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GEOMETRY OF LAGRANGEAN STRUCTURES. 2.%)
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Abstract. Underlying notions of the global calculus of variations in fibered spaces, such as the
r-jet prolongation of a fibered manifold, horizontal and contact differential forms and odd base
forms are introduced, and their basic propertjes are discussed.
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2. DIFFERENTIAL FORMS ON JET PROLONGATIONS
OF FIBERED MANIFOQLDS

This paper is devoted to the theory of horizontal and contact differential forms,
and differential odd base forms on (finite) jet prolongations of fibered manifolds.
The subject had been developed in the period 19701980, and reflects the effort
to achieve a deeper understanding of the geometrical, and conceptual structure
of the global calculus of variations. It is very closely related to the basic variational
notions: the horizontal and contact forms allow to introduce the global concepts
such as, for example, the lagrangian, the Lepagean form, the Euler-Lagrange form,
and the first variation formula.

In this paper, as well as throughout this work, a uniform numbering of sections,
formulas, and references is used, beginning in Section 1, and continuing in the next
sections.

The theory of horizontal and contact forms for higher order variational problems
starts with the notion of horizontalization [9]; in [7], [8], [10], [11] and [12]
this theory gets a relatively closed form. It should be pointed out, however, that
the theory of Takens, Tulczyjew, and Kupershmidt involves, in addition, infinite
constructions (infinite jets, direct and indirect limits), which are not needed in our
approach.

For basic facts on the Ehresmann’s theory of jets the reader is referred to [1].

* Part 1 of thig work has been published in Arch. Math. (Brno) 22, No. 3 (1986).
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D. KRUPKA

2.1. Jet prolongations of fibered manifolds. Let Y be a fibered manifold with
base X and projection n, let n = dim X, m = dim Y — n. By definition, = is
a surjective submersion; in particular, z is an open mapping. Thus to each point
y € Y there exists a chart (V, ¥), ¢ = (!, ..., u" y', ...,y™, at y and a unique
chart (U, 9), ¢ = (x, ..., x"), at x = n(y) such that U = n(V) and «' = x'on
foralli,1 £ i < n, or, which is the same, such that ¢ o # = pr; o Y, where pr, =
= R"x R™ — R"is the first canonical projection. (V, ¥) is called a fiber chart on Y,
and (U, o) is called associated with (V, ¥).

For simplicity, a fiber chart on Y is usually denoted by (V, ¥), ¥ = (x', y°),
where 1 i < n,1 < ¢ £ m, and the associated chart on X is denoted by (U, ¢),

=)

The r-jet of a mapping f at a point x is denoted by Jf. The manifold of r-jets J7y
of (local) sections y of Y is called the r-jet prolongation of Y, and is denoted by J"Y.
J'Y has the structure of a fibered manifold with base X (resp. J°Y, 0 < s < r) and
projection n* (resp. =, ) defined by =,(J5y) = x (resp. =, ((J. y) Jy). If y is
a section of Y over an open set U < X, then the mapping x — J7yis a section of J'Y
over U; this section is called the r-jet prolongation of y, and is denoted by J'y.

Any fiber chart (V, y), ¥ = (x,»°), on Y defines the associated fiber chart
Ve W), ¥, = (x4 5%, 55,5 5 ¥5,..4), on J'Y, where 1<i<n 1S05m,
1<j;,£...25k=sn1ZkEr, by the formula

2.1.1) Y51 il¥) = Dy, . D (37107 ") (0(x)),

where (U, @) is the chart on X associated with (¥, ), and D; denotes the i-th
partial derivative operator. Let (V, ¥), ¥ = (x, %), and (V, 9), p = (x', y°), be
two fiber charts such that ¥ n P # 0. Then V, n V, # 0, and we have for any
JyeV,nV,andany k,1 Sk <r,py, ... =12, ...,mandv,1 Sv<m,
ypx Pk( 'Y) = (ym Pk o J'y o ¢—1) (¢(x)) =
(2.1.2) = D, (7y,.pu-1 © J¥ O Y (tii(x)) =.
D, .oVt o W, 0 Ty0 07 0 097" (¢(x).

Thus we obtain, using the chain rule, the transformation formula in a recurrent
form,

= oy E. ) ox’
2.1.3) y;p-.mc ‘=( Voroeos Z E ym =L Vi ...iqs) e ?
ox’® q=0 ay.h Ja oxP

where the second summation sign denotes the summation over all g-tuples tuples
GUys s suchthat 1 < j; < ... £j,

Remark 2.1. We note that (2.1.1) defines the functions y%, ; : ¥, - R for all
k-tuples (jy, ..., ji), not only for non-decreasing ones; however, the coordinates
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GEOMETRY OF LAGRANGEAN STRUCTURES. 2.

of the chart (V,, y,) are only those of them whose subscripts form a non-decreasing
k-tuples.

Remark 2.2. One could suggest to use multi-indices instead of the non-decreasing
k-tuples of indices (j;, ...,Ji) in the expressions like (2.1.1). It will be seen later,
however, that some operations over the indices, as symmetrization in a part of them,
cannot be effectively described by multi-indices. For this reason we prefer the use
of non-decreasing k-tuples.

