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OSCILLATORY BEHAVIOUR OF NONLINEAR 
DIFFERENTIAL EQUATIONS WITH DEVIATING 

ARGUMENTS* 

B. S. LALLI and S. R. GRACE 

(Received September 30, 1985) 

Abstract. Some oscillation criteria forLBjc(t) = f(t, *tei( t)],.. ., :c[^m(t)]), n ^ 2 are established. 

Here L0x(t), Lkx(t) -= ak(t) (Lk.xx(t))\ I .=- J, k = 1, 2,..., n, a0 = an = 1. The results 

generalize those of Werbowski [Funkcial Ekvac, 25 (1982)]. However, they are not valid for the 
corresponding ordinary differential equations, which is due to the fact that deviations ^ c a n 
destroy oscillations, and also can generate oscillations depending on the "size" of the deviations. 

Key words. Oscillatory solutions, differential equations, deviating arguments, non-oscillatory 
solutions. 

1. I N T R O D U C T I O N 

The purpose of this paper is to establish some results concerning the oscillatory 
behavior of the equation 

(1) Lnx(t) = f(r, x[gl(t)l ..., x[gm(tj]), n }> 2, 
where 

• í^> L0x(t) = x(t), Lkx(t) = a*(0(-Vi*(0) 

k = 1,2, ...,w, an = a0 = 1. 

Here we study the nonlinear oscillations generated by general deviating argu­
ments gk. These results are not valid for the corresponding ordinary differential 
equations. For examples we refer the reader to the papers of the present authors 
[ 1 - 3 ] , Kitamura and Kusano [4], Naito [5], Philos [6], Sficas and Staikos [7, 8] 
and Werbowski [9]. 

In what follows we are primarily interested in the situation in which equation (1) 
is oscillatory. We have been motivated by the observation that there are very few 

* Presented to the Conference EQUADIFF 6, Brno, August 26-30, 1985. 
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criteria for equation (1), with a general operator Ln, to be oscillatory, though 
equation (1) and its nonlinear analogue have been the object of intensive investiga­
tion in recent years. Our main results in the form of oscillation criteria are given 
in Sec. 2. These results generalize oscillation theorems of Werbowski [9] for the 
paiticular equation 

x(F,)=/^A'[gl(/)],-...,x[gm(/)J). 

2. MAIN RESULTS 

Consider the equation 

(1) Lnx(t) = / ( / , x[gl(/)], ..., *!>-,-(/)]), 

where L0x(t) = *(/), Lkx(t) = ak(t) (Lk_!*(/))', k = 1, 2, ..., w, a0 = an = 1, 
at : R+ = [0, oo) -+ (0, co) (i = 1, 2, . . . , « - 1), gk : R+ -> R = ( -co, oo) with 
gk(t) -> oo as / -> oo (k = 1, 2, ..., w) and f:R+xRm->R as continuous. We 
assume that: 

(2) J _ i _ d s = oo (i = l , 2 , . . . , n - l ) . 

We further assume that there exist continuous functions q : R+ -* (0, oo) and 
Fk: R+ -+ R+ (k = 1, 2, ..., m) such that 

m 

(3) (-l)V(f, x,, ..., x.) sgn x. > fl(0 ft r*(l xk I) > 0 
i = l 

for / e .R+ and xk 7-= 0 (k = 1, 2, ..., m); 

(4) F* (k = 1, 2, ..., m) are non-decreasing on R+\ 

(5) Fk(uv) = Fk(u) Fk(v) (k = 1, 2, ..., m) for w, v G # + ; 
e dw m 

(6) J cy < oo for some e > 0, where F(w) = Yl Fk(u). 
0 -^( M ) i = l 

The domain D(Ln) for L„ is defined to be the set of all functions x: R+ -• R 
such that Ljx(f), 0 ^ j < n, exist and are continuous on R+. By a solution of 
equation (1) we mean a function x e D(Ln) which satisfies (1) on R+. A nontrivial 
solution of (1) is called oscillatory if the set of its zeros is unbounded and it is 
called nonoscillatory otherwise. The following three lemmas will be needed in the 
Sequel. The first lemma can be found in [6] and the other two appear in [2] 

