) = 0

or

3) x'(0) = x'(z) = 0.

In the following we assume that
i) f: [0, n] x Rx R - R is continuous
and
i) for each t€ [0, ], f(¢, ., .) is analytic on R2.
By classical results on the Cauchy problem, the initial value problem

x" + f(t’ Xy x') = 0,

@ H0) =0, %0 =y

has for each y € R a unique local solution &(t, y) such that £(t,.) is analytic for
each ¢ for which the solution exists. Moreover, the set 2, of y € R such that (., y)
is defined at least over [0, =] is a (possibly empty) open subset of R.

Theorem 1. Assume that there exists a compact subset K of R contained in Q,
and such that each possible solution x of (1), (2) satisfies the condition

x'(0)e K.

Then the problem (1), (2) has at most finitely many solutions.
Proof. It is well known that x is a solution of (1), (2) if and enly if y = x'(0) € 2,
and y satisfies the equation . ‘

¢(n, y) = 0.

If Q, is empty, we are done, and if not, the assumption ye K = £, and the
properties of the set Z of zeros of the real analytic function &(z, .) implies that Z is
at most finite and the same is true for the set of solutions of (1), (2).

Corollar& 1. Assume that Q, = R and that there exists R > 0 such that each
possible solution x of (1), (2) satisfies the inequality
(&) [x'(0)] < R

Then the conclusion of Theorem 1 holds.

.
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FINITENESS OF THE SET OF SOLUTIONS
Proof. Take K = [—R, R].
For u : [0, z] — R continuous on [0, 7], let us write

lull, = max |u(t)|.
tel[0,x]

Corollary 2. Assume that there exists M > 0 such that each possible solution x
of (1), (2) satisfies the inequality ‘

6 Ix'lle £ M.
Then the conclusion of Theorem 1 holds.
Proof. Notice first that (6) and (2) imply that || x ||, < || x'(s) | ds < M,
0

v -

Let us show now that the set Z of zeros of &(m,.) is closed in R. Let (y,) be
a sequence in Z which converges to y. Then each y, € Q, and {(., y,) is a solution
of (1), (2) so that we have

et v | + 1E@y) I S+ )M, te[0,n],neN
by condition (6). If y ¢ Q, it follows from classical results on the extendability of

solutions of the Cauchy problem that &(., y) is detined on [0, b[ forsomebe 70, n[
and that

litzl_[l ey + 18 1] = +oo.

Hence there exists b’ € ] 0, b[ such that
L@ » 1+ 1&@, 91> A + ) M.
‘Now, (., 2), &,(., 2)) is defined op [0, b'] for all z in a neighborhood V of y,
on which (&(b', .), &, (b, .)) is continuous. Thus,
(L+m) M 2 Lim [ 60", y) | + 1 &', p) (1=

n-*oo
=E@, |+ @, 0] > A+ n)M,
a contrad‘iction, Thus Z is closed in R. Now, by (6) we have
IO =M

for all possible solutions x of (1), (2), so that Z < Q,n[~M,M] Thus Z is
a compact subset of R contained in 2, and the result follows from Theorem 1.

Remark 1. Condition (5) of Corollary 1 holds in particular when a constant
R > 0 exists such that

.2
f1x"(t)|de= R
0

‘
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whenever x is solution of (1), (2). This can be seen immediately by Rolle’s theorem
which implies, because of (2), that x'(t) = 0 for some 7€ ]0, n[, and hence

i x'0) | =Ix'(x) - x'(0) | =| ({X"(t)dtl = g [x"(t)|dt < R.

Remark 2. Condition (6) of Corollary 2 holds in particular when there exists
a constant M, such that

(M 1 x1lo £ Mo

" for all possible solutions of (1), (2) and when, in addition, f satisfies a Nagumo
condition !

1% 91 = ey

for te[0, 7], | x| £ M, and y e R, where ¢ : R, — R, \{0} is continuous and
such that
T sds

|

o @(s)
(see e.g. [1, 5]). This is in particular the case if f does not depend upon y.

= 4+ 0.

We now list some conditions upon f which imply that the assumptions of the
above corollaries hold.
For simplicity, we consider the case of

® ' X"+ f(t, x) =0,
® x0) = x(n) =0

with f continuous on [0, 7] x R and f{(z, .) analytic on R for each t€ [0, ], so
that Remark 2 above cah be used. Indeed, each of the following conditions insures
that condition (7) holds fo1 the possible solutions of (8), (9) and together with
a Leray —Schauder’s type argument, they imply indeed the existence of at least
one solution, and hence of finitely many by Corollary 2.

Corollary 3. The problem (8), (9) has a finite number of solutions zf one of the
Jfollowing conditions hold:
1. There exists R > 0 such that
xf(t,x) <0
forte[0,n] and | x| 2 R.
2. There exists B e L*(0, m) such that p(t) < 1 a.e. on [0, n], B(t) < 1 on a subset
of positive measure and

lim sup x~'f (¢, x) < (1)

1|~

‘uniformly a.e. on [0, n].