Letn, : Y, = Xy, n, : Y, = X, be two fibered manifolds, ¥V = Y, an open set,
and o : ¥V — Y, a homomorphism of fibered manifolds. Since m; is an open
mapping, U = n,(V) is an open subset of X. Recall that a is said to be a homo-
morphism of fibered manifolds if there exists a mapping «, : U - X, such that

(2.1.9) , My 00 = 0lg O My

on V. If «, exists, it is unique, and is called the projection of a. We write for simpli-
city oo = pra.

It is clear that if for two homomorphisms a, § of fibered manifolds the composi-
tion B o « is defined, then it is again a homomorphism of fibered manifolds, and
pr(B o a) = (pr p) o (pr a).

Leta : ¥V — Y, be a homomorphism of fibered manifolds. Suppose that dim X, =
= dim X,, and that pra : U » pr a(U) < X, is a diffeomorphism. Let y be a sec-
tion of Y;, mapping its domain of definition into ¥. Then by (2.1.4), ay(pr o)~
is a section of m,, defined on the open set pr a(U) = X,. Thus the r-jet
pracry@y(pr @) ™) is defined for each x from the domain of definition of pr a,
and the formula

2.1.5) T J5y) = Topracry(@y(pr ) ™)
defines a mapping J'o : 7 aV) > J'Y,. J« is a smooth mapping such that
2.1.6) (%), o J'a. = pr a o (ny),, (7, 0 J'a = Jw 0 (m3),,,.

Thus J'a is a homomorphism of the fibered manifold J'Y; with base X, (resp. J*Y;)
and projection (n), (resp. (%1),,s) into the fibered manifold J'Y, with base X,
(resp. J*Y,) and projection (n,), (resp. (@,),,). We call J'« the r-jet prolongatton
of a.

Notice that (2.1.5) can be written in the form

(AW) JeoJyo(pra)~t = J(ay(pra)~?t)
for every section y of =. ‘
If o, B are two homomorphisms of fibered manifolds such that B o a is deﬁned

and pr a, pr f are diffeomorphisms, then the r-jet prolongation J'(f o «) is defined,
and ,
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D. KRUPKA

(2.1.8) J'(Bowa) = JBo Ja.

The definition of the r-jet prolongation of a fibered manifold can be applied
to the s-jet prolongation of this fibered manifold, where r and s are any non-negative
integers. Let Y be a fibered manifold with base X and projection n. We obtain
in this way a fibered manifold J'J*Y with base X (resp. JPJ*Y, 0 < p = r) and
projection (), (resp. (7,),, ,). Jet prolongations of Y of this type are usually referred
to as the non-holonomic prolongations, or the (s, r)-jet prolongations of Y; the
elements of J"J*Y are usually called non-holonomic jets.

Let s and r be non-negative integers, J.*® € J"**Y a point. For a representative y
of the r-jet J.*%y, J% is a section of J°Y, and the r-jet of this section J.J%, is a well-
defined element of J'J*Y; obviously, chosing a fiber chart (V, ) on Y such that
J %y € (V),, and expressing J.J*y with respect to this fiber chart we can see at
once that this r-jet depends only on the (r + s)-jet J.%y. Thus, putting

(2.1.9) ' WJLy) = Iy

we obtain a mapping : : J**5Y — J'J*Y. It is easily verified in terms of charts that
is an embedding. We call it the canonical embedding of J'*sY into J'J*Y.

2.2. Horizontalization and horizontal forms. In this section, Y is a fixed fibered
manifold with base X and projection .

Let ¢ be a form, or an odd base form on Y. ¢ is called n-horizontal if izo = 0
for every n-vertical vector & e TY. g is called mn-projectable if there exists a form,
or an odd form, g, on X such that n*g, = g. If g, exists it is unique; we call it the
n-projection of g.

The module of p-forms (resp. the module of odd base p-forms) over the ring
of functions, defined on an open set W < Y, is denoted by QP(W) (resp. Q°(W)).
n-horizontal p-forms (resp. odd base p-forms) form a sub-module of this module,
denoted by Q%(W) (resp. QXW)). We put _
QW) =L/ (W), QW) =ZQ%W),
QW) = ZQYW),  Qy(W) = ZQ%(W)
(the direct sum of modules, summation over p =0, 1, ..., n + m). Q(W) (resp.
Q(W) is a graded module, and Qy(W) (resp. Qx(W)) is its graded submodule. The
exterior product of forms defines on Q(W) the structure of the exterior algebra;
Qx(W) =« QW) is its subalgebra. The exterior product of forms and odd base
forms defines on Q(W) the structure of a left module over the algebra O(Y).

Let now W < J'Y be an open set, fe Q°(W) and ¢ € Q*(W), where p = 1.

(2.2.1)

Denote W' = n,'; ,(W). We set for each Ji*'y € W’ and any vectors £, ..., £, €
e TJ™*'Y at the point JT+1, P
2.2.2)

r41 k(f) (J;+1Y) = f(J;Y)’
h(@) (JZ*79) Gy -ovs o) = o) (T J7y . Tmpy . &y, .
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GEOMETRY OF LAGRANGEAN STRUCTURES. 2.