Lemma 1. Suppose that condition (2) is satisfied. Let y e D(Ln) be a positive 
bounded function on the interval [7\ oo), T ^ t0 such that 

(-1)" Lny(t) = 0 for every t > T 
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Then 

(a) (-1)'_iy(0 > 0 for every t^T (i = 1, 2, . . . , « - 1), 

(P) For every u and v with v ;> u _; T, 

Lu = s0
 a lV s 11 si a2\sl) s„- 2 ^n- lV^n-J J 

Lemma 2. Let condition (2) A0/d and let x e D(Ln). If x(t) Lnx(t) is of constant 
sign and not identically zero for all large ty then there exist tx _; t0 and an integer /, 
0 ^ / _ n with n + / even for x(t) Lnx(t) ^ 0 or n + / odd for x(t) Lnx(t) _ 0 
and such that for every t _; tx 

I > 0 implies x(t) Lkx(t) > 0 (k = 0, 1, . . . , / - 1) 
and 

I _ n - 1 implies ( - l) / + k *(/) Lkx(t) > 0 (A; = /, / + 1, ..., n - 1). 

In the following lemma we let 

Hi(t) = max a((s) (i = 1, ..., n - 1) 

and 

<7> f>-
Lemma 3. Let xe D(Ln) be a positive function on [f0» oo). 1/*lim x(t) # 0, and 

f-*ao 

A.-i*(0 Ai*(0 < Ofor /•£>/-.£> /0, /, sufficiently large and Lnx(t) not identically 
zero for all large r, rh^n there exist a T ̂  tx and a positive constant M such that 

(0 l-C*-i^(0l > 0 
and 

(ii) x(.) 2; M[~ j - J _ J . . . Y i x <*---! ...ds1l|LI,_Lx(0|. 
L-T ^ l ^ U T T rWn-li,5n-11 J 

For convenience we use the following notations in the sequel. For any T ^ tQ = 0 
and all / *> T we let 

Dk = {te R+ : #k(0 < /}, D = Dt n D2 n ... n Dm, DT = Z) n [T, oo). 

^ 5 i 5 n ~ 2 i 
w ( í ' г ) = * ".ГTҒľ í •• í T~7Г~Tds"-1 - d S l 

T A*lVs11 T Г ."n-llЛi-11 and 
V i V V A 

a ( " ' ^ = * T77T J • • J T - l T T ^ - 1 - d5l« f o r v - " - r ' 
»=»o « l V s o »i J„- . a «- lV s n- lJ 

Theorem 1, Let conditions (2)-(6) hold. If 

17 



B. S. LALLI, S. R. GRACE 

(8) Jq(Onf*(«[g*(0,t])dt=°o, 
D * = 1 

then every bounded solution of (I) is oscillatory. 
Proof. Let x(t) be a bounded nonoscillatory solution of (1) and let x(t) ?- 0 

for / = /0. Then there exists a tx = t0 such that x[ft(0] # 0 (k = 1, ..., m) for 
/ = / j . Thus, by (1) and (3) we have (-1)" *(/) Lnx(t) > 0 for / = tx. Then from 
Lemma 1 it follows that 

(-1)1 x(t) Ltx(t) > 0 (i = 0, 1, ..., n) 
for / = /2 = tx and 

|x (0 I = *(t,s)\Ln„lx(s) |, for s = / = /2. 

Therefore for teDT, T ^ /2, we obtain 

(g) I *[ft(0] I = «[ft(0, 0 I A,-1*(0 | (* = 1, 2, ..., m). 
From (1), in view of (3) —(5) and (9) we get for / e DT 

m m 

i LBX(O i ̂  <z(o n m * few] i) ^ «(o n r*(«[g»(o. t] i I-n-ix(t) i) ^ 
* = i k=i 

Thus 

= «(o n FA\ Ln-i*(t) \) n **(«[&(o, o). 
k = l fc=l 

*} F(|Ln_1x(0l)dr = l T o T < 0 0 ' 
where e = | Ln_jx(r) |, which contradicts (8). 

