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ON CONNECTIONS ON THE SECOND ITERATED
TANGENT BUNDLE

ANTON DEKRET
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Abstract, A sector connection I' on TM = TTM is introduced as a double linear section
from T.M into JT.M. It is shown that I" can be stated both by the groupoid of the invertible
2-quasi-jets on M and by a linear section from T*M into the space of all 3-sector forms on M.
‘The class of the sector connections having geodesics on M and some relations between I' and the
first natural prolongations of linear connections on M are described.

Key words. Quasi-jet, sector connection, sector form, geodesic, natural first order prolongation
of linear connections.
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In the paper [117] by means of the canonical structure properties of the iterated
tangent bundle T,M: = T ... TM the concept and basic properties of a quasi-jet
of order r have been introduced, for r = 2 see also [6]. Quasi-jets of order two provide
a useful tool for studying connections on T, M which are closely connected with
the structure of T, M. In the first part of the present paper we recall some basic
properties of quasi-jets of order two and three and introduce a Q-connection on T, M
induced by a connection on the groupoid of all invertible quasi-jets of order two
on M. Further we define 2-sector connection on T, M and find the one-two-one
correspondence between the set of all Q-connections and the set of all 2-sector
.connections. Then some geometrical objects connected with a 2-sector connection
are modeled, as for example ‘the torsion and the curvature form. The relations
between sector 3-forms on T3M and 2-sector connections are stated. In the last
part we deal with geodesics of an 2-sector connection. All presented results are’
discussed from the point of view of natural first order prolongations of a linear
-connection on TM.

1. Let () be the short denotation of a fibre bundle = : ¥ - M andletpp,: TM — M
or Tf: TM — TN denote the tangent bundle of a manifold M or the tangent mapping
of a differentiable map f: M — N respectively. There exist two or three canonical
vector bundle structures (Pry)s (TPa) o (Pr,m)s (TPry)s (T2pa) on T, M or on ToM
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A. DEKRET

respectively such that the diagrams

T™
T2M / \ m

Py

7
Py Tpy P M T py—T 5 M — Py T

A"
T™ ™
\ . / L‘TPM l TPy lpTM

are commutative. .
We will use the following induced charts. Let (x’) be a chart on M. Let X e T, M,

X =j(® - X)) = (xi = x(0), x| = 4O Then (xh, x}) is the induced chart

dt .
i i i i i i d ¢ 0
on TM- Let Y ___jé((t) - (x:)O(t)’ x;(t))) = (xIOO = XO(O), X10 = xl(o)’ Xo1 = xdos ) )

i v
i 960 )eT(TM . It gives the induced chart (xbg, Xjo, X, Xiy) on ToM_

X11 dt
Iterating this construction we get the induced chart on T,M. The geometrical sence
of 0- and 1-subscripts is clear.

Let us recall that a map ¢: (T, M , - (T,N), or ¢: (T3M), — (T5N), is a quasi-jet
of order two or three if it is a vector bundle morphism (shortly v.b.m.) both from
(Prw) into (pry) and from (Tp,,) into (Tpy) or from (pr,u) into (pr,y), from (Tpra)
into (Tpyy) and from (T,p,,) into (T,py) respectively. Let QJ*(M, N) or QJ*(M, N)
be the manifold of all quasi-jets of order two or three from M into N. Then there
exist fibre bundle projections x;: QJ*(M,N) - QJ'(M,N), i=1,2, or x,:
QJ3(M, N) » QJ*(M,N), k =1,2,3, where %,0, %,¢ OT %,0, %,0, %3¢ are the
base maps of ¢: (Tpy) = (Tpw), (Prm) = (Pra) 0r @: (T2pag) = (T2pn)s Tpry) =
= (Tprw), (Pr.m) = (Rr,n) Tespectively.

Let g: E —» M be a vector.bundle and VE, be the set of all vertical vectors on E
at the points of the zero-section O: M — E, Tq(VE,) = 0 =« TM, p(VE,) = 0 < E.
Denote by ¥, the injection E — TE determined by V(a) = jo(ta), t € R. It is clear
that Vo(E) = VE,. In the case of the vector bundles on iterated tangent bundles
we add some subscripts to the notations V. The injection V4,: TM — T, M, induced
by pu: TM — M, determines the fibre projection x}: QJ*(M, N) —» J(M, N), xj¢ =
= (Vo1)~!. @ . ¥y, . Quite analogously the injections V'3,, V2,: T,M — T3M induc-
ed by the vector bundle structures (Tpy), (Pra) and the injection TV, give the
projections %2, 3, »i: QJ3(M, N) - QJ*(M, N). By [1], the set J(M, N) of all
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CONNECTION ON SECOND TANGENT BUNDLES

non-holonomic jets from M into N is a submanifold of QJ"(M, N). As a special
case of Propositions 3 and 4 in [1] we introduce

Lemma 1. A quasi-jet A€ QJ*(M, N) is a non-holonomic or semi-holonomic jet iff”
uy A = %,4 or k1A = %, A = %, A respectively, A quasi-jet A€ QJ*(M, N) is a non-
holonomic or semi-holonomic if x3A = %34 = %3 A, x1A = %,A or %14 = x*4 =
= 1A = %, A = %, A = %3 A respectively.