Then h(f) € Q°(W’) and k(o) € Q2(W"), i.e., h(g) is T, -horizontal. The mapping
o — h(g) of Q(W) into Qy(W"), defined by (2.2.2), is called the n-horizontalization
(of forms).

We shall now transfer the notion of n-horizontalization to odd base forms. Let
us consider J'Y as a fibered manifold with base X and projection =,. Notice that
we have a commutative diagram

vr+1 r
¥ RX ———> m'RX
2.2.3 ’
( ) 1 nr+l,r 1

Jr+1Y —_—— JrY

where v, .4, is the canonical homomorphism of vector bundles (see the beginning
of Sec. 1.2). Identlfymg Ty, ,7t *RX with n,HRX we can interpret v, , as @a homo-
morphism of n¥, ,RX into 7} *RX. Vrtt,r is a linear isomorphism on each fiber. Let
W < J'Y be an open set, QeQ"(W) where p = 0, and W' = n,ﬂ AW). Let
Jitlye W’ be any point, &, ..., &, € TJ™1Y any vectors at this point. There
exists one and only one odd base scalar h(g) (J1*'y) (¢,, ..., &,) at the point J7*'y
such that
r+1 r(h(Q) (J;+ 1?) (51 9 seey ép)) =

=o(Uy) (TJy . Trypsq - &5 ey TJy . Tr,yy - &)

The correspondence J’“y - h(g) (J5*1y) is an element of QZ(W’). The mapping
0 = h(g) of Q(W) into Qx(W"), defined by (2.2.4), i is called the n-horzzontaltzatzon
(of odd base forms).

The following elementary properties of the zm-horizontalization of forms, and
of odd base forms, can be deduced from the definitions.

(2.2.4)

Theorem 2.1. Let W < J'Y be an open set, W' = =}, (W). Suppose that either
0,1 € QW) and we QUW), or g,n € QW) and v € QY(W). Then the following
conditions hold:

(@) hle + n) = k() + h(n), h(wA @) = h(@)A h(e).
(b) For any open subset V < W,

(2.2.5) h(o|v) = h(@) |-
(©) If g € QW) (resp. o € Q*(W)), then h(g) € QX W') (resp. h(g) € QYW")) is

a unique form such that for every section y of Y whose r-jet prolongation J'y maps
its domain of definition into W,

(2.2.6) | Jy*e = J 1 y*h(e).

(d) If p > n, then h(g) = 0.
(e) If g is =,,,—1-horizontal, then h(Q) is 7,+1,-Projectable.
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(f) Let Y,, Y, be two fibered manifolds, V < Y, an open set, and o : V - Y,
a homomorphism of fibered manifolds such that pr o is a diffeomorphism. Let ¢ be
a form or an odd base form on Y,. Then

2.2.7) h(JTa*g) = J"*1a*h(g).

Convention 2.1. In the following we sometimes apply a simplifying convention
concerning n-projectable forms on Y. If g is a n-projectable form, or a n-projectable
odd base form, then its n-projection is denoted, when no misunderstanding may
possibly arise, by the same letter, ¢. Analogously, if 5 is a form, or an odd form,
on X, we write simply ¢ instead of m*g. Notice that this convention applies to
Theorem 2.1, (e); accordingly, if k(o) is =,,,,,-projectable, its =,,, ,~projection
is denoted by the same symbol, A(g).

We now establish, in addition to our summation conventions of Section ‘1,
a summation convention for chart expressions of forms on jet prolongations of
fibered manifolds. In the next sections, the same convention will also be applied
in different situations (e.g. in chart expressions of vector fields). It is enough to
explain this summation convention for linear forms.

Convention 2.2. Consider a fiber chart (V, ¢), ¥ = (x,3°), on Y, and a linear
form g on ¥,. ¢ can uniquely be expressed with respect to this chart (more precisely,
with respect to the associated chart (V,, ¥,)). The chart expression of ¢ will be
denoted by

2.2.8) 0 = fidx' + SEgltedys
Jtedx

where the first summation sign means the summation over k = 0,1, ..., r, and
the second one means the summation over all k-tuples (j;, ..., Jj,) such that 1 <
SiHES..SKEN

Sometimes it is necessary to restrict the range of summation over k in (2.2.8);
if, for example, ¢ is =, ;horizontal, we write

2.2.9) 0=fidx'+ 3 Vet i e

In such cases the range of summation is designated explicitly.

In (2.2.8), f; and gl j; < ... £ ji, are the components of ¢ with respect to
(V, ¥). If we need summation over all k-tuples (jy, ..., ji), not only over non-
decreasing ones, we define the functions gii--* for arbitrary (j,, ...,j,) on the
symmetry requirements, and then proceed as follows. Let (p, , ..., Py be any k-tuple
such that 1 < py, ..., p, < n. Denote by N(p, ... pY) the number of different
k-tuples (q;, .., ) arising by permuting the set {p,, ..., Pi}. Obviously,

2.2.10 ___ k!
( ) ~ .N(pl P = sel..s,!
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GEOMETRY OF LAGRANGEAN STRUCTURES. 2.

where s; denotes the number of integers i in {py, ..., p,}. Now (2.2.8) takes the
form

(2.2.11) e=fidx'+Yy g dys, e

NGy -0
where the first summation sign means the summation over k =1, 2, ..., r, and

the second one means the summation over all j;, ..., j, = 1,2, ..., n. Putting

1

2.2.12) AR L. S— ¥ |2

¢ f NGy -jo &4

we can also write

(2.2.13) o= fdx' + Ef“ Ji dy3,. s

where X means summation over k = 0, 1, ..., r, and summation over é and ji, ...,

is automatically understood.