166



FINITENESS OF 'i'HE SET OF SOLUTIONS

3. There exists a positive integer m and L®-functions o and B such that m* <
Sat) S BE) S (m+ 1) ae. on [0,7], m?> <at) and B(t) < (m + 1)* on
subsets of positive measure and

«t) < liminf x~f(t, x),  limsup x~'f(1, x) < B(¢)
|x] = |x] =
uniformly a.e. on [0, n].

Proof. See [5] for assumption 1, [6] for assumption 2 and [7, 8] for assump-

tion 3.

Remark 3. When
lim x~'f(t, x) = + o,

|x]= 0
the set of solutions of (8), (9) can be infinite, as shown by Ehrmann in [3]. The
same is true when

lim x 7Y (t. x) = m?
|x] =00

for some m e N\{0}, as shown by the linear problem
x" + m?x = g(t)
x(0) = x(n) =0
with g : [0, 7] — R continuous and such that

n

[ g(t)sinmtdt =0.
0

Similar results can be proved in an entirely analogous way for the Neumann
boundary value problem

(10) x" + f(t, x, x) = 0,
(1 x'(0) = x'(m) =0
with the same regularity conditions upon f. The reader will easily adapt the proofs

to the new situation. We shall denote by 7(¢, y) the solution of the initial value
problem g

x" + f(t, x, x') =0,
x0)=y, x0)=0

and by 4, the (open) set of y € R such that #(., y) is defined at least over [0, n].

Theorem 2. Assume that there exists a compact subset K of R contained in A,
and such that each possible solution x of (10), (11) satisfies the condition

x(0) e K.

Then the problem (10), (11) has at most finitely many solutions.
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- Corollary 4. Assume that A, = R and that there exists R > 0 such that each
possible solution x of (10), (11) satisfies the inequality :

| x(0)| = R.

Then the conclusion of Theorem 2 holds.

_Corollary 5. Assume that there exists M > O such that each possible solution x
of (10), (11) satisfies the inequality

Ixlle + 11 % 1le = M.

Then the conclusion of Theorem 2 holds.

Finally, Remark 2 holds for (10), (11) as well and, in Corollary 3, the assumptions
have to be modified as follows:

a) in condition 2, replace “f(r) < 1 and “f(r) < 1” respectively by “B(¢) < 0”
and “f(t) < 07; :

b) in condition 3, replace “positive integer”” by ‘“‘nonnegative integer”.

The above results can be applied to the forced pendulum equation with Dirichlet
boundary conditions
(12) x" + asin x = e(t),
(13) x(0) = x(n) =0,

where e : [0, ] — R is continuous and a € R, as condition 2 of Corollary 3 holds.
Thus, (12), (13) has finitely many solutions. The same argument does not work for
the Neumann conditions

(19) X0 =x'(r) =0
as o
lim x '[asin x — e(t)] = 0
lx] =00 '
uniformly in ¢ € [0, z]. Indeed, (12), (14) has infinitely many solutions as x + 2kmn,
k € Z always are solutions of (12), (14) together with x. However, in this case, we
can take advantage of the periodicity in x of the nonlinear term to obtain finiteness
results on the numbers of solutions modulo 2.
In addition to the 1egularity assumption (i) and (ii), let us assume that
(iii) there exists P > 0 such that

A S, x + P,y) = ft, x, y)
for all e [0, 7], xe Rand ye R. ’

Theorem 3. If (iii) holds and if A, = R, then either (., y) is a solution of (10), (11)
Jor each y e R or (10), (11) has at most finitely many solutions modulo P.
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FINITENESS OF THE SET OF SOLUTIONS
Proof. With the notations above, x is solution of (10), (11) if and only if x(¢) =
= 5(t, y) with y solution of
@(y) := n,(m, y) = 0.

By the uniqueness for the Cauchy problem and the P-periodicity of fin x, we
necessarily have

o(y + P) = o(y)

for y € R and hence ¢ is analytic and P-periodic. If ¢ is identically zero, then (., »)
is a solution of (10), (11) for each y € R; if not, ¢ has a finite number of zeros
in [0, P] and (10), (11) has at most finitely many solutions modulo P.

Remark 4. The case of f = 0 shows that the first conclusion of Theorem 3 can
be realized.

Remark 5. Other boundary conditions than the Dirichlet and the Neumann ones
can be treated as well by a similar approach, fo1 example

x(O) - x(%—) =0

x'(0) = x(%-) =0

for which Theotem 1 and Corollaries 1 and 2 as well as Remark 2 hold with trivial
modifications in the proofs. Corollary 3 also holds with ‘“positive integer m”
replaced by ‘““positive odd integer m”.

or

I1II. THE CASE OF PERIODIC SOLUTIONS

The study of boundary value problems for the second order differential equa-
tion (1), specially by the functional analytic approach, shows that existence results
for the Neumann boundary conditions (3) are in general valid alsofor the periodic
boundary conditions

(15) x(0) — x(2n) = x'(0) — x'(27) = 0.