In the induced chart on T, M the canonical involution i, on T, M, see [3], has the
following coordinate form: i,(x', Xo, xb;, X}, = (¥, x5,, x\0, x},). In the case
of T3 M, two involutions both i3 induced by the structure T,(TM) and Ti, generate
the group I = [ITi,, i3] of diffcomorphisms on T3 M. In general there is a group I,
of diffeomorphisms on 7, M which is issomorphic with the group of all permutations
of the set {1, ..., r}. Propositions 5 and 6 of [1] give

Lemma 2. If A is a semi-holonomic 2-jet or 3-jet then A is holonomic ifi, . A.i, =
=Aorg '.A.g= A for every g € I, respectively.

Let Ae QJ(M,N),, Be QJ(N,Z),. Then B.Ae QJ(M, Z), will denote the
composition of quasi-jets 4 and B. A quasi-jet 4 € QJ(M, N), is said to be invertible
if there exists B € QJ(N, M), such that B . 4 = Id,1,y,, - By the standard procedure
it can be shown that QL%: = Inv QJ3(R™, R™), or QH'M: = Inv QJ5(R™"M), m =
= dim M, or Qn*M: = Inv QJ'(M, M) is a Lie group or a principal bundle with
the structure group QL;, or a Lie grupoid of operators on T,M which is a fibre bundle
associated with QH™ M.

Now, by Ehresmann’s approach to connections we introduce a special connection
on T,M. Let a: QJ'(M,N) - M or b: QJ'(M, N) —» N) be the source or target
projection. Let U be a neighbourhood of x, x € M. Denote Q. n’M = {4 e Qn*M,
a(A) = x}. Let y : U » Q,n*M be a cross-section of (b) such that y(x) = Id(z,py-
Then the jet jiy is called an element of connection on Qn?M at x. Let C,Qn*M be
the set of all elements of connections at x and CQn?M be the space of all elements.
of connections on QM. Then a connection on Qn2M is a global cross-section I':
M - CQn’M of the fibre bundle a: CQn?M — M. Every connection I' on Qn’M
induces the connection 'y, p: Ty M — JT, M, 'y (1) = ji(z = 7(2) (u), where I'(x) =
= jly) and JT, is the first-jet prolongation of T,M — M.

Definition 1. A4 connection A: T,M — JT,M on T, M is called a Q-connectio1 if
there exists a connection I on Qn*M such that A = I'r,y.

In the induced chart (x', x5, xb,;, x{;) on T, M the equations of 4 € Qrn>M have
the following coordinate form

i o SR T | O I I |
1 Y10 = €10¥10> Yo1 = Co1jX01> Y11 = CixX10%o1 + €11;%11 -
It induces a chart (x', c\o;, Chyj» Ch1j»> Gk ¥ on Qn*M.
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A. DEKRET

Let I': M - CQn*M be a connection on Qr?M. In the induced chart let I'(x) =
= jY((2) > (¥, chof(2)s €015(2)s €115(2), cfe(2), 2°), where cly(x) =8}, &= 10, 01, 11.
‘Then

) FT:M(xi’ xilo’ x‘OI ’ xill) =
= f: ((7-‘) (2, cléj(Z) x{o, Co‘u(z) xo‘x » €ix(2) xljox('l‘l + Clllj(z)xlll) =
= (x[lo’ x:)l ’ xill ’ lorj'k(x) x{O’ 01F}k(x) xél ’ F;ku(x) x{Ox:‘)l + 11[';,,35:1),
ie.
) xb,=Tixi, e=1001,
’ X}t = ;kux{0x5l + Mrixd,.

Let #*M or #2M or n*M be the Lie groupoid of all invertible non-holonomic or
semi-holonomic or holonomic 2-jets from M into M. Letus recall that 72 M, n2 M, n’M
are submanifolds of Qn*M. A Q-connection A on T, M is called non-holonomic or
semi-holonomic or holonomic if its determining connection I' is a connection on
72M or #2M or n?M. Lemmas 1 and 2 imply

Proposition 1. Let A be a Q-connection determined by a connection I' on Qn*M.,
‘Then A is non-holonomic or semi-holonomic or holonomic ifl »,I' = xiI" or ' =
= #,I" = il or %,I" = %, = %" and i,T'i, = I' respectively, where i,['i,(x) =
= j2((29(2) 1), i (x) = joey, T(x) = Jyy-

In general, a connection on T, M is a cross-section A : T,M — JT,M. We will
-construct a special connection on T, M from this point of view. At first we recall
some properties of vector bundles. The following one is well known.

Lemma 3. Let q,: E— M, q,: Y — E be vector bundles. Let JY be the first-jet
prolongation of the fibre bundle q, .g4,: Y — M. Then Jq,: JY — JE, Jq,(h) =
= Jq,(jif) =ji(q2f) is a vector bundle.

Since pruy, Tpy: ToM — TM and py: TM — M are vector bundles then by
Lemma 3 Jpry, JTpy: JT,M — JTM are vector bundles, too.

Lemma 4. Let the diagram
Ny n

e
i
>
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" CONNECTION ON SECOND TANGENT BUNDLES

where (¢;), (v;), i = 1, 2, are vector bundles, Y is a v.b.m. from (v,) into (v,) and w;
is a v.b.m. from Y; onto E;, be commutative. Then Y, is a v.b.m. from (q,) into (g,)-

Proof. Let u;, u, € (E;),. Then there exist i, &, € (v;) such that w (@) = u;,
i=1,2.Then Y (tu; + tiuy) = wy . Y(t1ily + ;) = tyw, . Y(iy) + LW, Y (i) =
=ty () -+ 21 (42).

Definition 2. A connection A: T, M — JT,M is called a sector connection if A is
a v.b.m. both from (pry) into (Jpry) and from (Tpy) into (JTpy).