It should be pointed out, however, that the coefficients at dyj ;. in (2.2.11)
and (2.2.13) are not the components of g, and are related with the components
of ¢ by (2.2.12)

Theorem 2.2. (a) Let (V, ¥), ¥ = (x', y°), be a fiber chart on Y. The n-horizontaliza-
tion h: Q(V,) » Q(V,.,) is a unique mapping, preserving the exterior algebra
Structure, such that for any function f : V, > R

(2.2.14) Wf) =fomys,, h(df) =df.dx,

where

(2.2.15) dif = + ZZ Vi sind
Jl .lk

(b) The n-hbnzontahzatzon h: f)( V,) — Q.(V..,) is a unique mapping such that
Jor each fiber chart (V, {) and each g € (V) expressed with respect to the associated
chart (U, ) on X by o = 179 ® 0, h(o) is expressed by

22.16) h) = 77,1® ® hle,)

with respect 10 (Vo1 ¥r+1)-

Proof. (a) To show it, one directly verifies that the mapping h defined by (2.2.2),
satisfies (2.2.14). To prove the uniqueness, notice that (2.2.15) implies for each
i,k and j,, ..., ji

2.2.17) h(dx’) = dx’, h(dyS,. ;) = V5.5 dX
Now it is sufficient to check that any two mappings h,, h,, preserving the exterior
algebra structure, satisfying (2.2.14), agree on functions and linear forms; this

follows, however, from (2.2.17).
(b) Transformation formulas show that (2. 2 16) defines a mapping & : Q(V,) -

217



D. KRUPKA

= (V,4,). It thus remains to show that the chart expression of the odd base form
h(p), defined by (2.2.4), coincides with (2.2.16).

Chart expressions. If W < J'Y is an open set and @ € 2°(W), then for any fiber
chart (V,y), the chart expression of A(g) € Q4(W’) with respect to the chart
(V41 " W' ,4) can be obtained from the chart expression of ¢ with respect
to (¥, n W, ,) by means of Theorem 2.1. (a), and (2.2.13).

The component d,f : V,,, = R of h(df) (2.2.14) is called the formal, or total,
derivative of f with respect to x'. Notice that for any two functions f, g : ¥, = R,

(2.2.18) d(f.g)=g.df + f.dg,

where we have used the above convention, and write just f, g instead of fo 7, ,,
80 M, 44,, on the right-hand side.

2.3. Contact forms. In this section, Y is a fibered manifold with base X and
projection . ‘

Let ¢ be a form or an odd base form defined on an open set W < J'Y. ¢ is
called n-contact, or contact, or pseudovertical, if h(g) = 0. By Theorem 2.1 (a) and
(1.3.24) (see Remark 1 of Sect. 1,3), n-contact forms (resp. n-contact odd base
forms) define an ideal (resp. submodule) of the exterior algebra Q(W) (resp. of the
left module @(W) over 2(W)), closed with respect to the exterior derivative. This
ideal (resp. submodule) is denoted by Q,(W) (resp. ﬁ,( w)).

Let (V, ¥), ¥ = (x!, ), be a fiber chart. We shall now study the structure of the
ideal Q,(¥,). Put for every 6, 1 S0 =m, k, 0Sksr—1, and j,, ...,/ =
=12 ..,n
(2.3.1) . OF e = Y5, g = Viyoga dX

Bach of the linear forms (2.3.1) obviously belongs to this ideal (see (2.2.16)).

Theorem 2.3. (a) The forms dx', o, ;. ,dy5, ;. ,wherel SiSn 1505 m,
05ksSr-1,15j, £..SjxSn, are elements of a basis of linear forms
onV,.

(b) Let (U, @) be the chart on X associated with (V, ), and let 6 be a section
of the fibered manifald J'Y over U. Then the following two conditions are equivalent:

(1) There exists a section y of Y over U such that 6 = J'y.

(2) 6 satisfies the equations

2.3.2) 6*w’

Jredr

= 0.

Proof. (a) The forms dx', ], j.,dy7, ., are obviously linear combinations
of the linear forms dx, dy5,. ;,, 47,...» With regular matrix.
(b) Let & be of the form J7y. Then (2.3.2) follows from the definition of co- °
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GEOMETRY OF LAGRANGEAN STRUCTURES. 2.

ordinates ¥3, ; (2.1.1). Conversely, suppose that § satisfies the system (2.3.2).
Then we get

Y5, 006 = D;(y o 9),

yldliz 06 = Diz(y.‘l,t © 5) = DII‘D.iz(y’ © 6)’
2.2.3)
¥51..5,0 6 = D; (¥5,.5,.,00) = ... = Dy ... D,;(y" o 9).

Putting y = m, o © 6 we get a section of Y over U for which y°(8(x)) = y°(y(x))
for each x € U; then (2.3.3) means that J'y = 4.

