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Abstract. Classification of disconjugate differential systems is established. It is shown that every 
disconjugate differential system belongs exactly to one of the (n + 1) mutually disjoint classes. 
Necessary and sufficient condition for determination of this class are given. 
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1. I N T R O D U C T I O N 

Let B(x), C(x) be symmetric nxn matrices of continuous real — valued functions 
and B(x) be nonnegative definite on some interval /. The aim of the present paper 
is to study self-adjoint linear differential systems 

(1.1) y'=B(x)z, z'^C(x)y 

umder assumption that these systems are disconjugate on an interval /. 
Section 2 involves preliminary statements concerning properties of solutions of 

investigated differential systems. In Section 3 it is established classification of dis­
conjugate differential systems (1.1) with respect to dimension of the solution space 
of (1.1) generated by the right and the left principal solution of these systems. 
Section 4 deals with transformations of certain disconjugate differential systems and 
in Section 5 the results of the preceding sections are used to study relations between 
systems (1.1) and associated Riccati matrix differential equation. 

The matrix notation is used. E and 0 denote the identity and the zero matrix of 
any dimension. If we need to emphasize that E is the identity matrix of dimension fc, 
we shall denote this matrix Ek. If A is a symmetric matrix (i.e. AT = A), inequalities 
A > 0 (^ 0, < 0, ^ 0 ) mean that the matrix A is positive (nonnegative, negative, 
nonpositive) definite. Inequality A > B between two symmetric matrices of the same 
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dimension denotes that A — B > 0. Inequalities A^ B, A < B and A g B have 
similar meaning. If A is a symmetric matrix, lt(A) and /n(̂ 4) denote the least and the 
greatest eigenvalue of A. 

A pair on w-dimensional vectors (y(x), z(x)) is said to be a solution of (1.1) on an 
interval I if y(x), z(x) e CX(I) and (1.1) is identically satisfied on I. 

2. PRELIMINARIES 

Simultaneously with (1.1) we shall consider the matrix differential system 

(2.1) r = B(x) Z, Z' = C(x) Y, 

where Y, Z are n x n matrices. 
Let (Yt(x), Zt(x)), i = 1,2, be solutions of (2.1). Then YT(x) Z2(x) - Z\(x) Y2(x) = 

= K, where K is a constant nxn matrix. If this matrix is nonsingular, the solutions 
(Yt, Zx), (Y2, Z2) are said to be linearly independent and every solution (Y, Z) of (2.1) 
can be expressed in the form (Y, Z) = (YlC1 + Y2C2, Z1C1 + Z2C2), where Ct, C2 

are constant nXn matrices. A solution (Y, Z) of (2.1) is said to be self-conjoined if 
Yy(x) Z(x) — ZT(x) Y(x) = 0. Some authors use for solutions having this property 
concept conjugate solution (Sternberg [9]) or isotropic solution (Coppel[4]) or 
prepared solution (Hartman [6]). Our terminology due to Reid, e.g. [8]. 

Two points a,bel are said to be conjugate relative to (1.1) or (2.1) if there exists 
a solution (y(x), z(x)) of (1.1) such that y(a) = 0 = y(b) and y(x) is not identically 
zero between a and b. System (1.1) or (2.1) is said to be identically normal on / 
whenever the only solution (y, z) of (1.1) for which y(x) == 0 on a nondegenerate 
subinterval of / is the trivial solution (y, z) = (0,0). System (1.1) is said to be dis-
conjugate on an interval I whenever no two distinoipoints of I are conjugate relative 
to (1.1). 

Let system (1.1) be identically normal and disconjugate on an interval I = (a, b), 
possibilities a = — oo, b = oo are not excluded. It is known, cf. [8, p. 325], that there 
exist self-conjoined solutions (YR, ZR), (YL, ZL) of (2.1) such that YR(x), YL(x) are 
nonsingular on / and for some (and hence every) self-conjoined solutions (Y1, Zx), 
(Y2,Z2) which are linearly independent on (YR, Z^ and (YL, ZL), respectively, we 
have lim Y^(x) YR(x) = 0, lim Y~\x) YL(x) = 0. The solutions (YR, ZR), (YL, ZL) 

