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ULTRAPRODUCTS AND THE AXIOM OF CHOICE 
To Professor HLAWKA on his 70th birthday 

NORBERT BRUNNER 
(Received May 22, 1984) 

Abstract. We construct a model of ZF set theory in which there is an amorphous set (an infinite 
set, every infinite subset of which is cofinite) which is the ultraproduct of a family of finite sets. We 
give an application to topology. 

MS Classification, primary 03E25, 03C20 
secondary 54A35, 54A25 

1. Introduction 

The main lemmata in the application of the ultraproduct method are the Boolean 
prime ideal theorem which guarantees for the existence of sufficiently many ultra-
filters and the theorem of Los LT which describes the first order sentences of the 
ultraproduct. As was shown by Howard [6], BPI + LT is equivalent to the axiom 
of choice AC. On the other hand, in set theoretical independence proofs it is often 
helpful to use arguments from nonstandard-analysis in the absence of AC. For 
example, Pincus [10] modified Luxemburg's proof of the Hahn —Banach theorem 
in a model where BPI was false. So while it is possible to retain some of the applica­
tions of ultraproducts in models of ZF minus AC, AC cannot be avoided complete­
ly. In the model of Blass [1], for instance, there are no nonprincipal ultrafilters, 
whence there the method of ultraproducts becomes trivial. Here we show, that 
even if there are enough ultrafilters on co, the formation of countable ultraproducts 
may result in sets without any structure. 

1.1. Theorem. There is a model of ZF in which P(co) can be wellordered (whence 
there are nonprincipal ultrafilters on co) and there is a family (Fn)„ea> of finite sets, 
such that their product X = J~J Fn contains no infinite, Dedekind-finite subset, but 

new 

for every nonprincipal ultrafilter F on a>9 the ultraproduct X/F is amorphous. 
We will prove 1.1 in section 2. In section 3 we will apply it and answer a question 

from [2]. The author did not check, whether in the above model there is a non-
principal ultrafilter on every infinite set. Concerning the strength of this axiom 
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SPI which was first studied by Halpern [4], the following result (which was obtained 
in conversations with J. Truss) is interesting. 

1.2. If on every infinite set there is a nonprincipal ultrafilter, then AQ^ holds, 
the axiom of choice for countable families of nonempty finite sets. 

Proof: Let (Fn)nea) be a sequence of disjoint finite sets, Cn the set of choice 
functions on (F^)ken and set C = \J Cn. U is a nonprincipal ultrafilter on C. We 

neco 

write c = {de C: d 2 c}, ceC, and observe, that cnd=4>ifc^deCn and 
that u {c: ce Cn} is cofinite in C. Hence, since Cn is finite, there is exactly one 
cn e Cn such that cn e V, whence/(w) = cn+1(n) defines a choice function. It follows, 
that AC2 does not imply SPI (use a model of Levy [8], where multiple choice MC 
holds and ACn for every n, but not A C ^ . Other known results are HSPI => AC2, 
"1SPI => AC* (Halpern) and ~lDC => SPI (Feferman), but PW + AC" => SPI 
(Halpern). 

2. Proof of the Theorem 

2.1. We construct a permutation model M of ZF° + PW (ZF° = Zermelo-
Fraenkel set theory without the axioms of foundation F or choice, PW is Rubin's 
axiom, that the power set of an ordinal can be wellordered), where 1.1 holds, 
and then apply transfer to get a model of ZF with 1.1 (c.f. [7]; ZF = ZF° + F, 
in ZF PW = AC). The model M is given by a set U of urelements (u = {u}, if 
ueU) which is countable, when viewed from outside the model. We set U = 
= u{Pn: n e co}, where | Pn | = n + 1 (| X \ is the cardinality of X) and Pn n Pm = 
= <£, if n 7- m. r is the group of all bijective mappings n: U -» U such that 7iPn = 
= Pn, each neco. P is extended to all sets xeM by induction on the modified 
rank. The normal ideal /consists of all sets e g Cfsuch that sup {\ e n Pn\:neco} < 
< oo. A set x is symmetric, if for some eelsymx 2 fixe (we write xe A(e); 
sym x = {7i e P: nx = x}, fix e = {n e P: n \ e = identity} — such an e is called 
a support of x), and M consists of the hereditary symmetric sets (i.e.: x e M implies 
x §i M) with the usual e-relation. We assume, that AC holds in the real world V. 
Then M is a model of ZF° + PW (c.f. [7]). Hence P(co) can be wellordered and 
there is a nonprincipal ultrafilter F on P(co). 

2.2. In M we consider the set X = Y\P„- Since I has infinite elements, X is 
nea> 

nonempty. In fact, X has the same elements in M as it has in V (where AC holds). 
If F is a nonprincipal ultrafilter on co, we set x = y mod F, if and only if 
{n e co: x(n) = y(n)} e F. 