Let A be a sector connection on T, M. Denote by A; = n,;A or 4, = n,4 the under-
lying map of A from (pry) into (Jpry) or from (Tpy,) into (JTp,,).

Proposition 2. /f'Ais a sector connection on T, M then A, and 1, are linear connections
M.
on Proof. It is clear that diagram

M
M /)\1 \JTM
—_—

Py TJ Poiy

is commutative. Recall that pry or Tpy is a v.b.m. from (Tp,) onto (pa) or from
(prm) onto (pyy) respectively. Obviously Jpry and JTp,, are vector bundle morphisms.
Then by Lemma 4 4, and A, are linear.

In the induced charts (x', xi0, x5, x1;) on T,M and (X, xlo,xm,x“,x‘loj,
X175 X1 ;) on JT,M we obtain the following coordinate equations of a sector
connection A:

3) x'; ou = IF;u(x)x{O’ x(inu = sz:{(x)x(])'l s x:lu = F}k..(x)x{ox'éx + st'u(x)x{l .

The quadruple (*Fl,, 2F},, *F},, Fji,) is called the Christoffel’s functions of 1.

Let JV, : JTM — JT, M, JVo(x', X}, x{)) = (x, 0, 0, x}, 0, 0, x})), be the first-jet
prolongation of the canonical injection ¥, : TM — VTM < T,M. Hence JV, is
av.b.m. from JTM into (Jpra) as well as from JTM into (JTpyy). Let (JVO)‘ be the
inverse map to JV, : JTM — J(VTM,).
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A. DEKRET

Lemma 5. Let A be a sector conmnection on T,M. Then ;) = 13 t=
= (Vo)™ ' .A.Vo:TM — J'TM is a linear connection on TM.

Proof follows from the coordinate equations x}; i= 3F ;X1 of A;. Hence every
vector connection A determines three lmear connections 4,, 4,, A3 on TM the Chris-
toffel’s functions of which are 'F, Fjy, >F};..

Comparing (2) with (3) we get

Proposition 3. There exists the (1,1)-correspondence between the set of all sector
connections and the set of all Q-connections on T, M.

We say that a sector connection A is non-holonomic or semi-holonomic or holo-
nomic if the corresponding Q-connection is non-holonomic or semi-hclonomic or
holonomic respectively. Then, in the non-holonomic and semi-holonomic cases,
Proposition 1 can be reformulated in the following way.

Proposition 4. A sector connection  on T, M is non-holonomic or semi-holonomic if
the linear connections on TM determined by A satisfy the conditions A, = A3 or A, =
= Ay = A;.

The canonical involution i, : T, M — T, M induces the involution Ji, : JT,M —
- JT, M. If A is a sector connection then the map Ji, . 2.7, : T,M — JT, M is the
sector connection on T, determined by the equations:

i 1pi i 2pi o

Xiou = FiX{o, Xo1u = "Fju X0},
— i J

xllu - _/kju(x) x10x01 + F uX115

Then the assertion of Proposition 1 on holonomic Q-connections can be rephrased
in the following way:

Proposition 5. A sector connection A on T, M is holonomic if is semi-holonomic and
Jiy Al = A

This result coincides with [8].

A sector connection A is called projectable or 1-symmetric if 1; = 4, or if it is
semi-holonomic and its underlying connection A, is without torsion.

Now we will construct some vector fields of a sector connection 2 on T, M. Before
we recall that every connection y : Y —» JY on a fibre bundle n#: Y - M can be
interpreted as a map (y-lift) Hy : YxyTM — TY such that Tn.Hy(X)= X and
Hy(y) : {y}xT .M > T,Y is linear. Hence y determines the decomposition TY =
= VY @ Hy, where V'Y — Y is the vector bundle of all vertical vectors on ()
and Hy — Y'is the vector bundle of all y-horizontal vectors, i.e. of all images under
the y-lift Hy. For X € TY we have X = v (X) + H,(X), where v,(X) or H,(X) denotes
the vertical or horizontal part of X.

Let A be a sector connection on T, M. Let ue T, M. Set Si(u) := HA(u) [pra(®)],
S3(u) := HA(u) [Tpy(u)]. Obviously u +> S3(u), u = S3(u) are vector fields on T, M
In local charts it holds
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CONNECTION ON SECOND TANGENT BUNDLES

S10x', Xio, X015 X11) = X0 0/0x" + 'Fixoxto 0/0x}0 +
+ 2Fxd x50 0/0x0y + [Fipxioxtixio + *Fjx]yxio] 0/0x1y,
S3(xX', X105 X1, X{1) = X1 8/0x’ + 'Fx{ox; 0/0x10 +
+ 2Fjaxfyxy 8)0xb, + (Fiux{oX61%01 + Fixiyxgy 0/0Xy, .
We sze that S; coincides with S, on the submanifold of all velocities of order two,
Xj0 = Xo1-
Let A, be a linear connection on TM determined by A. Let S, : b » HA(b) (b) =
= x} 0/0x' + °Fj,x{x} 0/3x' be the spray of A,. Being a natural first order prolonga-
tion functor, T determines the vector field T'S; on T, M. In the induced coordinates,

TS, = x%0 0/0x" + *Fhx{oxto 8/0xio + xi, 8/0x}; +
+ (SF;k.uxllox’fox& + ‘F},‘x{lx'fo +° }hxiox'ﬁ) 0/0x4y,
where we use Fj, , 1= 0F/0x". Let X € T, M. There exists a unique vector X of the

spray of A, such that prp(X) = X. As(prm> TPrms Tapy) : TsM — BsM < x3, T, M
is an affine bundle associated with TM, see [9], therefore

4 BA(X) = [SI(X) = TS(X)] = (Fjsu + *Fu’Fju — "Fixs

~ 'F}°Fi) xixix{ 0[ox', X = (x', x}),

is a tangent vector in T, M. A geometrical relation of f§ to A will be given later.