JC->-6— x-+a + 

are said to be the right principal solution and the left principal solution of (2.1), respec­
tively. If (FR, .Zj) is another right principal solution of (2.1) then there exists 
a constant nonsingular nxn matrix C such that (YR9 Z^= (YRC, ZRC). The 
left principal solutions have similar property. It is also known that (YR, ZJJ), 
(YL, Zj) are right or a left principal solution if and only if 
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DISCONJUGATE DIFFERENTIAL SYSTEMS 

lim /.(J Y*\s)B(s) Yr
R-\s)ds) = oo, 

x-+b— c 

lim /.(J Y£\s)B(s) YZ" '(s)ds) = 00, eel. 
x-*a + x 

Every self-conjoined solution (Y1, Z-) which is linearly independent on the right 
principal solution is said to be the right nonprincipal solution and we have for this 
solution 

lim /„(/ y"\s)B(s) Y\-\s)AS) < oo, eel. 
x-*b— c 

The left nonprincipal solution is defined analogously. 
To investigate differential systems (1.1) it seems to be very useful tool the following 

transformation of these systems. 

Theorem A. Let H(x), K(x) e C*(/) be nxn matrices, H(x) being nonsingular, for 
which 
(2.2) HT(x) K(x) - KT(x) H(x) = 0, 

H'(x) - B(x) K(x) = 0. 
Then the transformation 

(2.3) Y = H(x) U 

Z = K(x)U+HT'l(x)V 

transforms (2.1) into the system 

(2.4) U' = F(x) V, V = G(x) U, 

where 

(2.5) F(x) ^H'^x) B(x) HT~ \x) 

G(x) = -HT(x) K'(x) + HT(x) C(x) H(x). 

For more informations concerning this transformation see e.g. [5]. Directly can be 
verified the following statements: 

i) (U, V) is a right or a left principal (nonprincipal) solution of (2.4) if and only 
if (Y, Z), given by (2.3), is a right or a left principal (nonprincipal) solution of (2.1). 

ii) System (2.1) is identically normal on I if and only if (2.4) is identically normal 
on I. 

3 . CLASSIFICATION OF DISCONJUGATE SYSTEMS 

Consider a system of scalar differential equations 

(3.1) y' = b(x)z, z' = c(x)v, 
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where b(x)9 c(x) are real functions, b(x) ^ 0, which is disconjugate on I = (a, b). 
Two cases are possible: 

i) the right and the left principal solution of (3.1) are linearly independent. 
--) 0>L, *L) = c . (yR>zR\ where c # 0. 

According to the Boruvka's classification, cf. [3], in the case i) (3.1) is said to be 
general on I, in the case ii) — special. Disconjugate differential systems can be 
classified in the following way. 

Throughout all paper we shall suppose system (1.1) to be identically normal 
on I. 

Definition 1. Let system (1.1) be disconjugate on 1 and (YR, ZR), (YL, ZL) be its 
a right and a left principal solution. This system is said to be k-general onlf0^k^n 
being integer, if rank of the matrix 

(3.2) 

equals n + k for every x e I. 

[YR(x) YL(x)l 
lZR(x) ZL(x)\ 

Remark 1. In the scalar case, i.e. n = 1, special system of scalar equations is said 
in the "system" terminology to be 0-general, general system of equations is said 
to be 1-general. 

Theorem 1. System (1.1) is k-general on I if and only if rank of the constant matrix 

(3.3) K = YT
R(x) ZL(x) - Zl(x) YL(x) 

equals k. 
Proof. Let (1.1) be k-general on I, i.e. rank of (3.2) equals n + k. Using the fact 

that (YR, ZR) and (YL, ZL) are self-conjoined it can be verified that (3.2) has the same 
rank as the matrix 

(3 4) r y * w ° i 
K'} L° r*W ZL (*) ~ Zl{x) YL(x)j' 
Replacing, if necessary, (Y*, ZR\ (YL, ZL) by (YRCX, Z^CJ, (YLC2, ZLC2), respectiv­
ely, C!, C2 being suitable constant nonsingular nxn matrices, we can suppose without 
loss of generality that K— diag{l,..., 1, o, •••, 0} in (3.3) (of course, the case 
that K contains no number 1 or no number 0 is possible). As rank of (3.4) equals 
n + k, every minor of (n + k + l)-th order must equal zero and there exists at 
least one nonzero minor of (n + k)-th order. It follows that K has exactly n — k 
zeros, hence its rank equals k. As all arguments can be reversed, the proof is com­
plete. 