Similarly we can prove the following theorem. 

Theorem 2. Let condition (2) hold, and assume that there exists continuous func­
tions qk : R+ -+ (0, oo) and Fk: R+ -* R+ (k = 1, 2, ..., AW) swcA that 

(10) ( - l r / a ^ ^ . - . ^ J s g n x ^ f qfc(/)Pfc(|xJ)>0 
*=i 

for te R+ and xk ^ 0 (k = 1, ..., m). If for some i0(l ^ i0 < m) the following 
conditions hold: 

(11) Fio is non-decreasing on R+; 

(12) Fi0(uv) = Fio(u) Fio(v) foru,veR+; 

(13) J • < oo for some s > 0; 
0 ^ioOO 
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(14) j9 t o (0^(w[gia(0,Odr-oo f 
Dh 

then all bounded solutions of (1) are oscillatory. 

Remarks 
1. If at = 1 (i = 1, ..., n — 1), then our Theorems 1 and 2 and Theorems 1 

and 2 in [9] are the same. 
2. As in [3J, if 

1 * 
(*) dm — - X WW > 0, a0(l) = 1, 

r-»oo a l V ' j i = 0 

for every choice of the constants c; with ck > 0 (k =-- 1, 2, ..., w — 1), where 

and 

*м=ì^k)ìЧЉ^ •dSi (k=3> -•n -1}> 

t = c = 0, then the conclusion of both Theorem 1 and 2 can be replaced by the 
x(t) 

statement that „every solution x(t) of (1) with the property that -— -> 0 as 
«i(0 

/ -» oo is oscillatory". Thus using (*) we can enlarge the class of oscillatory solu­
tions of (1). In case ax = 1 (i = 1, ...,w — 1), the condition (*) is obviously 
verified and thus the class of bounded solutions of (1) can be replaced by the class 

x(t) 
of solutions x of (1) such that —— -> 0 as / -» oo. This fact improves Theorems 

t 
1 and 2 in [9]. 

3. If n = 1, then condition (5) can be disregarded, and hence Theorems 1 and 2 
are extensions of some of the results in [4]. 

For illustration we consider the following example: 
Example. Consider the equation 

(15) (VF*T--x2 / 3r*-llsgnx r«--yl, t>\. 

From Theorem 1, it follows that all bounded solutions of (15) are oscillatory, since 

]q(s)F(<x[g(s)9 s])ds = J [2.VS ( l - | Y - --±-J / 2 )J / 3 ds = J ( ^ I 1 ) 2 ' 3 d5 = 00 

We note that Theorems 1 and 2 in [9] are not applicable since ax(0 9-- 1. Also 
Theorem 3 in [6] is not applicable, since condition (C3) in [6j fails (i.e.) 
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Theorem 3. Let the assumptions of Theorem I hold. In addition, let for T 
sufficiently large 

(16) J ,(,) f [ Fk(wlhk(s), T]) ds = oo, 

where 

Һ (t) - íg* ( 0 f o г n = 2* 
л ' (min (í, gk(0) for n > 2. 

J7ie« for /i odd, all solutions of (I) are oscillatory, while for n even, every solution x. 
of(\) is either oscillatory or lim \Ltx(t)\ = OO (/ = 0, 1, ..., n—\) monotonically. 

f-*00 

Proof. Suppose that equation (1) has a nonoscillatory solution x(t) ̂ 0 for 
/ ^ t0. Since lim gk(t) = oo (k = 1, ..., m), there exists a /x ^ /0 such that 

*[#*(')] # 0 for / ^ / j . Then it follows from (1) and (3) that ( - 1)" x(t) LHx(t) > 0 
for / ^ tx. And from Lemma 2 it follows, that there exist an even integer / e 
e {0, 1, ..., n} and a number /2 e [/l5 oo) such that 