Further it will be useful to find some sector connections which are connected with
three linear connections 4,, 4,, 4; determined by a sector connection 1 in a natural
way. Recall the well known ‘“‘pull-back’ construction of connections. Let z;: ¥; —
— X;,i=1, 2, be two fibre bundles. Let (®, ¢) : Y, — Y, be a fibre morphism such
that @[ (y,,_ is a diffeomorphism for every x € X;. Let I' : ¥, — JY, be a connection
on Y,. Let ®*I" dencte a connection on Y, such that ®*I'(h = ji(z » &~ Woe(2)),
where I'(®(h)) == j,,’,(x) Vi, he(Y,),. Let A, s = 1,2, 3, 4, be linear connections on
TM. The projection v, : VTM == TiixyTM — TM on the second summand is
a v.b.m. over py : TM — M such that v}l is a connection on pry : VTM — TM.
Let Hi, —» TAM be a vector bundle of all A,-horizontal vectors on TM. Then
(TpmAs) = Tpy lus, : HAy = T4 is a v.b.m. over p,, such that the connection
(Tpuis) *2, on HA, > TM can be constructed. In local charts let

et (x5 x1) B o(2) = (25 h(2) %)) = (%', x1, x3; = Fipxd),
*hi(x) = 6.
As
vL(xi’ xiloy 0, xill) = (xia xil = xill)i
then
v:'la(xi: xio’ 0, xil) = j(xx',x;)[(zi’ le) ind (Zi’ Zilo = zil’ 0, zill = 3h;(2) x{1)]'
Since * ' _
(Tprpds) (u = (xi, xios x(in > xi1 = 4F;kx{0x(';l)) = (xi» xil = Xo1),
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A. DEKRET

then
(TPM}%)* A‘Z(u) = j(lx‘,xl‘o)(zi, Zil s Zhj(z) X'(i)l ’ 4Flk(2') Z xf,l .
Composing these connections with 1, we get
vpAsh(x’, X0, 0, xi1) = jx(2) > (2} 210 = hi(2) xio, 0, 215 = *hi(2) X1 1),
(TpmAa)* A,(u) Ay = ]x ((z) = (', *h; 1(2) x{o, zh,xm > 4F'k(Z) lhfv(z) X3, th(z) Xo1)-
Let v7A34; @, (Tpyia)*Az2, denote a connection on 7,M — M determined by
. (xis xilo’xg)l’xill) =
= [(x', x10, 0, X;1 — 4F,likx{0x,(;1) + p.,M(xi Xi0s X015 4Fj'kx{ox'(;1)]"*
"’Jx((z) P> (2, 'h} i(2) X{0> *h; i(2) X1, 3h,(Z) (x4, — 4Fi(x) xioxb,) +
4F}k(2) 'hifz) X1o hf(z) X01)s
i.e. by the following equations
) Xiow = "FiX]0s X014 = Fixh,
xllu = (4F1k u 4F:k1F;'u + 4F}t2F;u - °F, 4F'k)xwxm + F x{1 .
Comparing (5) with (3) we get.
Lemma 6. The connection 0:13/11 @, (Tpurs)*2,2, is a sector connection on T,M
which is non-holonomic or semiholonomic ifl Ay = 13 or A, = A, = 15 respectively.
We can reformulate the Jany$ka result [4] in the following way. He has stated
an 8-parameter family J of the sector semi-holonomic connections which are the
natural first order prolongations of a linear connection y on T'M projectable over 7.
Let us recall the Christoffel’s functions of two connections of this family established
earlier by Kolaf [ 5] and by Oproiu [7]:
(6) ;.'ku= Jku+Ftht +F Fltm—Ftiu ;‘ka Kolaf
j’ku Fl“ k + thFlun Oproiu
where F}; are the Christoffel’s functions of y. Now (5) and (6) immediately give in the
case 1; = A, = A3 = y the following assertion.

Proposition 6. The connectton vLy Y @, (Tpuy)*y . v is the Koldi’s prolongation
of 7.

Let A be a sector connection on T, M and A, 4,, 4, be the linear connections on TM
determined by A. Then the sector connection A, = v;Ash; @;, (TPyA)*Ahy, s =
= 1,2, 3, is called s-conjugated to A.

Let X,, X,, X; € T,M. There exists u e (T3M), such that Pru - Prom(W) = Xy,
Tpu - Prou(®) = Xz, TPy - TPru(w) = X;. Since H,(u), Ho(u) lie in the same fibre
of the affine bundle (Prm> TPrm> TTPy) : TsM — B3 M, see [9], we set

V:(Xu X;, X3) = H;(u) — Hm;(u) €TM.
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In induced charts using (3) and (5) we get
() VX1, Xa, X3) = (F + *Fi'Fiy = Flyy = Fo' Fju = " Fiu) x{x3x5.

This means that V is a cross-section M - TM @ (®3T*M) It is called the
Jdifference of A.

From (4) and (7) we obtain
Lemma 7. If 4 is projectable, i.e. A, = A,, then B,(X) = Vil(X, X, X).
Clearly VA:: = 0. Therefore if 1 is the Koldf’s prolongation of a linear connection y

on TM then V* = 0 and conversally if 1 € J and V* = 0 then A is the Kolar’s cou-
nection. In the case of the Oproiu’s prolongation we have.