Remark 2. Theorem 1 shows that the matrix (3.2) has constant rank on 7, hence, 
every disconjugate system is k-general on I for some k, 0 ^ k ^ n. 
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Lemma 1. Let (1.1) be disconjugate on I. There exist nXn matrices H(x), K(x)e 
e C 1 ^ ) , H(x) being nonsingular, satisfying (2.2), such that transformation (2.3) trans­
forms (2.1) into 

(3.5) U' = F(x) V, V = 0. 

Proof. Disconjugacy of (1.1) implies existence of self-conjoined solution (Y,Z 
of (2.1) such that Y(x) is nonsingular on /. Letting H(x) = Y(x), K(x) = Z(x), we 
have the statement of lemma. 

Lemma 2. Let the matrix F(x) in (3.5) be of the form 

(3.6) F(x) 
Гғ^x) Fr

2(x)l 
lF2(x) F 3 (x)J' 

where FX,F2, F3 are kxk, (n — k)xk, (n — k)x(n — k) matrices, respectively, 
b b b 

0 ^ k ^ n, for which J Fx(x) dx, J F2(x) dx exist and are finite (i.e. J/y(x) dx ex/sts 
c c c 

JC 

finitely for every entry ftj of Fx 0r F2) ar/d lim ^(J F3(s) ds) = oo, c e L Then 
x->&- c 

(3.7) 

ană 

U„ = 

U = 

fr i ts) ds 0 

JE2(s)ds £„_ 
.JC 

b 

Ek JF2
T(s)ds 

JC 

0 $F3(s)ds 

v« - V£* °1 VR L o o j ' 

=Г° ° 1 

are /he right principal and nonprincipal solutions of (3.5), respectively, for which 
UT(x) VR(x) - VT(x) UR(x) = -E. 

Proof. As (3.5) is identically normal on / (since (2.1) is identically normal and 
b 

transformation (2.3) preserves this property), the matrix J Fi(s) ds is nonsingular 
X 

on /, cf. [8, p. 271], hence UR(x) is nonsingular. Similarly U(x) is nonsingular near b. 
Directly we can verify that solutions (UR, VR), (U, V) are self-conjoined and UTVR — 
- VTUR = -E. It follows that these solutions are linearly independent. 

V-XUR = 

Ek - J Ғ j d s í J Ғ з d s Г 1 

0 (jVзds)" 1 

j F . d s 0 
X 

JF2dsEn_k 
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b 

JF. ds - f Fr
2 ds (J F3 ds)~* J F2 ds - J Fj ds(J F3 ds)" 

.X X C X X c 

-(Jl?3ds)- ljF2ds (jF3d5Y1 

c c c 

i.e. lim U~lUR = 0. It completes the proof. 
x-+b-

Theorem 2. Lei* /he matrix F(x) in (3.5) fee of the form (3.6), /he matrices Fl9F2, F3 

Aaue properties given in Lemma 2 and lim /X(J F(s) ds) = oo. 77iefl (3.5) is k-general 
x-*a + x 

on L c 

Proof. AS lim /j(J F(s) ds) = oo, (UL, VL) = (E, 0) is the left principal solution 
JC-+A+ X 

of (3.5) and according to Lemma 2 the right principal solution (UR, VR) is given by 
(3.7). Obviously U]VR — VLUR = VR, hence by Theorem 1 system (3.5) is fc-general 
on /. 

Corollary 1. If system (2.1) is n-general on I then there exist the right and the left 
principal solutions (YR,ZR), (YL,ZL) of this system such that the matrix YRYL is 
symmetric and positive definite on I. 

Proof. If (2.1) is Ai-general on / then there exist matrices H(x), K(x) e Cl(I) such 
X 

that transformation (2.3) transforms (2.1) into (3.5), where lim/^JF^ds) = oo 

and lim U]F(s)ds) < oo, i.e. (UR, VR) = (E, 0), (UL, VL) = (f F(s) ds,E) are 
*-•«+ x a 

principal solutions of ,(3.5). It implies that (YR, ZR) = (H, K), (YL, ZL) = 
X X 

= (HjFds ,KjFds + i/1""1) are principal solutions of (2.1). Directly we can 
a a 

verify that these solutions have all stated properties. 