Theorem 2.3, (a) shows, in particular, that the forms dx’, wj, . j, are elements of
a basis of linear =, ,_,-horizontal forms; (b) characterizes those of sections of J'Y
over U which are prolongations of sections of Y over U.

The following simple observations show that the ideal Q,(V,) has a rather
complicated structure.

Remark 2.3. (a) A form g € Q'(V,) is contact if and only if it is a linear combina-~
tion of the forms (2.3.1), i.e.,

r—1
(2.3.4) e =kZOZ o WG, -

(b) The 2-form dw§, ; _, is contact by (2.2.6), but it is obviously not generated
by linear contact forms (see (a)). More generally, it can be shown by a direct
calculation that a form g € Q%(V,) is contact if and only if

r—1
(239 0= LEPI 0], + OI " dof,

where P/t are some linear forms and Q/!+/--* are some functions on V.
(c) Letr =1, n = 2, and denote foreachi, 1 £i £ n,

(2.3.6) o= (=1)""1dx'A oA dxTIA dXPTEA LA dX
The n-form g€ Q%(V,) defined by
2.3.7) ¢ =dyiAn w; —dyjA o

is contact for any i, j. This form is not generated by w’ and dw’. Clearly, analogous
examples can be constructed for arbitrary r > 1.

We shall determine the transformation properties of the forms (2.3.1). Consider
another fiber chart (¥, ), ¢ = (%!, 5°), on Y and denote by ®j, , the forms
(2.3.1) related to this fiber chart. g

Theorem 2.4. Let (V,y), ¥ = (x',)°), and (V, §), ¢ = (%',5°) be two fiber
charts on Y such that V.~ V # 8. Then

219



D. KRUPKA

y 1. o
(2.3.8) @Yy = Z L= @f s
. Y51
and the coefficients on the right satisfy the recurrent formulas
(2.3.9) Fp,..pa OX° —d, (E)ym m)
oy’  ox* ay°
aJ—’;;,...plq 656_: = ds<ay51...m) +
0V 0% Y.
+ N(Jlklk) (N _ 1 a}jx -pP1 6}!( e+
Ut ede-1) 05, s,
1 ayl’l Pt

+ 6") 1=kl + 1.

e J) 0Y5,..ix

Proof. Let d, denote the formal derivative with respect to x*. Since Porms =
= d,7,,..p» We get by (2.1.3)

(23.10) = Dol
ox’
ayzvl 4 Y axj _
+ Z Z a @ B dy.l'l...jk - djyp,,,_p, gy dx".
Vit 0x

Expressing the right side in terms of (2.3.1) and computing the formal derivatives
d;¥p,..p, We get at once (2.3.8).

We shall now show that (2.3.9) holds; to prove this formulas together for / < r
and / = r it is convenient to work on J"*!Y instead of J'Y. We get, using (2.3.8)

(2.3.11) ¥, , do)

I+1

= —@® A dx? =

pt-P1 p1-.-P1q

s

]
Z—-——My”’“'”“’ ox* o] A dx®.
. T ).
k=0 0y} ; Ox

On the other hand, (2.3.8) can be directly differentiated. Since

(2.312) n;k+1,rd (EX:lLJl) — d (aypx -p1 ) dx® +
d 11 Jk ay,'l-".’k
y
+ Z__#___wgl o>
ayu .ig 0}7“ Jk
we get .
(2.3.13) 7 1, 4@y 5 =
1 =y P a
= Z (ds<ayal"-l’l)dx A le gk ypl - w,‘;l...jks/\ dxs> .
k=0 . dy.ix...jk 7 y]l...]k

We obtain for the second term, up to the minus sign,
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I+1

(2.3.14) Z ay_pl 2L a)}l.u.’k-lsA dxs =
k=1 ay.'l Jk 1
1+1
1 OVp,..p :
= - LePl §hkgy? e N dxT =
Z NGy Jk=1) Y5, e, Ot
1+1 1 ay .
—_ ZZ ( - - Pi...pt 5;&_'_ +
NQy ++Ji-1) 0¥ ik-s

: 1 oy,
+ P1...p1 511) AdxS =
NGz dw) oyl ° )

1+1 N(J1 ]k) ( 1 ayp P
‘ 1...P1 611: .+
Z Z N(]1 ]k 1) 5}’,, Jr~-1
1 oy,
+ P1...pt oh) /\dxs,
NQGz - i) 0V, i e

where we have pass¢éd from the summation over non-decreasing (k — 1)-tuples
(jis --+>Ji—1) (the first expression) to the summation over all k-tuples (jy, ..., Ji)
(the second and the third expressions) and then to the summation over non-
decreasing k-tuples (j,, ..., ji) (the last expression) according to our summation
conventions. Substituting (2.3.14) in (2.3.13) and comparing the result with (2.3.11)
we obtain (2.3.9).

Corollary 1. Let q be an mteger suchthat0 < q <r — 1.

(a) The linear forms w5, ;. , wherel <6 <m1<j; £..5j, <n0=Lk=gq,
locally span a submodule of the module QP(J'Y), for each p < 1. This submodule
consists of contact, m, ;-horizontal forms.

(b) The linear forms @5, ;. generate an ideal of forms on J'Y. This ideal consists
of contact forms.