Lemma 8. If A is the Oproiu’s prolongation of a linear connection y then V* = — P,
where @, is the curvature form of y.
Proof. Using (7) we get

= (Fj'u,k - _‘;'k,u + Ftiu ;‘k - t‘kF;u) x{xll‘xg'
2. On a torsion form of a sector connection A. Let 1 be a sector connection and
let A,, 4,, A5 be linear connections on TM determined by 4. Let
A = d'(x’, x{)8/ox' + 'Fixia*d/ox},
B = b'(x’, x{) 8/ox" + 'Fi,b*x]{ 6/0x}
be Z,-horizontal vector fields on TM. Let TA : T(TM) — T(T, M) be the tangent
map of A:TM — T(TM). Then the A-vertical part VgA4 := v,TA(B) of TA(B)

determines a vector field on TM which will be called the absolute derivative of A
with respect to B according to A. Using the Lie bracket [4, B] we get

8) VB —Vzd —[A4,B] = ZF‘k(a’b" — bld%djox' +
+ (Fiys + °F 'F%) xi(a*b® — b*a®) 8/0x}

Let a,b,ce T.M. Let 4, B be vector fields on M such that A(x) =a, B(x) =
Let A or B be the A;-lift of 4 or B respectively. Put

t*(a,b,¢) = (V4B — Vpd — [A4, B]),, e T.TM & A*TiM.

It is obvious by (8) that we have a cross-section t* : M — T(TM) @ (T*M A* T*M)
which will be called the torsion form of 4.

Lemma 9. If the underlying connection A, of a sector connection A is without torsion
then ©* is a cross-section M - TM @ T*M A* T* M.

Proof follows from (8).

Let a, b, c € T, M. Set t*(a, b, ¢) = v;,7*(a, b, ¢). By (8) we have

9 tia, b, ¢) = (i + *Fi' Fi — °F},*Ft,) ci(a"b* — b*a*) 8/ox".
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DEKRET A.

Hence ©* is a cross-section M — TM @ T*M A*T*M which is called the torsion
of 1 with respect to A,.

Proposition 7. Let A be a sector connection on T, M. Then the torsion of the sector

connection A¥ , 1-conjugated to A, coincides with the curvature form of 24, i.e. ’C){? =, .
Proof follows from (5) and (9).

Corollary. If A is the Kolar's prolongation of a linear connection y on TM then
A
11 =9,.

Remark 1. If 1 is 1-symmetric then the antisymmetrisation 4t} of 7} has the follow-
ing coordinate form

At} = 2F}, dx/ A dx* A dx" @ 8/ox".

On a curvature form of A. In general, the curvature form of a connection I' on
afibrebundlen : Y — M isthe section @ : ¥ — VY @ A2 T*M, where ®(y, a, b) =
= v([HT 4, HT'B],), A, B are vector fields on M such that A(ny) = a, B(n(y)) = b.

Let A be a sector connection on T, M the underlying connections 2, and 2, o
which are intergrable. Let a, b, c,de T, M. There exists A-horizontal vector h e
eT(TM), s=1,2,3, such that ppy(h) =c, Tpy(h)=d. Set o¢(c,d,a,b) =
= @,(h, a, b). In the induced charts we get

o (c,d,a,b) =
= ( tikwlFa:j + F::wzFl'sj + °F;, ij + 3Ftiw3F:jsF:k + Ftiw,jsF:ak + F:kw,j) X
x c*d“(a*b’ — a’b” 8/ox.
This yields

Lemma 10.. ¢, is a cross-section M — TM @ (®*T* M)A* T* M. Quite analogously,
putting .
Uy (c; d, a,b) = ®y(h, a,b) — @;4(h, a, b)

we get a cross-section Yo, : M - TM @ (®*T*M) A* T*M in the case of any sector
connection A on T, M.

3. On relations between sector connections and sector forms. Let A — M
denote the vector bundle of all sector r-forms on M, see [9]. Let us recall that f'e T,M
is a function (T,M), — R linear according to all canonical vector bundle structures
on T,M. As every ge I, is a v.b.m. from a v.b. structure on T, M into another one
therefore the group I/, acts on "M by gf(X) =f(g(X)), XeT,M, gel,, fetT M.
We are interested in the cases r = 2, 3. The extension of our considerations for an
arbitrary integer 7 > 0 is only a technical matter. In the induced charts (x', x},,
X0y, Xyy) on T,M and (¥, x';oo,x:>1o,x‘110’xgo1’xixox,x{)u, xllu) on T, M the
following coordinate form of f holds, see [9]:

P _ i . J i i
JetrM, S = a;xio%o1 + axyy, f =K, a, a;),
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fer’M, [ = aiXi00x10X601 + @1Xi00%b11 + bijXi01Xb10 +
+ ¢jXi10%h01 + @iXy11-
The above introduced canonical injection Vg, : TM — T, M, (¥}, x}) = (¥, 0, 0, x}),
induces the fibre bundle structure x, : ©2M — T*M, x,f:=f.Vo, = axi. Set
(®M)o = {fet*M, %, f=0e T*M}. Let X,, X, € T, M. Then there exists X € T,M
such that pry(X) = X;, Tpu(X) = X,. Let fe (t? M),. Setting f(X;, X;) = f(X)=
= a;;xix} we get the identification (t2M), = T*M @ T*M, '+ .