4. TRANSFORMATIONS OF H - G E N E R A L SYSTEMS 

In our investigation of «-general systems the following statement will play important 
role. 

Theorem3« Let (2.1) be n-general bn L Then there exist nxn matrices H(x), 
K(x) e C^/), H(x) being nonsingular, such that transformation (2.3) transforms (2.1) 
into the system 

(4.1) U' = Q(x)V, V' = Q(x)U, 

where Q(x) is a symmetric nonnegative definite nxn matrix. 
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Proof. Let (YR, ZR), (YL, ZL) be the right and the left principal solutions for 
which Y\ZL - Z\YL = E and YRYT

L > 0. It holds 

hence 

[ zí -Yľ\\YR УŁV f£0-| 
l-zl УïJLzкzJ L° Eľ 

\zRzL\\_-zr
R YT

R\ [? E\ 
and thus 
(4.2) YRZ\ - YLZ\ = E. 

Denote by D(x) the symmetric positive definite nxn matrix for which D2 = 2YRYL 

and let T(x) be the solution of the differential system 

(4.3) r = D'l(x) l2B(x) ZR(x) YT
L(x) + B(x) - D'(x) D(x)] D~\x) T, 

T(c) =E, eel. 
As 

(2BZRYr
L + B - D'D) + (2BZRYT

L + B- D'Df = 
= 2BZRYT

L + 2B- D'D - DD' + 2YLZ
r
RB = 

= 2rj,rl + 2B- 2(YRYr
L)' + 2(YRZ\ -E)B = 

= 2{J'RY\ + YRY\[) + 2B - 2(YRYT
L)' -2B = 0, where (4.2) has been used, the 

matrix T(x) is othogonal on / (i.e. TT(x) = T~l(x)). Set 

(4.4) H(x) = D(x) T(x), 
K(x) = (2ZR(x) YT(x) + E) HT-\x). 

Then 
HHr = DTTTD = D2 = 2YRYT

L . H' - BK = 
= D'T + DT - B(2ZRYr

L + E)D~XT = 
= D'T + DD~l(2BZRYr

L + B- D'D) D~XT - 2BZRYlD~1T - BD~lT = 
= D'T + 2BZRYT

LD-lT + BD~lT - D'T - 2BZRYlD~iT - BD'^T = 0, 
HTK - KTH = H~l(HHTKHT - HKrHHr) Hr~l = 

= n-1[2rRrI(2ZKrI + E)- (2YLZ\ + E) 2rKrI] Hr~l = 
= /I_1[4rKrIzRrI + 2rRrI - (2rRzT - £)2rRrI] HT~1 = 

= i/-1[4rj!(rlzx - zlr*) r l + 4rRrI] HT-1 = o. 

Let Q(x) = H~l(x)B(x) HT~l(x). To finish the proof, according to (2.4), it suffices 
to prove that fí-^Btí1-1 = -HTK' + HrCH. We have 

HTCH - HrK' = H-^-HtfK'H1 + HHTCHHr] Hr~1 = 

= i¥-1[-////T(2CrJ lrI + 2ZRZlB) + HHT(2ZRYl + E)Hr~iHr' + 
+ HďCHH7] Hr~l = 
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= H-\-AYRYT
LZRZT

LB + 2YRYL(2ZRYT + E) HT-'H~\2YLZT
R + E)B]HT~' = 

= H-\-AYRYT
LZRZT

LB + (2YRZT - E) 2YRYT(HHTy1(2YRZT -E) I?]//7"1 = 

= H-\-AYRYT
LZRZL + (2YRZT - K)2] BH^-i = 

= H-\-AYRYT
LZRZT

L + 4YRZTYRZT - 4YRZT + E\ BH7"1 = 

= H~\-4YR(ZT
LYR -E)ZT + 4YRZTYRZT - 4YRZT + E\ BHT~l = 

= H~1BHT-\ 

which has to be proved. The proof is complete. 