<p(x) = {yeX:x = y mod F} and $'X = X \ F is the ultraproduct (X, # e A(<£) 
are in M). We will show, that 4>'X is amorphous and hence Dedekind-finite (each 
countable subset is finite), while no infinite subset of X can be Dedekind-finite. 
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Since AC does not hold in M, we cannot use LT (we do not know, if LT is true 
inM). 

2.3. X | F is infinite. 
Proof: Assume for the converse, that X\ F = {$(xt): ien}. In V (and hence 
in M) there i s a x e l such that for j > n, x(j)ePj\{xjU): ien}. Therefore 
{jeco: x(j) = x((j)} g n + l , whence x # xt modF and <P(x) ^ ^(xt) for all 
ien, a. contradiction. 

2.4. For e e I set en = e n Pn and N = sup {| en \ : n e 00}: |*' f ] e» I = N-

Proof. Since this is obvious, if some en = <P, assume that all en # $. In V— 
and hence in M - there are N mappings xteX such that en = {xt(n): ie N} for 
every n. If xe\\en is arbitrary, we consider the set xl = {neco: x(n) = xt(n)} 

ieto 

and observe, that since F is an ultrafilter and u {x*: i e N} = co there is an.'eJV 
such that x* e F. Therefore <P(x) = #(x;) for this 1. 

2.5. With the same notation as above, X\¥ r\A(e) = #T1^» anc* ^ x € 

G XI F\A(e), then orbe x = X | F\zl(e), where orbe x = {nx: n e fix e}. 
Proof. We claim, that if x e X | F \# ' n en, then orbex = X| F \$ ' Y[ *»• 

neco neco 

It then follows from 2.3 and 2.4, that orbex is infinite, whence x$A(e) and 
X I Fn A(e) g & J ] en; since " 2 " is obvious, we get " = " here. For the proof 

neco 

of the claim we assume, that <P(x), <P(y) are arbitrary in X | F\4>' J ] *„. Since F is 
neco 

an ultrafilter, E = {« e co: x(«) ^ en and y(n) $ en} is in F. In the real world V we 
define a permutation n e fix e through 7rx(») = y(«), TTKH) = x(n), if neE, and 
nu = u for all other w e U. Since rcx = >> mod F, nx = TE#(;C) = <P(y) = y; y e 
e orbe x. 

2.6. XI F is amorphous. 
Proof. If A e A(e) is an infinite subset of X | F, then A\A(e) # # by 2.4 and so 

A ii XI F\A(e) by 2.5., whence the complement of A consists of at most N elements. 

2.7. The same argument as in 2.5. shows, that if E, F are k-element subsets 
of X| ¥\A(e), then there is a n e fix e such that nE = F. From this remark the 
following strong form of Ramsey's theorem follows: If C g [X | F]<£0, the family 
of finite subsets of X | F, then there is a cofinite set H g X | F such that for each 
n[H]n g C or [H]n n C = $. For if C e J(e), then H = X | F\zl(e) is the desired 
homogeneous set. Since by [3] every mapping/on such a set satisfies/(x) e {x} u E, 
some finite set E, there is no group operation on X | F. On the other hand, each 
factor of the ultraproduct carries even abelian groups. 2.6. alone does not suffice 
to prove this result, since in a model of Hickman [5] there is an amorphous group. 
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We conclude that in ZF the property G: "X carries a group structure" is not in­
variant under the formation of ultraproducts. This is related to a result of Hajnal 
and Kertesz, that AC holds, iff every set satisfies G (c.f. [11]). This does not 
contradict LT. 

2.8. Every Dedekind-finite subset of X is finite. 
Proof. Be Y g X Dedekind-finite, YeA(e), en = e n Pn ^ & and N = 

= sup {\ en\: n e co}. We set E(x) = {n: x(n) e P\en}, xeX. We will show, 
that E = u {E(y): y e Y} is finite, whence Y g A(f), f = e u u {Pt: i e E}, is 
a wellorderable Dedekind-finite set, hence finite. For if E is infinite, we apply 
PW in order to obtain a sequence (Fn)neE in A(<p), Fn e P((o), such that ne Fn and 
Fn = E(y) for some y. Since {y \ co\Fn: E(y) = F „ , j l e 7 } g f\ en g A(e), there 

nea\Fn 

is a sequence (zn)n in A(e) such that each zn — y\ co\Fn, some j e F with E(y) = 
= Fn. Using AC in V, we get x, xf in X (and in M) such that Qn = {x(n), x'(ri)} g 
g PnV„ and | Qn \ = 2, if w = N -f- 2. We define a sequence jneA(e) , n e£ , 
by y„(0 = Z„(0, if ieo>\Fn> yn(n) = *(«) and jn(/) = *'(/), if ieFn\{n}. Since 
there is a y e Y with 2?O0 = Fn and y \ co\Fn = zn, the following permutation 7t is 
in fix e: ny(i) = yn(i), nyn(i) = >>(0> if i e -F„- and nu = u for all other w e U. As 
Ye A(e) and 7r>> = y„, yrt e Y. Since jn(«) T«- ym(n) if n ^ m are in K, this sequence 
is injective, contradicting Dedekind-finiteness. 