Lemma 10. The fibre bundle », : 1> M — T*M is an affine bundle associated with
T*M @ T*M.

Proof foilows from the fact that every couple f; = (x', a;, a}), > = (¥', a;, a})
such that x,f; = %,f, determines the unique element f; — f, = (x',0,a; — a}) €
€ (t*M)y = T*M @ T*MM.

In the case of the canonical involution i, on T, M, i,f := f. i, is a sector 2-form
such that. %,(i»f) = %,f. Therefore Af:=f—i,f = (x',0,a;; — a;) € A*T*M. It
will be called the difference of f. The sector 2-form i, f is said to be transposed to f.
We say that fis symmetric if f = i, f, i.e. if Af vanishes.

Quite analogously, in the case r = 3, three injections from T, M into T3 M:

ng : (xi’ X%0s xim » X)) P () xixo’ 0,0,0,0, xp,, xiu),
V(1)2 : (xi’ xi10a x:)l ’ x;l) g (x.’ 0’ xz)l ’ O, 0’ x;05 0, xil),
V(l)l :(xi’ xilo, xz')l ’ xil) g (xia 0: Oa xilo’ xi)l H 0’ 05 xi“)’
determine three submersions 2M — 12 M:
®3f:= [ .V = ayXioXhy + aixiy,
13 fi=f. Vo = byxioxhy + axiy,
aifi=f. TVsy = Cijxioxf;l + aixiu-
Let we(13M)y := {fe ®M, %2 f = »3f = »f = 0}. Let X,, X,, X5 € T,M. Then
there exists Xe (T3 M), such that prypr.m(X) = X1, Tpyprm(X) = Xy, Ty Tpr(X) =
= X,. It is easy to see that the map @ = @, &(X;, X, X;3) = o(X) = a;;xixjx5 is
a vector bundle isomorphism from (t3M), onto @3T*M. Denote by B* the image
of ©*M under the map (x!, x5, %3) : ©°M - TP Mxpapt Mxrapt>M. Let @y, 0,
be two sector 3-forms such that (%}, %}, %2) (1) = (%1, %3, ¥2) (w,). Then 0, — w, €
€ (13 M), and it holds.

Lemma 11. The fibre bundle (x}, x}, %2) : 1*M — B is an affine bundle associated
with @3T*M.

The group I, acts on t> M. For example Ti,(f) is a sector 3-form and it is easy to
see that »2 . Ti,(f) is transposed to xlf, %3 . Tiy(f) is transposed to x2f and
%k . Ti,(f) = x1f. A sector 3-form f is called sub-symmetric if x2f = xif = x}f
is symmetric. In the case of a sub-symmetric sector 3-form ffor every g € I, it holds
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#28(f) = %3g(f) = xg(f) = x2f. Then Af := Y (s8ng) g(f), where sgng is 1 or — 1
gels
if the permutation g is even or odd, lies in (t3M),. In the induced chart Af =

= Z (Sgng) Aigc1yigaayigsy *

el

Iietp,_ : Rx...xR — R be the projection on the last summand. Let 4 € QJY(M, R),
A :(T,M), - T,R = x* R. Then obviously f, := p,. . 4is a sector r-form. For every
sector r-form fthere exists 4 € QJ"(M, R), such that f, = f. We will say that a sector
r-form f is non-holonomic, semi-holonomic, holonomic if there exists a non-holo-
nomic, semi-holonomic, holonomic r-jet A € QJ'(M, R), such that f, = /. It is clear
that every. sector 2-form is semiholonomic and it is holonomic if i, f = /. As a conse-
quence of Lemma 1 we get .

Lemma 12. 4 sector 3-form f is non-holonomic or semi-holonomic if »)f = 2}
or %) f = %3 f = u} f respectively.

Lemma 13. A4 semi-holonomic sector 3-form f is holonomic if Ti,f = f =:i;f.

Remark 2. If fe 12 M is holonomic then it is sub-symmetric and Af = 0.

Now we turn to the relations between connections and sector forms. At first we
recall that the Libermann’s identification L, :JT*M — J*(M, R), induces the
identification L, : J'T*M — [J*"Y(J*(M, R)]o = J**'(M, R), with the property
L(JT*M = J'* (M, R), where J" or Jr denotes the functor of the non-holonomic
or semi-holonomic r-jet prolongation of fibre bundles. It is well known that a linear
connection y : TM — JTM induces the linear connection y* : T*if —» JT*M =

= J*(M, R),. It is clear that J*(M, R), = 1>M. Therefore every lincar connection y
determines the linear cross-section 7* : T*M — 12 M.

Proposition 8. Let { : T*M — 12 M be a linear cross-section. Then there exists the
unique linear connection y:TM — JTM such that for any ue TM and for every
z€e T:m(,,)M the y-horizontal space Hy, is the kernel of {(2), i.e. {(z) (Hy,) = 0.

Proof. In the induced chart let { be given by the equations z; = z;, z;; = y,(}(x)z,‘.
Then for Xe T, TM ((z) (X) = (y,{‘jx"lox{;l + x¥, z. This means that {(z) (X) =0
for every ze Tp(, iff X%y = —yixioxb,, Le. iff X is a horizontal vector of the
linear connection y the Christoffel’s functions of which are —yfj-(x). Clearly, y is
unique.

Remark on the converse of Proposition 8. If y : TM — JTM is a linear connection
with the Christoffel’s functions y(x) then —yj(x) are the Christoffel’s functions of y*
and the induced cross-section 7* : T*M — t>M is given by z; = z;, z;; = -—yf}(x) Zys
ie. y*(z) (Hy,) = 0.