Definition 2. Let (Yi9 Zt), i = 1,2, be self-conjoined solutions of (2.1) f0r which 
YTZ2 — ZTY2 = E and YXYT > 0 on I. Further, let D(x) be the symmetric positive 
definite matrix for which D2 = 2Y1Y

T, Tbe the solution ofT = D~l(2BZ1Y] + B -
- D'D)D~lT, T(c)=E. Thematrix Q(x) = H~\x)B(x)HT-\x), where H = DT, 
we shall call the hyperbolic phase matrix of (2.1) determined by the pair of self-
conjoined, linearly independent, solutions (Yx, Zx), (Y2, Z2). 

Remark 3. According to terminology used in the scalar case, cf. [1], it would be 
X 

more precise to define the hyperbolic phase matrix of (2.1) as the matrix j Q(s) ds, 
c 

eel. However, for matrix differential systems the former definition is more suitable 
and this definition also agrees with usual matrix notation used e.g. by Reid [7] and 
Barrett [2] in connection with the generalized Priifer transformation for systems (2.1). 

5. A S S O C I A T E D R I C C A T I M A T R I X E Q U A T I O N 

Let (Y, Z) be a solution of (2.1). It is known that in all points where the matrix Y(x) 
is nonsingular the matrix W = ZY'1 is a solution of the Riccati matrix differential 
equation 

(5.1) W' = - WB(x) W + C(x) 

and that (2.1) is disconjugate on / i f there exists a symmetric solution of (5.1) which 
is defined on the whole interval /. If (YR,ZR) is a right principal solution of (2.1) 
then WR = ZRYR

X is said to be the right distinguished solution of (,5.1). The left 
distinguished solution is defined analogously. 

Definition 3, A hyperbolic phase matrix Q(x) of (2.1) is said to be canonical if 
WR= —E and WL = E are the right and the left distinguished solution of the Riccati 
matrix equation 

(5.2) W' = - WQ(x) W + Q(x). 
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Theorem 4. Every n-general disconjugate differential system (2.1) has at least one 
canonical hyperbolic phase matrix. Two nxn matrices Qi(x), Q2(x) are canonical 
hyperbolic phase matrices of the same differential system (2.1) if and only if there exists 
a constant orthogonal nxn matrix G0 such that Q2(x) = GJQiM Go-

Proof. Let Q(x) be the hyperbolic phase matrix of (2.1) determined by the pair 
of solutions (YR,ZR), (YL,ZL) for which YTZL - ZT

RYL=E and Y*YT > 0, i.e. 
Q(x) = H-\x)B(x)HT-\x), where H(x) is given by (4.4) and T(x) by (4.3). 
As transformation (2.3) transforms principal solutions into principal solutions, 
(UR, VR) = ( H " 1 ^ , -KTY* + HTZR\ (UL, VL) = (H-XYL, -KTYL + HTZL are 
the right and the left principal solution of (4.1). Further, YRYT

L = HURUjHT, hence 

URUj = H^YaYJH7-1 = — E. Every solution (U, V) of (4.1) can be expressed 

in the form (U, V) = (XCV + XT_1C2, XCi - XT_1C2), where Ct, C2 are constant 
nxn matrices and X(x) is the solution of X' = Q(x)X, X(c) = E, eel. Let UR = 
= XA + XT_1B, UL = XC + XT_1D. As the solutions (UR, VR), (UL, VL) are self-
conjoined and U\VL — VRUL = K, we have 

ATB - BTA = 0, 

(5.3) CTD - DTC = 0, 

ATD - BTC = - —E. 
2 

i 
Now, — E = UjUR = (CTXT + DTX_1) (XA + X7-1^) = CTXTXA + DT_4 + 

+ DTX~1XT~lB + CTB. As the matrix X(x) is nonconstant (since (4.1) is identically 

normal on I) and (5.3) holds, we have A = 0, D = 0, BTC = — E, i.e. (UR, VR) = 

= (XT_1B , - X T _ 1 B ) , (UL, VL) = (XC, XC), where B, C are constant nonsingular 

nxn matrices for which 2?TC = — E. Hence WR = VRU~R = —E and WL = 

VLUZ'=E. 
Now, let Qi(x), Q2(x) be two hyperbolic phase matrices of (2.1) and let these 

matrices be determined by the pairs of self-conjoined solutions (Y1,Z1), (Yl,Zl) 
and (Y2, Z2), (Y2, Z2), respectively, for which 

(5.4) YjZi-ZjYi=E, i = l,2. 