Proof. This follows from (2.3.8).

Let W < J'Y be an open set, and let ¢ € Q*(W), or ¢ e Q*(W). Put W' =
= 7:,.+l A(W). Then ﬂ,ﬂ 0 has a unique decomposition

(2.3.15) )1 ,@ = h(e) + p(o).

By (2.2.6), p(e) is a contact form, or a contact odd base form. One can dlrectly
deduce the following elementary properties of the mapping ¢ — p(g).

Theorem 2.5. Let W < J'Y be an open set, W' = .}, (W). Suppose that either
0,n€QXW) and v € Q(W), or g,ne (W) and we QAW). Then the following
conditions hold:

(@) ple + 1) = p(o) + p(n) andp(@ A @) = p(w) A plg) + p(w) A h(g) + h(w)A
A p(o). In particular, if o = fe QUW),

(2.3.16) p(f.0) = f.plo).
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(b) For any subset V < W,

(23.17) ple|v) = p(@ |-
(c) For all sections y of =,
(2.3.18) J*1y*p(p) = 0.

(d) If p > n, then p(o) = =}, ,@.

(e) If g is =, ,_,-horizontal, then p(g) is =,.,,,-projectable.

() p(o) is =, ,-projectable if and only if h(o) is ,+4,,-projectable.

(8) o is m,-horizontal (resp. contact) if and only if p(e) = O (resp. h(g) = 0).

(h) Let Y,, Y, be two fibered manifolds, V < Y, anopenset, o : V — Y, a homo-
morphism of fibered manifolds such that pr o is a diffeomorphism. Let ¢ be a form
or an odd base form on Y,. Then

(2.3.19) p(JTa*g) = J ™+ 1a*p(o).

Remark 3.4. If f : V, = R is a function, (2.3.15) gives '

@320 afdf =)+ pap=dfax + 5 Ty

=0 0Yj...ji

Decompositions of this kind, will be frequently used to simplify various coordinate
computations.

Chart expressions. Let (V, §), ¥ = (x%, »°), be a fiber chart on Y. By (2.3.15),
(2.3.21) p(dx’) = dx' — h(dx') = 0,

P(Ay5,..5) = dyj, s — h(dyf ;) = o] ..
Decomposition (2.3.15) of n',, ,0, where g € QP(W), thus consists in substituting
the expressions

(2.3.22) dyfe..e = B(dyj,. 50 + Py ) = ¥fi s dX°+ ©F

in the chart expression of g. In this way we get the expression of 1:’,'+ 1,+0 With respect
to the basis of linear forms dx’, ©%; . 4> 95,..j.., (Theorem 2.3 (a)); the coefficients
at dy9,..;,,, Will obviously be equal to zero. The chart expression of p() is then
obtained by subtracting the chart expression of h(g).

If o € Q°(W) is expressed by

(2.3.23) e =md R,
then
(2.3.24) ' 2(0) = 774y,00 — h(Q) =

= 7‘:4»1@ ® n:+1,rQ¢ - n::-&-l@ ® h(@.) = R'*.'.la ®P(Q¢)

where p(@,) can be expressed as above.
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We shall now study the modules Q%,-.,(W) of =, ,_;-horizontal forms. The
reason for our interest in these modules consists in the fact that the restriction of
the =m-horizontalization h : Q?(W) —» QP(W"’) to =, ,_,-horizontal forms can be
regarded as a mapping from Q... (W) to Q¥W) (see Theorem 2.1 (e), and
Theorem 2.5 (e)), and in their relatively simple algebraic structure (see
Corollary 1 (2) of Theorem 2.4).

Let p = 1, and let g € @5, y(W), or g € 25.-.y(W), be a contact form. We say
that g is 1-contact if for each m,-vertical vector field £ on W the interior product
iz0 is a m,-horizontal form; we say that g is g-contact, where 2 < q < p, if iz0 is
(g — 1)-contact. n,-horizontal forms, and odd base forms, are also called 0-contact.

For each pair (p, q), where 0 < q < p, g-contact p-forms (resp. g-contact odd
base p-forms) define a submodule of QF.-.y(W) (resp. &2...(W)), denoted by
QP~LI(W) (resp. Qr-eaw)).

Theorem 2.6. (a) Let p, q be integers such that 1 £ q < p, and let (V,{), ¢ =
= (x',»°), be a fiber chart on Y. A form g € Q5._.y(V,) (resp. an odd base form
o€ 02 _.,(V) is g-contact if and only if

r—1
(2.3.25) 0=73 Yol s A gl i,
k=0
where gi*-J* qre (q — 1)-contact forms (resp. odd base forms).
(b) Let W < J'Y be an open set, 0 € Q5,_.y(W) (resp. g€ Q5.-1y(W)). @ is
uniquely expressible in the form

p
(2.3.26) 0="Y o,
q=0

where g, € QP~29(W) (resp. ¢, € QP=09(W)). In other words,

Q8 (W) = Q¥ °(W) @ XL @ ... @ Q¥ AW),

@32 e W) = 0Py @ O @ ... @ G 2(W)

(the direct sum of submodules).

