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Abstract. The present theses deal with the spectra of powers of graphs. A new estimation of the
index of a graph is given and used for a description of the squares of the graphs having the index
at most four.
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1. INTRODUCTION AND NOTATION

There are many papers dealing with relations between a graph and the spectrum
of its adjacency matrix. One such relationship proposed by A. J. Hoffman [4]
asks the following question: If o(G) denotes the largest eigenvalue, or equivalently
the index of a graph G and « is a real number, characterize those graphs that
satisfy ¢(G) < a. For a = 2 this problem was solved by J. H. Smith [5]. His
result can be formulated as follows: a.= 2 is the largest real number such that
for each ¢ < 2 there is a finite number of graphs G with the index ¢(G) = .

In this paper we consider the following question: What is the similar « for the
class of the second powers of graphs. During these considerations a new estimation
of the index of a graph has been found.

All graphs if not stated otherwise will be undirected, without loops or multiple
edges.

Let G = (X, E) be a graph. The second power or equivalently the square of G
is the graph G? = (X, E’) with the same vertex set X and in which diferent vertices
are adjacent if and only if there is at least one path of the length 1 or 2 in G
between them.

In this paper we use the following theorems from the matrix theory and their -
application to the spectrum of a graph:

1.1. Theorem [3]. The maximal real eigenvalue ' of every principal submatrix .
(of order less than n) of a non-negative matrix A (of order n) does not exceed the
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V. VETCHY -

maximal real eigenvalue r of A. If A is irreducible, then r' < r always holds. If A is
reducible, then r' = r holds for at least one principal submatrix. -

1.2. Theorem [1]. The increase of any element of a non-negative matrix A does
not decrease the maximal real eigenvalue. The maximal real eigenvqlue increases
strictly if A is an irreducible matrix.

1.3. Remark. Theorems 1.1. and 1.2: state that in a (strongly) connected multi-
(di)graph G every subgraph (not equal G) has the index smaller than the index of G

2. THE ESTIMATION OF THE INDEX OF A GRAPH

21 Theorem. For the index ¢ of a graph G = (X,E), X = {v,,0,, ..., Up}

it holds
3, d2) T
-‘Ll_r.l____ < ¢ £min {max dg(v); Z dg(v) } .
i i=1

Proof. For an arbitrary vector x = (x,, ..., x,)T and the euclidian norm &
of the symmetric matrix 4 it holds
8:(4x) = ¢ . 82(%).

Let x = (1, ..., 1)T so we obtain

n —
‘ 82("2101&’ ceny 2 au) < Q\/"

k=1
and from

\/idtz;(vl) < Q\/-'T
i=1 : .

we get the lower bound. The upper bound is obtained from the Schur’s (or
. Frobenius’s) norm of the matrix '

N(4) = (2 Z | au:lz)“z,
i=1k=1
the norm _
g3(x) = mleleI :
and from the inequalities
Qe é g3(A)’

, ¢ = 8,(4) £ N(4)
(see, e.g. [2]). :
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ESTIMATION OF THE INDEX OF G?
2.2. Remark, For regular graphs the equality holds

J Z dtz;(”i)
e=\-

n

since in that case the vector' x = (1, ..., 1)T is a eigenvector for 4 belonging to ¢.

2.3. Remark. Recall that a multigraph G is called semiregular of degrees r,,r,
if it is bipartite having a representation G = (X;, X,, U)with | X, | =n, | X, | =
= n,, n, + n, = n, where each vertex x; € X, has valency r; (i = 1, 2). As accord-
ing to Theorem 2.1.

S nyry + Nnyry i
> nlrf + nzrg . rz
Q= — T = r1r2__—'—"—"'"—\/rlr2,

ny +n, ny, +n,

(nyry = nyry) and X = (\/7y, .oy /T1s /T35 ..., \[T2) is an ecigenvector belonging

ry r;

to \/r,r, the equality holds for semiregular graphs too.

2.4. Remark. Substituting dg (v,) = dg (v,) for dg(v,) we obtain the estimation
of the index of the multi-digraph with the symmetric adjacency matrix.

3. THE INDEX OF G?

3.1. Lemma. Let G contain a vertex x so that dg(x) = 4 or a circuit C,, of the -
length m = 5. Then o(G?) = 4.

Proof. As in those cases G? contains either K, or C2 and o(Ks) =4 = o(C2)
the assertion follows for Remark 1.3.