2.9. The condition, that X is a product of finite sets, ensures, that in ZF° every 
subset of X with a Dedekind-finite power set is finite. But 2.8. is not provable 
in ZF°. For example, in the Cohen — Halpern — Levy model of ZF T° contains 
an infinite, Dedekind-finite subset. Also ZF° -f- PW is too weak to give 2.8. In the 
Fraenkel — Levy permutation model, where U = u {Pn: n e co}, | Pn ( = 2, Pn n 
n Pm = $ if n 9-= fn, F is the group of all bijective mappings on U which preserve 
(P n ) n and/= [U]<w, we set Xn = u {Pf: ien -f 1} and X = ]JXt. Fix « 0eP 0 

ieto 

and set f(u) (/) = u0 if u$Pt, f(u) (/) = u, if uePt. This defines an one-to-one 
mapping f: U -» X andf'U is an infinite, Dedekind-finite subset of X. 

3. Application 

As was observed in [2], in the Cohen — Halpern - Levy model of ZF the space R 
has both a countable base and a Dedekind-finite base, but no isolated points. 
The question appeared, if there are spaces, where "Dedekind-finite" can be weaken­
ed to "Dedekind-finite power set" or even "amorphous". We start with a negative 
result. 

3.1. Let X be a topological space, X its topology, x e X, B G X a neighbourhood 
base at x and {x} = n A, where A £ X. If one of A, B is wellorderable as a set 
and the other one has a Dedekind-finite power set, then x is isolated. 
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Proof: First assume, that P(B) is D-finite and A is wellorderable. For A £ X 
we set B(A) = {BeB: B g A}. From our hypotheses B'A is finite, e.g. B'A = 
= {B(Ai): ien}. We set S = f]An: Then xeSeX but not necessarily SeA. 

f e n 

For .# e B such that JC e B g S we get: B e B(S) s B(At), i e n, whence B e B(A) 
for each A e A and JC e B g n A = {JC}. If P(A) is D-finite and B is wellorderable, 
consider the sets A(B) = { . 4 e A : B e A}. Again, A'B is finite, say A'B = {A(5<): 
i G n}. 0 = P| ^J is an open neighborhood of x. Since for each A e A there is a B 

ien 

and some i e n9 such that .A e A(2?) = A(2?j), 0 £ . f i , i ^ whence x e O £ n A = 
= {*}• 

3.2. The only remaining interpretation of the question which is not ruled out 
by 3.1 is the following: A, B g X, {JC} = n A = n B, A amorphous and B 
wellorderable. And indeed, there exists a model of ZF with a Hausdorff-space 
without isolated points which has such families at each of its points. For example, 
the following model M of Monro [9] works. C is the Cohen — Halpern — Levy 
model with a generic set G of reals. Monro extends C by adding a generic function g: 
G -> A. He shows, that A is amorphous and g~1(a) is dense in G in its natural 
topology (inherited from R). We induce a topology G on G by defining as neighbour­
hoods of a e G the sets U(a9 e9E) = {beG: b = a or | a — b \ < e and g(b) $ 
£ E u {g(a)}} where e > 0 and E g Ai is finite. ((?, G) is T2, without isolated points 
(since f~x(c) n U(a9e9E) # # for ceA\(Eu {g(a)}) by the density of f~l(c))9 

A = {U(a9 1,{6}): Z>eA} and B = \u(a, — ,<M:w ^ l l . In this model the 

space (G, G) is Dedekind-finite and the question appears, if every such space has 
an infinite, D-finite subset. Using our ultraproduct from section 2, we can answer 
it as follows (this problem was the original inspiration for this paper). 

3.3. There is a model M of ZF in which there is a T2 space (X, X) without isolated 
points which has at each point x the following property: There are families A, B 
in X such that {x} = n A = n B, A amorphous, B countable. Moreover, X has 
no infinite, Dedekind-finite subsets. 

Proof. With the notation of section 2, X = J]Pn and neighbourhoods of x 
neco 

are defined through U(x9 e,E) = {y e X: dist (x9y) < e and $(y) $Eu {$(*)}}, 
where E g X/F = $'X is finite and dist is the Baire metric on X: dist (x, y) = 

= — — j - , if x | n = y | n and x(n) ^ J>(n), w h i l e dist (x, x) = 0. In view of 3.2 

it suffices to observe, that each #"" x(a) is dense in (X9 dist). Be x e X9 e > 0 arbitrary 

and — g e, #()0 = a. If we define / through y' \ n = x \ nt y' | otA/i = j> I Q>\«, 

then dist (x9 y') g r < e and y' =* y mod F, i.e.: $(y') Ä ö* 
n + 1 
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