Further, let the matrices H^x), K{(x) be given by means of solutions (Yi9 Zt), (Yi9 Zt) 
in the same way as the matrices H(x), K(x) by (YR9 ZR), (YL, ZL) in the proof of 
Theorem 3. Then (Ui9 V() = {H^Y,, -K^Y , + HjZt), (Pi, Vt) = (Hf1^ 
—KjYt + HjZi), i = 1,2, are solutions of the differential systems 

(5.5)! U' = Q,(x) V, V = Qt(x) U, 
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(5.5)2 U' = Q2(x)V9 V' = Q2(x)U9 

respectively. Similarly as above we can prove that (Ui9 Vt) = (Xj~1Ai9 —Xj~1A?)y 

(Ui9 Vt) = (X(Bi9 Xfr), where X[ = Qt(x) Xi9 Xt(c) = £, c e 1 and Ai9 Bt are 

constant nonsingular n X n matrices for which AjBt = —.E, i = 1,2. Since VtUZx = 

= - £ , PfC7fx = £, and JF* = E9 WL = E are the right and the left distinguished 
solutions of (5.2) with Q = Qi9 (Ui9 Vt) are the right and (Uiy p.) the left principal 
solutions of (5.5)f, respectively. It follows that both (Yx, Zx) and (Y29Z2) are the 
right principal solutions of (2.1), i.e. (Y2, Z2) = (Yx M9 Zx M), where M is a constant 
nonsingular nxn matrix. Similarly (Y29Z2) = (Y1N9 ZXN\ N being a constant 
nonsingular nxn matrix. From (5.4) it follows N = MT " l. Further, H2H

T = Y2Y
T = 

= Y1MNTYT=Y1Y
T=H1H

T
9 hence H2(x) = H1(x)G(x), where G(x) is an 

orthogonal nxn matrix. It holds K2 = (2BZ2FJ + E) HJ"1 = (2BZXMNTYT + E). 
. H]-^ = (2BZXYT + E)H\-1G = KtG. It follows Hi = H[G + HjG' = BKXG + 
+ H^G'. From the other hand H2 = BK2 = BKtG9 hence HYG' = 0, i.e. G(x) = G0 

is a constant orthogonal nxn matrix. Thus Q2(x) = H2~
1(x)B(x) H\~1(x) = 

= GjHY1(x) B(X) HT_1(x) G0 = GT
0QX(x) G0. The proof is complete. 

Theorem 5. System (2.1) is k-general on I if and only if rank of the matrix WR — WL 

equals k, where WR and WL are the right arid the left distinguished solution of the asso­
ciated Riccati matrix differential equation (5.1). 

Proof. Let (2.1) be fc-general on I and WR, WL be the right and the left distinguished 
solutions of (5.1). There exist matrices H(x)9 K(x) q Cx(l)9 H(x) being non-
singular on 7, such that transformation (2.3) transforms (2.1) into (3.5), where 

lim ll(^F(s)dsy = oo. Let WR9 WL be the right and the left distinguished solutions 
x-+b— c 

of the Riccati matrix equation 

Wf = -WF(x)W. 

We have WR - WL = ZRYZX - ZLYL' = (KUR + H7"1^) U^H'1 - (KUL + 
+ HT~1VL)UZ1H-1=HT-1VRUR'1H-1 - tf^VZUZ1 = HT~\WR - WL)H~\ 

thus rank (WR - WL) = rank (WR - WL). As lim /-(J F(s) ds) = oo and (3.5) is 
-̂general on /, (UR, VR) = (E9 0) and x^b~ c 

^^LðUľ-J ' К Ł - [ O oj« 
where 3fi>S2 are kxk and (n - k)xk matrices, respectively, 5i being nonsingular 
on 7, for which g; = Fx, $'2 = F2 and F-, F2 are given by (3.6). Now, WR = VRUZl = 
= 0 and hence rank (WR - WL) = rank WL = rank VLUZ% =* rank KL = Jfc. As 
all arguments can be reversed, the proof is complete. 
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