3.2. Lemma. If G contains as a sﬁbgraph a tree with at least 5 pehdant vertices,
then

o(G? > 4.

Proof. That graph has elther a vertex of the degree at least 4 and the assertion
follows from Lemma 3 1. or it has one of the following graphs as its subgraph
(see fig. 1).

As from Theorem 2.1. we get

G202V, oGl)z [,
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12 174
Q(Gf,3+k) = [16 + m, Q(Gz )= 10
12 : 10
Q(G§,2+k)g\/l6+ma Q(G§+,"1+j)g\/l6+_]:'—_—1-5',

the assertion fdllows from Remark 1.3.

D RS

\ | /

.3#1‘
N M>—L—_ﬂ—<
3+1 1+) .._ﬁ_a (A
>‘ 3 \

Fig. 1

3.3. Lemma. o(G?) > 4, if G contains one of the following graphs as a subgraph

}<}—<

G12+k
k
G /
45678910111213141516
1 2

4 5
N G
G 4
3 /5 6 78 9 10 N 5 7 8 9 10
. 1 2 3 T2 3 4
6
G 78 9 G ‘_:ﬁ—;
12 iz 3
Fig. 2

Proof: The indices of GZ o, ..., G3 o, G2, ..., G2 (see Table) are greater than 4,
so the assertion follows from Remark 1.3.
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ESTIMATION OF THE INDEX OF G?

34. Lemma. Let G contain a block (not necessarily block of G) on at least 5
vertices or two blocks connected by a path, one of these blocks contains at least 4
" vertices, then
o(G?) > 4.

Proof. If G contains a block on 5 vertices, it has either C,, m > 5 or K, 3 as
its subgraph. As o(C2%) = g(K? ;) = 4 the assertion follows from Remark 1.3.
In the second case G has either a vertex of degree at least 4 and the assertion follows .
from Lemma 3.1. or it has one of the following graphs as its subgraph

Fig. 3
and the assertion follows from Lemma 3.3.

3.5. Lemma. Let a connected graph G contain at least three blocks, theﬁ
' o(G?) > 4.

Proof. With regard to Lemmas 3.1. and 3.4. there remain the cases, when G
contains as its subgraph one of the following graphs

Fig. 4

and the assertion follows from Lemma 3.2.

3.6. Lemma. Let a connected graph G contains a block on 4 vertices and has at
least two pendant vertices. Then

0(G?) > 4.
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V. VETCHY

Proof. That G contains as a subgraph one of the following graphs

Fig. 5
According to Theorem 2.1. we obtain

100 . 100 120 —
. 6
e(G3.) 2 (16 + K+9°’

so the assértion follows from Remark 1.3.
3.7. Lemma. Let G contain as a subgraph one of the following graphs

then
e(G? > 4.

G
“ T2 3 s 6 7 20, 4 5 6 7 8,

1

2,2 1 2 4 5 6 7 8 3 72 € &6
Fig. 6

Proof. .
: 0110000 01110000
1011100 10111000
1101110 11011000
AGH=10110110{AG2)={11101100
0111011|G=1,2(01110110/{"
0011101] - 00011011
[0000110] . |oo0o001101
00000110
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As the edge labeled digraphs with the matrices

20
21
20
21
0

0

AHY) =

0
0

have the eigenvalue 4 and the corresponding eigenvectors

[0 11 0 00 0]

20
OI—FIO 0

101110

11 0 11 0

11 1 012-

21
01210

21 21

1021

000 11 0 |

A(Hg,i) =
(i=1,2)

011
30

22

23

— 01 1

31
30
31
30
31

11

10 1

0

0111

0 001
0 000
0 00O

.

x, = (21, 38, 46, 42, 46, 38, 21)7,
x, = (31, 40, 40, 46, 44, 31, 22, 13)T

and with respect to g(G2) = /17 (see Theorem 2.1.) the assertion follows from
Theorem 1.2. and Remark 1.3. )

0 0
0 0
0 O
0 O
10
T °
12
1 13
0 1
1 0

3.8. Theorem. Let 42 denote the class of graphs that are the second power of some
graph. In this class the graphs with the index ¢ < 4 are characterized by the spectrum.
Proof. The following edge labeled graphs have the eigenvalue ¢ = 4, for the
corresponding eigenvector x, (for the indexing of vertices given in Figures). The

unlabeled edges have the weight 1.

