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INITIAL-VALUE METHODS FOR COMPUTING 
EIGENVALUES OF TWO POINT BOUNDARY 

VALUE PROBLEM* 
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Abstract. We propose second order iterative initial value methods to compute eigenvalues and 
eigenfunctions of second order boundary value problems. Computational aspects are discussed and 
several examples are included. 
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1. I N T R O D U C T I O N 

One of the pioneer problems in mathematical physics is to find eigenvalues 
and eigenfunctions of the following boundary value problem 

(1.1) y" + M>)y = o, 

(1.2) y(a) = y(b) = 0, 

where X e R and p e C[a, b] and /?(/) ;> 0 for all / e [a, b"]. In section 2, we shall 
show that the method of complementary functions developed in [2j to solve 
nonlinear boundary value problems can be applied effectively in an iterative way 
to compute eigenvalues and eigenfunctions of (1.1), (1.2). The obtained algorithm 
is of second order and we believe that it reduces the amount of computational 
work needed in other available variety of methods like symmetric and nonsym-
metric finite difference methods [3, 4, 6 — 8, 11, 12], variational methods [6, 7] 
and for several other methods see [9, 11 — 13]. In section 3, we provide A° an 
initial approximation to the nth eigenvalue of (1.1), (1.2). We also discuss the use 
of initial approximation A°+1 which depends on ln (obtained approximate nth 
eigenvalue). The superiority of the proposed method and the computational 
difficulties and their remedies are illustrated by considering several examples 
in section 4. Finally, we note that the method of adjoints [1, 14] can also be used 
analogously to find eigenvalues and eigenfunctions of (1.1), (1.2). 
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2. FORMULATION OF THE METHOD 

We fix the eigenfunctions of (1.1), (1.2) by demanding that y'(a) = 1. Then, 
the boundary value problem (1.1), (1.2) is equivalent to the following first order 
system 

yi = y 2 > 
(2.1) y2= -P(0y iy3, 

y3=0, 

(2.2) yi(a) = yi(b) = 0, yi(a) = 1, 
where ys = A. 

Assume trial value of y3(a) = A0 and integrate (2.1) with the known and the 
assumed initial conditions to obtain the solution yt(t); i = 1, 2, 3. Let us consider 
a nearby solution yi(t) + <5y;(0; i = 1, 2, 3 where Syt(t) is the first order correction 
to yi(t) to produce the actual solution of (2.1), (2.2). The equations of the nearby 
solution are 

yi(') + Sy[(t) = yi(t) + 5y2(t\ 
(2.3) y'2(t) + 5y'2(t) = -p (0 [yi(t) + Syi(t)] [y3(t) + Sy,(t)l 

y3(0 + 5y3(0 = 0. 

From the right side of (2.3) on eliminating the higher order terms, we obtained 
the variational equations 

<5yi(0 = <5y2(0, 
(24) 5y'2(t) = -p(0 [yi(0 <5y3(0 + y3(0 <5yi(0], 

<5y3(0 = 0. 
In a similar way, the boundary conditions for the variational equations are 

obtained and appear as 

(2.5) 5yi(a) = 0, Syi(b) = - [y iW]^, ) , Sy2(a) = 0. 

The solution of the linear boundary value problem (2.4), (2.5) can be written as 

(2.6) 5yM = - ^ f f i j p u«(0; i = 1. -» 3, 

wheren u(f) is the solution of the following initial value problem 

«i=«2, 
(2.7) «2 = - K 0 b i ( 0 «3 + y3(t) «i], 

« 3 = 0 , 

(2.8) «,(a) = 0, «2(a) = 0, «3(a) = 1. 

Thus, to find Sy3(t) = - ^1
M

(b)^cal) , we use the fact that >>3(0 = A°, «3(0 = 1 
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and integrate the following initial value problem 

yi =y2> 

y'2= -X0p(t)yl9 

(2.9) , * w ' 1 ' 
uv = u2y 

" i = - p ( 0 ( y i + ^ i ) , 
(2.10) y,(a) = 0, y2(a) = 1, u,(a) = u2(a) = 0. 

Note that we have interpreted the variation Syt(t)\ i = 1, 2, 3 to be the difference 
between the true (but unknown) and the calculated solution i.e. 