Proof. (a) Suppose that ge Q&._,,(W) is expressible in the form (2.3.25),
where ol*+* are (g — 1)-contact. Then A(¢) = 0 and it remains to show that iz
is (g — 1)-eontact for each = -vertical vector field £ on W. Let £ be such a vector
field,

0

(2.3.28) ‘ E=Y 2 n—
Oyjl...jx

jts chart expression with respect to (¥, ¥). Then

r—1
(2.3.29) e = kZOZ(Cr;x...JkQﬁ""Jk ~ O g A Ba )
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By hypothesis, the forms izej,. ;, are (g — 2)-contact, and it is sufficient to show
that the form

r-1
(2.3.30) o® =kZon}’,...,k A gt

is (g — 1)-contact. Continuing this procedure we see that it is sufficient to show
that for any =,-vertical vector fields &,, ..., £,_; the form

(23'31) (q D= ZZ“’J‘ Ik/\lﬁq 1t l{;Q{rl e

is 1-contact; this is, however, obviously true.

Conversely, suppose that we have a g-contact form g € Q%,_,,(W). ¢ is expressible
as a linear combination of exterior products of the forms dx/, o, 02kS
< r - 1. We write

(2.3.32) @ =0+t ..+,
where g, contains precisely k factors (2.3.1). For any =,-vertical vector field £ on W

(22.33) l{Q = I.ng + ... + i‘QP'

By definition, izg is (¢ — 1)-contact. We first consider the case g = 1. In this case
izg, = O0foralls = 2, ..., pand all £. We want to show that g, = 0 for s > 1. Itis
convenient to introduce multi-indices K = (§,.;,), and to consider the set of these
multi-indices with some, for example lex1cograph1cal ordering. Then with the
obvious notation

(2.3.34) 0s =Zfiy i kg, AXUA A dXPA @A LA @R

summation over increasing sequences (i, ..., i,-5) and (K, ..., K))). Applying
the condition izg, = 0, with ¥ = i;w¥, to (2.3.34) one directly gets Sty ek, =0
as desired. Returning to (2.3.32) we obtain ¢ = ¢,, and g has the form (2.3.25).
We now suppose g to be arbitrary, and proceed by induction.

The same proof applies to the case of an odd base form e.

(b) By (a), a form g € QF,_,,(W) belongs to Q?~%9(W) if and only if each term
in its chart expression with respect to a fiber chart (¥, ¥), ¥ = (x', %), contains
- precisely g-factors (2.3.1). Thus the desired decomposition of g is given Ry (2.3.32).
Invariance of this decomposition has already been proved (Corollary 1 (a) of
Theorem 2.4), and its uniqueness follows from Theorem 2.3, (a).

The same applies to the case of an odd base form g.

Decomposition (2.3.26) defines linear mappings of modules p; : Q5._,,(J'Y) =
- QP"29(JY) by pe) = o,; evidently po = h. For i 2 1, p; is called the i-th
contact projection.

If g € QP~%4(W), we say that o has the order of contact q; if g€ QP~+9(W) @.
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@ ... ® Q% PW) (resp. g€ QW) D ... ®@ QP ~¢4(W)) we say that ¢ has the
order of contact > q (resp. < q). The order of contact of an base form g is defined
in the same way.

The following assertion is the Poincaré lemma for contact forms. Its proof is
similar to a standard one for (ordinary) forms on a smooth manifold [5].

Theorem 2.7. Let U = R" (resp. V = R™) be an open ball with center 0 € R"
(resp. 0e R™), W = UxYV, and © : W - U the first canonical projection. Let p, k
be positive integers, k < p, and let o€ QP~“ X W) (resp. g€ QP FXJI'W)) be
a closed form (resp. a closed odd base form). Then there exists a form ne
€ QP R *=1(JTW) (resp. an odd base form ne QP~%*=1(J'W)) such that ¢ = dn.

Proof. Let (x', ) be the canonical coordinates on W. We define a mapping
2:[0,1]xJ"W - J"W by

(2-3-35) x(ts (xi, y’, eeey J’,, J,.)) (x ty s eens ty‘;x-..j,)'
We have :

0, Xi, “’ cee d’1 j = i, 0) .--,0)
(2.3.36) KO, 655 s V5s)) = (5 0

X(l, (x-, Yoo y]l]y)) = (x , ya’ s yh,_,h)
and '
* dxi — dxi’
(2.3.37) ., o -
X¥0OG g = Vgt 105, 5 0gg<sr-L

Let k = 1, and let o€ QP % ¥(J'W) be a k-contact form. Then g is uniquely
expressible as a linear combination of exterior products of p — k factors dx!
and k factors o, ;. Hence

(2.3.38) x*e =dtA go + 1. g!,

where @0, ¢; do not contain dt, and dyj, ;. g, contains k — 1 factors of type
w5,..j,» 3nd ¢; contains k of these factors. Moreover, by (2.3.36), if t = 1, we have

(2.3.39) ' ol = o

In order to study decomposition (2.3.38) in more detail we introduce multi-
indices 7, J, K as follows. We let I label the coordinates x',y°, ..., 37, ;. on J'W;
these coordinates will be denoted by z;. J (resp. K) will label the (p — 1)-forms
(resp. p-forms) defined by all different exterior products of 1-forms dx’, dy”, ...,
dy3,..,-.; these (p — 1)-forms (resp. p-forms) will be denoted by dz{~") (resp.
dz{. Using these forms we can write