2 .
[Z ; 1;2
1

Fig. 7

)

7
1,2 ' .
)
-1
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x, = (6,6,8,10, ..., 10, 8, 6, 6)T.

With regard to Theorem 1.2., Remark 1.3. and with respect to Table we get, that
second powers only the graphs P, (n= 1), Gy ,(n= 3),G,,, = 6), G;,, (6 =
Sn=s15),G,,(7T=sn=<8),Gs,8=n=510), Gs, (4 <n=<7 from Table
have the index ¢ < 4.

3.8." Theorem. The number 4 is the greatest real number so that for each a < 4
there is only a finite number of graphs G so that
eG) L«
From the assertions 3.1.—3.7. it follows for circuits:

3.9. Theorem. The C2 is characterized by its spectrum in %°.

3.10. Corollary. In Theorem 3.8. ¢ < 4 can be replaced by ¢ < 4.

TABLE
Coefficients of characteristic polynomials

P(A) ="+ a2 ' + ... +a,

and maximal eigenvalues of the second powers of the following graphs:
(a; = 0, since G? contains no loops)

3 4 5 n-1 n
G 1
1,n 2
- 1 3 4 5 n-1 n
2 \ / n
G 1 3 4 5 n-3 n-2\ n-1
2,n n-1
1
2 I: 3 . n-3 n-2 n
3
G ———
3,n 4 5 6 n-1 n
1 2
3 4 N\ .
G4.n ) 1 2 5 6 7 n-1 n
4\
G,
n 1
Sy ’ 2 3 5 6 T o~ n
Fig. 8
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2
104 o1 a
06,: 3
1 \I: 4 . n-1 n
2 .
67 N
1 2 3 4 5 7 8 9 10
6
G,
8 12 3 ¢ 1 8 9
5
6 -
/\
G
9 1 2 3 5 6 7
3 n
010 . e n-2
1 2 )
Fig. 9
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Table
a as Qs as as ay as Qg
a0 a1 32 a3 aia as ase ]
-6 | -8 -3

G:.4 3
s -8 | —10 -1 2

Gis 3,323404
, -10 | -12 7 14 4

Gie 3,534422

- -12 | -14 20 42 23 4
1.7 3,651862
, —14 | -16 37 78 4 0 -3

Gis 3,730611

o ~16 | -18 58 122 44 —50 ~39 —6

9 . 3,783904

, .| -18 | =20 83 174 23 | —184 | —164 -50

Gi.1o -5 3,822365

o -20 | -22 112 234 30 | —426 | —387 —108
111 6 4 3,850884
) -2 | -2 145 302 | —123 | —800 | —689 —42
112 200 84 8 3,812724
. -24 | =26 182 378 | —264 | —1330 | —1034 3N

Gias 917 | 470 92 6 3,889831
) -2 | —28 23 462 | —a61 | —2040 | —1370 ~1422

Giis | 2550 | 1332 216 -20 -5 3,903510
, ~28 | -30 268 554 | —722 | —2954 | —1629 3460

Gias | 5493 |2488 | —308 | —588 | —155 ~10 3,914636
s 30 | -32 317 654 | —1055 | —4096 | —1727 6902

Giis | 10108 |[3212 | —3296 | —3286 | —1109 | —152 -7 | 3923821
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Continuation
a as Qs as ae ay Lg Qg
aio ay a; (%) as a,s a6 e
, -1 | —16 3 16 !

G 3,828427 °
, -13 | -18 19 52 33 6 ,
G, 3,917286

s —15 | —20 39 108 91 32 4

3s 3,917285

\ -17 | -2 62 162 11 ~10 ~37 —10
Ga.o 3,917285

, —19 | —24 89 24 98 | —172 | -2l6 ~84
G210 —9 3,942820

, —21 | =26 120 294 48 | —482 | —e01 294
Gair | _s9 | —4 3,950439

, -23 | -28 155 372 —46 | —948 | —111/ —428
G212 65 80 13 : 3,955788

, —2¢ | =30 194 458 | —192 | —1594 | —1709 —154
Giis | 913 | 660 170 12 3,960342

, —271 | =32 237 552 | —398 | —2444 | —2316 896
Gaas | 3151 | 2332 748 9 4 3,964023