(П) ,........... 
*(/)£,*(/) > 0 (/ = 0,1, . . . , / ) , 

( - l ) 1"^/)! , ,^/) > 0 (i = / + 1, ..., n), 

for / > t2. From Theorem 1 it follows that the case / = 0 is impossible. Therefore 
(17) hold for le (2, ..., n}. Let n be odd. Then n > 2 and le { 2 , . . . , « - 1}. We 
shall prove that the case le {2, ..., n — 1} is also impossible. From Lemma 3 
for le {2, ..., H — 1} we have 

| x(t) = Mw[t, /3J | LH_xx(t) |, (M > 0), 

for all large / *> /3 ;> /2. Since | x(/) | is increasing and | LH-Xx(t) \ is decreasing, 
from the above inequality we obtain 

I *[fc(0] I £ I *!>-('>] I £ Mw[At(0, /3] ILH..x[Ak(0] I >= 
U *' ;> MivfA^O, r3] I £.- i*(0 I (* - 1,2,..., m), 

forf .£ r;> ty 
Then from (1), (3)-(5) and (18) we get for t ;> T 

| L^t) | >. «(0 ft ^(Mw[At(0, f3] | £,-^(01) ^ 

which gives 

;> c2(0F(M I Ь„_.х(01) П Щ Щ <з), 

<wn/.(4*.(o..,])a f(M

l

|^', )J(, )| )-
Integrating the last inequality from T to oo we have 
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oo m 1 e Hfi 

J q(s) J! Fk(w[hk(s), ,3]) ds £ - L J - ^ < 00, e - M \ L„..x(T) |, 
T *=1 -« 0 r\U) 

which contradicts assumption (16). Therefore for n odd, x is oscillatory. Let n 
be even. Then the inequalities (17) hold for an even integer / e {2, ..., w}. As in the 
proof of first part, we can prove that the case le {2, ..., n - 2} is impossible. 
Therefore (17) holds for / = «, i.e. 
(19) x(t)Ltx(t)>0 (1 = 0,1,.. . ,*), 

for / = /2. We shall prove that lim | L,x(0 | = 00 (1 = 0, 1, ..., n - 1). From (19), 
f-*oo 

by using an argument similar to the one used in [2, Theorem l ] it follows that 
there exist a T ^ / 2 and a positive constant c such that 

ffk(0 1 *1 *n-2 1 

(20) | x [ g 4 ( 0 ] l ^C J —r— J. . . J ^ . . . . . d s , £ 

S H > k ( 0 , T ] , (fc = 1,2, . . . ,m) . 

Integrating (1) from T to f, we obtain 

| _,„_.*(.•) | = | Ln.lX(T) | + i \f(s, x [ g l ( s ) ] x[gn(s)]) | ds £ 
r 

^F(c)lq(s)l\W[gk(s),T]ds. 
*=1 

From the above inequality and (16) we derive lim | Ltx(t) | = oo (/ = 0, 1, ..., 
n - 1) monotonically. I"*fl0 

In exactly the same way we can prove the following theorem. 

Theorem 4. Suppose that the assumptions of Theorem 2 are satisfied in n ^ 2. 
In addition let for T sufficiently large 

r^ )^o(4^) ,T] )d5 = oo, 
where hio is as in Theorem 5. Then the conclusion of Theorem 3 holds. 

Remark. If at = 1 (/ = 1, ..., n — 1), then our Theorems 3 and 4 and Theorems 3 
and 4 of Werbowski [9] are the same. 

For illustration we consider the following example: 
Example. The equation 

(2D QKMixyyy = 3. (2>-1/3 r7/v/3[r/2], * > 0, 
has a nonoscillatory solution x(t) = t2 satisfying | Ltx(t) | -+ oo as / -* oo (/ = 
= 0 ,1 , 2, 3). i.e. the conclusion of Theorem 3 holds. We may note that Theorem 3 
in [9] is not applicable to (21) since aff) # 1 (/ = 1, 2, 3). 
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Remark. The analogous results as these obtained in this paper for the case of 
superlinear equations seem impossible. To see this we consider the equation 

(22) (« V)-2x*[i,]. 
It is easy to check that all conditions of Theorem 1 are satisfied (condition (6) is 

00 J \ 

replaced by J < oo J. However (22) has a bounded nonoscillatory solu-

tion x = e~f. 
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