(2.11) Syt(t) = yKtruc)(/) - yf(cai)C). 

However, since (2.4) is only an approximate system, the process of finding the 
true X is iterative and terminates only when dy$(i) is sufficiently small (less than 
preassigned tolerance). Thus, from (2.11) if A* the kth approximation to the true X 
is known then, Xk+1 the (k + l)th approximation is obtained by integrating 

[y'lT-for*. 

(-•!-) [«ir = [«2r, 
iu'2r

)=-pitnb'tri+nu1j
k)), 

(2.13) b . ( a ) ] w = 0, b 2 ( a ) ] w = l , [«,(<.)]<*> = [«2(a)j« = 0 
and 

(2 14̂  Xk+l - lk - [yiWll&b • t - n i 
(2.14) A - X [ M i ( 6 ) ] W . fc-0,1,.... 

The above process (2.12)-(2.14) for computing A is a realization of Newton's 
method. This can be shown as for ordinary boundary value problems [2], and 
hence the convergence is quadratic. Further, since for the computation of Xk+2 

in (2.12) we need only to replace Xk by Xk+l and the knowledge of [y,(0](k) or 
[til(0](*); i = 1, 2 is not required, the method is self-starting. Finally, once Xk 

an approximation to X is known then the corresponding [yi(0](k) provides an 
approximation to the eigenfunction. 

The process (2.12) —(2.14) is a forward method in the sense that each iteration 
requires the integration of (2.12) from the initial point a to the final point 6. If the 
eigenfunctions of (1.1), (1.2) are fixed by the choice y'(b) = 1 then, the backward 
method appear as (2.12) together with 

(2.15) [>>.(&)]<*> = 0, \y2{b)T - 1. [«i(6)]W = M - O F = ° 
and 

(2.16) A*+1 =. A* - iMay]Z ; k " °. !> - ' 
[«!(-)]' (*) 
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3. INITIAL APPROXIMATION 

It is well known [5, 10] that the problem (1.1), (1.2) has an infinite sequence 
of nonnegative eigenvalues 

0 ^ Xi < X2 < ... < Xn < ... 

and for Xn there exists a unique (except for a multiplicative constant) eigenfunction 
un(t) which has exactly n - 1 zeros in (a, b). If tt e (a9 b), 1 < i < n - 1 denotes 
the ith zero of un(t\ then 

(3.1) • n(XnM)-X12 <L /<+1 - /- £ w^m)-1'2; i = 0, 1, . . . , « - 1, 

where M = max/?(*), m = min p(t\ t0 = a and /n+1 = b. The proof of the 
a^tgb a<t<b 

inequality (3.1) requires Sturm's comparison theorem [5, 10]. However, for the 
sake of completeness we shall give a different proof which seems to be new. For 
this, we note that the differential equation (1.1) together with the boundary condi­
tions un(tt) = un(ti+1) = 0 is equivalent to the following integral equation 

(3.2) M||(0 = Xn J g(t, s) p(s) un(s) ds, 
ti 

where g(t> s) is the Green's function of the problem — u"n = 0, uB(t.) = un(ti+1) = 
== 0 i.e. 

g(í, s) = 
0 i+ i - t.) 

r ( s - ( f ) ( í 1 + 1 - o , í i ^ ^ á t á í ř + 1 , 
10-<i) ( í i + 1 - s ) , t i - š sáť^ř i + 1 . 

Without loss of generality we assume that un(t) > 0 in (ti9 t,+1) then, the function 

<p,(f) = ?f-±—— is well defined on [/,, ri + 1J and 0 < kt = min pj(f) ^ 
i n ( . . + 1 - t , ) 

:g max ^j(0 = Kt. Thus, from (3.2) we find 

<P' ( t ) = Jt t^ J ' g ( ' ' s ) p(s ) s i n rfS - n (p'(s) d s 

sin / ( f ~ f , ) " ( ' i + 1 f ) 

( t i + 1 - ti) 

and hence 

sin 

K , "ľ / . • Ф~ t.) ^ , ч _ Л — _ w k í J g(í,a)sш---- fr- й ęit) 
щt - Һ) t, ( t i + 1 - ti) 