; :
P

, -29 | —34 284 654 | —672 | —3522 | —2862 3130
Gaas | 7317 | 5088 | 1147 | —268 | —154 -16 3,967140

, -31 | =36 335 764 | —1022 | —4852 | —3255 7020
Giis | 13882 | 8108 | —1070 | —3536 | —1657 | —300 —~15 | 3,969785
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Continuation
» az das [/ 7% as (73 ay ds Qe
aio “ay, a2 a3 (7Y a;s aie 0
- -10 | —-12 4 6 1
3.6 3,592615
- -12 | -14 i6 26 4 -2
L3 3,753006
G',' -14 | -16 33 62 22 -6 -3
3.8 3,839262
- ~16 | —18 54 106 32 -30 ~-11 2
3.9 3,894023
- -18 | =20 79 158 19 | —124 —67 4
3.10 4 3,929279
. -20 | =22 108 218 —26 -326 —-223 -12
G311 2 . 3,953424
. -22 | -2 141 286 —11° —660 —473 22
Gs.1a 104 14| -3 3,970400
- -24 | -26 178 362 ~244 | —1150 —782 308 -
3,13 492 | 108 —26 -6 3,982717
o -2 | -28| 219 446 | —433 | -1820 | —1098 1134
3.4 | 1589 | 486 | -79 -50 =5 3,991847
) \
G -28 | =30 264 538 —686 | —2694 | —1353 2852
318 | 3820 | 1158 | —430 —252 -12 4 3,998750
o -30 | -32 313 638 | —1011 | —3796 | —1463 " 5878
316 | 7579 | 1622 | =2272 | —1340 —87 63 8 4,004054
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ESTIMATION OF THE INDEX OF G?.

Contiuuation
a as [« 7% as as ai [ ag
ajo Ci1 a; a3 aya a;s 6 [
) 12 | —14 12 12 -7 0 B
G2, 1+4/8
) —14 | —16 28 40 -7 —14
Gas 3,956310
) —16 | —18 49 84 4 -36 -7 :
Gis 4,021879
) —14 | —16 32 54 4 -18 -3
Gs.s 3,883260
- —16 | —18 53 98 8 —64 -34 -4
5.9 3,951670
) ~18 | =20 78 150 -4 —154 —87 -4
Gs.10 3 3,994069
) -20 | =22 107 210 -47 —-338 —189 44
Gs,11 46 4 : 4,020463
R -9 | —14 -6 0
Ge.s - 3,645751
) -1 | —16 1 10 3
Go.s - - 3,858951
Gi., -13 | —18 15 40 23 4 3,980637
Gis —-15 | =20 34 86 58 12 0 ’
‘ 4,041789
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Continuation
a; aj [/ 7% as as aq dg dy
a0 as, a2 a3 aia ass a6 e
G2 —-18 -20 78 150 -12 —-194 —153 —44
7 -4 4,010636
" -16 | —18 43 %6 | -20 | —66 | =-21 0
8 4,065691
G2 -13 —-18 12 28 9 0
° 4,032934
. ~13 | -18 13 30 7 -4
10,7 4,023336
6! -15 | -20 34 82 45 0 -3
10,8 4,058568
G2 -17 -22 58 146 96 0 —18 -4
10.9 4,040037
G -19 —-24 - 85 208 97 —-96 -89 -6
10,10 7 . 4,040576
G -21 -26 116 278 56 -350 —343 —~76
10,11 23 6 4,036625
2 -23 —28 151 356 -30 -776 —802 —216
Gio.12 75 | 40 4 4,035110
G -25 -30 190 442 —168 —1382 —1365 —118
10,13 477 200 -8 -10 ' 4,033446
| -27 |'-32 233 536 | -366 | —2192 | —1960 636
Gio.ie| 1925 | -956 35 -72 -9 4,032300
2 -29 -34 280 638 —632 —3230 —-2510 2478
Gio,1s 5120 2750 132 -308 -7 -4 4,031320
G -31 -36 331 ‘748 -974 .| —4520 —2923 5880
10,16 10585 5158 | —1026 —1642 -344 44 13 4,030541
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