Corollary. There exists the (1,1)-correspondence between the set of all linear con-
nections on TM and the set of all linear cross-sections { : T*M — 12 M.

Remark 3. If a linear connection y is determined by a linear section { : T*M —
- 12M then the transposed connection y* is determined by the cross-section (*
transposed to {. Then Al := { — {*: T*M — A>T*M is a vector bundle morphism
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and it coincides with the classical torsion tensor 7 : M — TM @ A2T*M of y.
Then 7 is without torsion if { is holonomic.

Remark 4. Every connection & : T*M — JT*M on T*M determines the cross-
section & : T*M — t2M. If ¢ is not linear, & = &;;(x, z) X0}, + z;x},, then &0) e
e (t*M)y = T*M @ T*M.

By similar considerations we get for r = 3:

Proposition 9. Let h: T*M — 1>M be a linear cross-section. Let Ay, A, be the
linear connections on TM determined by the cross-sections %yh, u3h : T*M — 1> M.
Then there exists a unique sector connection A on T, M such that miA = A;, n,A = A,
and for every i-horizontal vector X € (1y),, for every ze Ty M h(z) (X) = 0 at any
xeM.

Proof. Let h be given by z; = z;, a;; = 1pk (%) z,, b (x) Zy, Cij = "(x) Zys
a;j, = h,{;u(x) 7. Then xi;, = —°hjx] are the equatlons of Ay, s =1, 2. Because of
it any sector connection I such that n,I" = A,, n,I" = 1, has the following equations:

i 18 i ] 27 j
X106 = — hjX10s Xo1e = — hjXo1s

X = Fj'uk(x) x{oxl; + F;k(x) X1y,

i.e. XeT,(T,M is I'-horizontal iff _

xi101 == lh;i'kx{ooxgm » Xo11 = —zh;kx610x301 ’

X111 = (Fjux{oox610 + FuX{10) X601 -
If Xe HT then
h(z)(X) = [(hjuk hi b — zhl ik + Fhud X{00X610%601 +
+ (ahj'k + ij) x]10%g01] Zi-

Therefore h(z) (X) = 0 for every ze T M and every X e (HI), iff
(10) e = hi B+ Th R — B Fio= —h.

Juk —

These equations determine the unique sector connection A of the desired properties.

Remark 5. Any couple of the linear connections induced by three linear sections
uih, #3h, uh:T*M —1*M which are determined by a linear cross- -section
h : T*M — 7> M can be chosen as the underlying connections n,4, n,4 of the sector
connection A constructed by h in the sence of Proposition 9. Hence there exist 32
sector connections on T, M determined by h. If h is semi-holonomic then A is unique.

Proposition 10. Let A be a sector connection on T, M. Then there is a unique linear
cross-section h : T*M - t>M such that x2h, x3h are determined by the linear con-
nections m A, m,A on TM and h(z) (X) = 0 for every J-horizontal vector X e(Hi.)x
and for every ze Tt M at any x €*M.

Proof is quite analogous to that of Proposition 9.
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Remark 6. It is easy to see that in general a sector connection A determines 32
linear cross-sections h : T*M — 1>M. Nevertheles there is the (1,1)-correspondence
¥ : A = hsuch that the connections n,4, 7,4 correspond to the cross-sections x2h, x3h.
At any case, ) h induces the connection 1; on TM determined by A. This means that A
is non-holonomic if x}h = x2h. Hence 1 induced by a non-holonomic cross-section h,
%2h = x}h, is non-holonomic if h is semi-holonomic.

According to the correspondence Y we introduce the action of the group I
on the set of all sector connections on T,M by g(1) = g(YA). For instance if
(*Fix, >Fjx, >Fly, F},) are the Christoffel’s functions of A then

! ;k = zF)‘u’ sz‘k = IF:j’ 3F;k = SF;h
Fju = Fup — 'Fu’Fjy = "Fi'Fuy + "Fyj'Fy, + 'Fi’Fyy)
are the Christoffel’s functions of Ti,A.
Let X;e T, M, i = 1,2, 3. There exists u e (T3 M), such that

Pruprm(@ = Xi, Tpupr,m() = Xz, TpuTpru(u) = x3.
If A is a 1-symmetric sector connection then it is easy to compute that
ANXy, X,, X3) = 2’ sgng H,,(u) = ; SENE Fj, 10 iois, X1 OX 3D x e,
gels g€P3

where H,, (u) denotes the gi-horizontal part of u as it was introduced above. It
means that Ay : M - TM ® A*T*M. Comparing it with Remark 1 we get

Proposition 11. If 4 is a 1-symmetric sector connection on T;M then At} = 1/2 AA.

Remark on a construction of the Kol4f s prolongation of a linear connection
on TM. Lety : TM — JTM, x\;, = I‘j,,x{ , be a linear connection. Let §* : T*M —
- 1M, Z; = z;, zy = —T ,‘,‘z,, be the cross-section induced by y. Denote by
fy : T*MxpT; M~ R the function defined by f,(z,£) =9*(2) () = — [}(x) z,x] 0%t +
+ z;x};. Then f*:=p,.Tf, : T(T*M) x;, T(T;M) - R is a linear form on
T*Mx),T, M, where p, : TR = RX R — R is the projection on the second summand.
In coordinates we get

f:= —rjk,.zix{oxgx dx* — F}kx{ox31 dz; - T}nztxﬁx dx{o -
— Ijzxlo dx§y + x{, dz; + z, dx1,.
Let Hy*(z) : T.M — T,T*M be the y*-horizontal lift, where y* : T*M — JT*M is
the connection induced by y. Then .
FHT*MayTaM R, J(z,0): = £ (HY*@) Toy - Toru(®), v) =
= (=Tju + Tl 2X{00X610%801 — Tizixdo1X610 —
= Mhzx{ooxb11 — Tipzixl10%601 + 2j%1 14

is a linear section T*M — 73 M the values of which are semi-holonomic 3-forms.
By Proposition 9, £, determines the unique semi-holonomic sector connection 4
for which the equations (10) give (6), i.e. 4 is the Kol&f’s prolongation of y.