( t i + 1 - ti) 

(3-3) š Jľ n м ' "Гg ( f > s ) s i n rľ(S n ds-
I я ( t - h) t( ( t i+1 - h) 

( t ř + 1 - ti) 
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However, since 
uţl , л . n(s-ti) (ti + í - tt)

2 . n(t-tt) 
g(Us)sm v ds= s i n ^ £ - , 

ř, Ui+l Гi1 я lA+i - ч) 
the inequality (3.3) is same as 

(3.4) 4,m*. ( < ' + 1 7 < i ) 2 ^ <P,(0 ^ A„MK, IfilLZJil! 
2 

71" 71* 

Since (3.4) is true for all / e [.>*, fj+i], in particular we find that 

which is same as (3.1). 
Now, from (3.1) we have 

nn(XnM)"112 <, £ (rl+, - *,) « 6 - a g nn(Xnm) ~1/2 

i = 0 

and hence 

(3.5) -J^L-z^ »2*2 

M(b -a)2 n " m(b - a)2 

in which the equality holds if p(t) is a constant. 
2 2 2 2 

From the inequality (3.5), we find that or or 
M(b - a)2 m(b - a)2 

i n V r i i n 
--r r -77- H can be taken as an initial approximation X° to A. the nth 
2 (fc-a)2 L M w J 
eigenvalue of (1.1), (1.2). However, in practical applications m may be zero, in 
which case the last two initial approximations are not obtainable. Difficulties 
also arise in using all these approximations for n > 1. This is due to the fact that 
the lower bound may be closer to, or even less than the next smaller eigenvalue 
namely Xn^1 then, the iteration process (2.12) — (2.14) is likely to converge to An_t 

instead of Xn. Similarly, when m 4. 0, the use of the upper bound may lead to 
convergence to Xn+i instead of Xn. 

The modify the choice of the initial approximation for n > 1, we note that 
n V . 2 (n + l)2n2 

and Xn+l == 
ft,(*-«) »n+i(b-a)2 

*n+1
 = Sn + ' ?2—. If the variation of p(t) is small in [a, fc], we can say 

K n2 AW-
Vn ^ J Hence An + i = — — Xn i.e. for the computation of Xn + l we can 

AWi " " "2 

Xn = — and Xn+l = — - j where m ^ \tn> jun+1 ^ M. Thus, 
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(n 4- l^2 

take - ---— Xn as an initial approximation. The disadvantage here is that inter-
n 

mediate eigenvalues have to be found before higher ones. But an initial approxima-
(n 4- k)2 

tion with Xn for the computation of An+k(fc ^ 1) improves as n increases, 
n 

so we need only very rough estimates of intermediate eigenvalues. 

4. NUMERICAL COMPUTATION 

A simple Fortran routine using fourth-order Runge-Kutta method is implement­
ed on IBM 3081 GX. The computation was applied for the first eigenvalue At 

to several test functions p(t) and different choices of a and fc, however to obtain 
convergence to seven or eight significant figures the number of iterations is too 
large e.g. let p(t) = 1, a = 0, b = 1 for which Xx = rc2, if X° = 8 then, with h = 
= 0.1, 0.01, 0.001 or 0.000 1 it requires 160 to 200 iterations each. An extrapolation 
routine was then included in the algorithm to accelerate the convergence. The 
scheme known as Aitken's extrapolation formula is as follows. Let A° denote the 
initial approximation, and A1, A2 denote the successive iterated approximations 
using (2.14) or (2.16) then, we compute 

i = a (A°A2 - (A1)2) 
(A2 - 2A1 + A0) ' 

This A is used as the next initial approximation. 
We apply this procedure to test functions (i) t(\ - t), (ii) sin f, (iii) cosh t, 

(iv) 1 4- t2 with a = 0, b = 1. Table 1 displays the results of computation of Ax 

with their initial approximations, step size and (n, m) where n is the number of 
iterations and m the extrapolations needed to achieve the convergence. Table 2 
displays the first five eigenvalues of each together with their initial approximations. 
The convergence to ten significant figures is achieved with 10 iterations and 4 extra­
polations. 
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