(2.3.40) 00 =Y aydzfY, Z bg dz{P,
J

where a;, by are functions on [0, 1] x J'W.
We set
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1
(2.3.41) do=Y [aydi.dzP7h,
J 0

Agisa (p — 1)-form on J'W, and the mapping ¢ — Ap is R-linear. Let us consider
the form d4g + Adg. We have

1
@342 ddg=Y, (; a; dt) dzg A 4D,
Ly \o 92
On the other hand, by (2.3.38) and (2.3.40)
(2.3.43) 1+ do = dy*e = |
= —arn(Tdo, n o™ < kL T b aslp - D 2E ap) +
J K K

a '
+ &£y GI;K dz; A dz{P.
K 0z

Using this expression, (2.3.39), and (2.3.40) we obtain, since k = 1,

1
(2.3.44) Adg=¢ -3}, (5 oay dt> .dzyadzZPY,

L7 \o 0z,

Collecting (2.3.42) and (2.3.44) together we get
(2.3.45) ddg + Adg = o.

But each summand in the form ¢, contains exactly k — 1 factors (2.3.1), and
p — k factors dx'. Thus, since the form Ap (2.3.41) is defined by means of integra-
tion of coefficients in g, with respect to the variable ¢, which does not change the
coordinates yj, ; in (2.3.1), 4g also contains, in each summand, precisely k — 1
factors f, it Since the factors dx’' remain unchanged by the integration, we
conclude that Ag € QP& ~1(J'W).

If now dg = 0, we have ¢ = d, where n = Ap, and the proof is complete.

If g is an odd base form, we denote by (U, ¢) the canonical chart on U, and

obtain an (ordinary) form g, , defined by ¢ = 7}@ ® g,. Our assertion now follows
from the definition of exterior derivative (Sec. 1.3).

We shall now consider symmetries of the ideal 2,(W) of contact forms.

Theorem 2.8. Let W, < J'Y be an open set, o, : W, = J'Y a homomorphism of
fibered manifolds. Suppose that the projection a, of o, is a diffeomorphism of n,(W,)
onto ao(n,(W,)). Then the following two conditions are equivalent:

(1) There exists a homomorphism of fibered manifolds o : m, o( W,) = Y whose
projection is oy, such that o, = Ja.

(2) For each contact form g, defined on an open set in J'Y, o g is a contact form.

Proof. 1. Suppose that (1) holds. Let ¢ be a contact form, y a section of Y,
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We have (ag )*J"y*afo = (o, 0 J'y 0 a5 )*o = (J'ayag !)*e = O since p is contact
(see (2.1.5), and (2.2.6)). As a, is a diffeomorphism, this implies J'y*a’g = 0,
and o is contact.

" 2. Suppose that (2) holds. Let y be a section of Y, ¢ any contact form on an open
subset of J'Y. Then J'y*x*o = 0. Since § = a, 0 J'y 0 ag ! is a section of J"Y and &
satisfies (2.3.2), there exists a unique section 7 of ¥ such that § = J'p (Theorem 2.3).
This implies J'(n,,,6) = 6. Thus for each J7y from the domain of definition of a,,

(2.3.46) %, (J37) = Jagx(Tr, 0% © JTy 0 a5 ).

We shall show that this condition implies that the mapping 7, o2, is constant on
the fibers of the projection 7, o. Let (V, ¥), ¥ = (x%, ) (resp. (¥, ), = (&', 7°)
be a fiber chart on Y. Suppose that J7y e ¥, n W, «,(J7y) € V,. In order to express
the coordinates of the r-jet a,(JIy), we should differentiate the functions
(2.3.47 (X, .., X > fOxY ., ") =

247 = (77,00 ¥ ! 0 YTyt 0 a5 tgTh) (o5 X7,

where 7 is any representative of the r-jet JJy. We have

of° 0y°m, oot
2.3.48 — r,O"r +
( ) ox' ( ox*
r a)—)on' «, -1 N . axk“—1¢—1
+ Z Z ——;O‘lp— (ypl...p,,k oJ 7)) [ o_i
q=0 dypl...p, ox

Thus we get a linear function in y}, ) x, ..., ¥},.. 5k Since the left-hand side does
not depend on y}, .., (see (2.3.46)), the coefficient at y},..p,,, is equal to zero.
Let us consider the coefficient at y) , . If it is non-zero, then 9*f°/(ox* 0x')
depends linearly on },. ., With the same coefficient ; thus we get a contradiction
because of (2.3.46). Continuing we obtain

50, -1
(2.3.49) ."M__ =0, 1sgqsr
0Yys...00

Thus the mapping 7, o%, is constant on the fibers of «,, , and there exists a mapping
a 17, o(W,) = Y such that

(2.3.50) €O o =T,qO0,.

Since for any section w of J"Y over an open subset of Y, a = m, g0 a, 0w, ais
smooth. From this representation it follows that a is a homomorphism of fibered
manifolds, and «, is its projection. Now substituting (2.3.50) in (2.3.46) we get

(2.3.51) 0(J57) = Jom(arag ') = JaJy),
and condition (1) holds.
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