)

228



CONNECTION ON SECOND TANGENT BUNDLES

4. On geodesics of sector connections. Elements of T,M or cross-sections
{:T,_yM — T(T,_;M) are called r-vectors on M or r-vector fields respectively.
Let 1 be a sector connection on T, M. We will say that a 2-vector field { on Af over
a curve ¢ on TM is A-parallel if its 7-lift is A-horizontal. Let x! = ¢*(f), x\o = oD,
Xpy = chi(9), x4y = ¢} 1(?) be a 2-vector field { over a curve c. Then { is A-parallel if

dcto ¢ dc* dct dc*
(11) dr 1kac{o ~ar —a%l“ = ZF:'kC{n ar
dejy dc* ; y dc

= FL ciock + 3FLef ——.
dt jkut10v01 T3 dt Jkt11 dt

If i =¢, ie. 1f Tpué = prué then 5 is said to be the second velocity. Since in the
induced chart, ¢}, = c}, is the condition for ¢ to be the second velocity then instead
of the second equation of (11) we can use the equatlon

(Fiy, = 2FY) c)o detde =

It means that if A is not projectable then at any 2-vector of the second velocity there
exists a unique curve ¢ on TM and a unique 2-vector field of the second velocity
which is A-parallel over c.

Let y be a linear connection on TM. Then in the case of a 2-vector y-horizontal
vector field the third equation of (11) is of the form

i j dc* i de! det .
@ iactocts g+ Ve gy Cor ¥ Tclo—gy =

Fi, ciock de + 3F! ¢t
= LjmC10C01 =45~ rk?,ucmcox TR
where v}, are the Christoffel’s functions of 7.
A curve ¢ on M is called a geodesic of a sector connection 4 on T, M if its T; =
= TTT-lift Tsc is A-horizontal, i.e. if T',c is A-parallel over Tc. Hence the equations
11) give for a geodesic x' = c'(#) the following relations:

d%' ., ddd d* 5, df dt

de2 M dt de T TR dr dr

d3c _F de/ dc* de* + 3 d’c! dc*
ar? Mdr dr dt g dt

Therefore if ¢ is a geodesic of A then is a geodesic of its underlying connections 4,
and A,. Hence the question of geodesics there is only in the case of a projectable
sector connection. If a curve ¢ on M is a geodesic of a projectable sector connection 1
then Tc is A,-horizontal and because of it by (12) we get the conditions for c:

-d%! . dcd det

FToi T
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de/ dc* de*
dt dt dt

(Fj'ku+ 3Ftiu ;'k—F:'k,u— tlkF;u—F_;lFl’m)

It means that every geodesic of 1, is not geodesic of 1. The coordinate form (7) of
Vi gives

Proposition 11. Let A be a projectable sector connection. Then every geodesic of the
underlying connection A, is a geodesic of . iff the symmetrisation of V+ vanishes.

A projectable sector connection A on T, M is called geodesic if every geodesic of 4,
is a geodesic of A. Hence the above introduced connection 1} is geodesic. Con-

svy

sequently the Kol4f’s and Oproiu’s prolongation of a linear connection y on TM
are geodesic. In general using the formula (6) of [4] one can easily calculate that the
symmetrisation of V} for arbitrary natural first order prolongation of y vanishes.
Hence it holds.

Proposition 12. Every natural first order prolongation of a linear connection y
on TM is geodesic.

REFERENCES

[11 A. Dekrét, On quasi-jets, to appear.
[2] C. Ehresmann, Extension du calcul des jets aux jets nonholonomes, C. R. Acad. Sci., 239,
154, 1762 —-1764.

[3] C. Gobillon, Géometrie différentielle et mécanique analytic, Paris, 1969.

[4] J. Jany$ka, On natural operations with linear connections, Cz. Math. J., 35 (110) 1985,
106 —115.

[5]1 J. Kola¥, On some operations with connections, Math. Nachr., 69, 1975, 297 —306.

[6] J. Pradines, Representation de jets non holonomes par des morphismes vectoriels doubles
soudés, C. R. Acad. Sci., Paris, 278, 1974, 1523 —1526.

[7]1 V. Oproiu, Connections in the semiholonomic frame bundle of second order, Rev. Roum. Mat.
Pures et applig., T XIV, N. 5, 661 —-672.

[8]1 A. VanZurova, Connections on the second tangent bundle, Cas. pro pést. mat. 108, 1983,
258 — 64.

[9] E. J. Whitte, The method of iterated tangents with applications in local Riemannian geometry,
Pitman, Boston —London — Melbourne, 1982.

Anton Dekrét
VSLD
Marxova 24
960 53 Zvolen
Czechoslovakia

230



		webmaster@dml.cz
	2012-05-09T19:50:47+0200
	CZ
	DML-CZ attests to the accuracy and integrity of this document