The reason is that the spectrum of the lineaiized problem is the same for those
two sets of boundary conditions. This similarity is not complete however, as
shown for example in bifurcation theory, where the fact that all eigenvalues are
simple in the Neumann case and all positive eigenvalues double in the periodic
case makes the two situations very different. Hence it is interesting to discuss the
possibility of extending the above results to the case of the boundary conditions (15).
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If we assume again that the regularity conditions (i) and (ii) of Section II are
satisfied, and if we denote by {(¢, ¥, y2) the solution of the initial value problem

X"+ f(t,x,x) =0
x(0) = y,, x'0) = y,,

then x will be a solution of (1), (15) if and only if x(z) = {(¢, y,, y2) with (¥, ¥;)
solution of the system of equations

1 = {Q2r, 15, 92) = 0 =y, — {27, ¥4, ¥3).

Again, if 'y R? denotes the set of (y,, y,) such that {(., y;, ¥,) is defined at
least on [0, 27], the mapping ¢ : I'; — R?, (yy, y,) » 0y — {2m, 4, ), ¥2 —
— (27, y4, y;)) will be analytic but the results on the zeros of real analytic
functions used in Section I a.e not valid for higher dimensions. It is only in the
case where equation (1) posses some symmetries with respect to ¢ or x that the
solutions of some of the boundary-value problems considered in Section II can be
extended to 2z-periodic solutions and the results of this section then give infor-
mation about the finiteness of the set of those special symmetric periodic solutions.
The 1eader can consult [4] for the link between symmetric periodic solutions and
two-poirt boundary value problems, and [10, 11] for interesting numerical re-
sults in this ditection for the forced pendulum equation.

We can however proceed like in Section I in the case of the periodic boundary-
value problem fo1 a first order scalar differential equation

16) x' = f(t, x)
x(0) — x(2n) =0
when we assume again that
i’) f: [0, 27] x R - R is continuous
and
ii") for each t e [0, 2], f(z, .) is analytic on R.
Again, the inital value problem

x = f(t, x),
x(0) =

has for each y € R a unique local solution y(z, y) and y(¢, .) is analytic for each ¢
for which the solution exists. Moreover, the set I'; of y e R such that y(., y) is
defined at least over [0, 2] is a (possibly empty) open subset of R. Finally, x is
a solution of (16) if and only if y = x(0) € I'; and satisfies the equation

Y i=y — y(2n, y) = 0.

It is therefore easy to mimic the proofs in Section II to get the following results:
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Theorem 4. Assume that there exists a compact subset K of R contained in I',
and such that each possible solution x of (16) satisfies the condition

x(0) e K.
Then the problem (16) has at most finitely many solutions.

Corollary 6. Assume that I'; = R and that there exists R > O such that each
possible solution of (16) satisfies the inequality

| x(0)| < R.

Then the conclusion of Theorem 4 holds.

Corollary 7. Assume that there exists M > 0 such that each possible solution x
of (16) satisfies the inequality
an max | x(1)| £ M.
0=t=<2n

Then the conclusion of Theorem 4 holds.
Finally, we can state and prove a sufficient condition on f for which (17) holds.

Corollary 8. Assume that there exists M > 0 such that

(18) S, x) #0
for all te[0,2n] and | x| > M. Then (17) holds for each possible solution of (16)
and hence (16) has at most finitely many solutions.

Proof. Let x be a solution of (16) and let 7 e [0, 27] be such that

x(t) = max x(1).

. te[0,2n]

If te ]0,2x[, then

: 0 = x'(r) = f(r, x(v))

and hence, by (18),
x(t) £ M.

If © = 0 or 2=n, then

x(0) = x(2n) = max x(f)
te[0,2n]

so that
x'(0) £ 0 £ x'(2n)
i.e., as x(0) = x(2n),
S0, x(0)) < 0 = f(27, x(0)).

By the intermediate value theorem, there exists 7, € [0, 27] such that

f(rl’ x(O)) = 0
and hence, by (18)
. x(0) £ M.
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One finds similarly that if t’ € [0, 2] is such that

x(t") = min x(1),
te[0,2n]

one has
x()z - M
and the proof is complete.
The assumptions of Corollary 8 hold in particular for the equation

19 X =x"+p@) X" 4 L+ pan () x + pa(2),

where n is a positive integer and the p; : [0, 2n] — R are continuous, so that (19)
has at most finitely many 2z-periodic solutions. This is a result proved in [9] in
a somewhat more complicated way.
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