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ON OSCILLATORY SOLUTION 
OF THE DIFFERENTIAL EQUATION 

OF THE n-th ORDER 

M. BARTUSEK 
(Received May 6, 1985) 

Abstract. The properties of proper oscillatory solutions of the non-linear differential equation 
of the n-th order are studied. The sufficient conditions are given under which these solutions tend 
to zero or are unbounded. 
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1. Consider the differential equation 

0) y ( " ) =/tty, . . . ,y ( "- 1 ) ) 

where n ^ 2,/ : D -» R is continuous, D = R+xRn
9R = ( — oo, oo), R+ = [0, oo) 

and there exists a number a e {0,1} such that 

(2) (~iyf(t9xl9...9xjx1 = 0 inD. 

The solution y of (1), defined on R+ is called proper if sup | y(i) | > 0 for an 
t S K o o 

arbitrary xe R+. The proper solution y is called oscillatory if there exists a sequence 
of its zeros tending to oo. 

A great number of papers is devoted to the existence of oscillatory solutions 
of (1) (see [5]). But the problem of asymptotic behaviour of such solutions for 
7i > 2 is almost unsolved. The papers [6] and [7] are devoted to vanishing at 
infinity of solutions of (1) for linear case, the asymptotic behaviour for n = 3, 4; 
a = 1 is studied in [1], [2]. Our aim is to study the behaviour of oscillatory solu­
tions in the neighbourhood of the infinity, to give sufficient conditions under which 
solutions tend to zero or are unbounded. 

Denote N = {1, 2,...}, n0 the entire part of n/2, C(0)(/) the set of all continuous 
functions defined on 7, C(I)(J)> / e IV the set of all continuous functions which have 
continuous derivatives to the order i, L{i)(I)9 i e N the set of all /?-integrable 
functions on I9 £

(oo)(7) the set of all bounded functions on /. 
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M. BARTUSEK 

Further let m e N and v e C°(R+). Put 
t xm x2 

Jm(t;v)~$ J... Jv(T1)dT1...dTm and J0(t; v) = v(t), teR+. 
o o o 

Let ye C<"-"°-*>(/?_,_). Put 

O) «.;,) •J\-ir-('-')^JL^JUr. [/>]'). 

Let 0Wflt be the set of all oscillatory solutions of (1) and (2). 

Lemma 1. Let yeOm. Then 

Z(">(f; y) = ( - l )y>(0 j (0 + [n - 2n0 - 1] ( - l)«+"y"°>a(0, t e R+ . 

Moreover, if either 
(4) 7i = 2w0, n0 + a is odd 
or 

(5) « = 2n0 + 1 
then Zin)(t;y) ^0,teR+. 

Proof. Let n = 2«0. For n odd the proof is similar. 
PutZ(0 = ZO;j),d^ = (-ir+-'(i), 

(6) Z/0 ='Z <*rJJj+i(t; j°V°), J = 1, 2,..., n0, Z0(0 = 0, 
i = 0 

ztm(0 = l V » - V t + i + 1(. ; / * + i y > ) + «i;:*- V21_m+1(t; y<-Y--+->) + 
f = 0 

+ i drkJk+i(f,/
ky% 

i=k-m+l 

K- = -dn-J-lvU)(t } vu~m) (* ~~ *0^ ^ 
A i m - ^ / -m y V*01y(t0) /2 j - m ) f ' 

^ - i ^ + lT'-V""*'") 1 !^. 
y = 0, 1,2, ..., w0; s = 0, 1, ...J; m = 0, 1, ...,j; k = 0, 1, . . . , H 0 - 1, te R+. 
It is easy to see that 

Zjm(t) = Z jm+1(0 + K,m, m = 0, 1, ...J - l,f = 0, 1, ..., n0 - 1 

holds and thus 

Zi+1(0 = Z,o(0 - dj-^J.j^O; W + 1 > ) = Zy>J(0 -

-±-dj-<-iJ2J(t;yU>2) + Kj-Kjj = 

= Z/0 + (d"j~J - I d J - ^ W t ; yU)2) + Kj, j = 0,1, .... n0 - 1. 
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ON OSCILLATORY SOLUTIONS 

From this and from (6) we have 
no—l 

z(t) = zno(t)~ I K „ 
1=o 

n o - 1 

(7) Z(""1}(0 = E d?°(y(no)(0y(i)(0)(,,o"'i"1). 
i = 0 

Now, if we denote 

(8) uxo = w T 1 ( - i r + i ( ' \ k)y{V~k-l)y(iKt), 

k = 0, 1, ...,«0 - 1, vno(t) = 0, 
then 

»'&) = vk-t - dZ_ky^\t)/n"-k\t), k = 1, .... n0, 
n o - 1 

f 0(o= I dr[/B o )(o/ , ' )(o] ( n o~ ,"1 ). 
i = 0 

Thus, according to (7), (8) and (2) 
no-l 

z ( "- 1 ) (0= I (--)"+V"~'-1)(0.vm(0, 
i = 0 

z(w)(o = (-i)ay(n)(oy(o + (-i)"+"°"1[y ,o(o]2- ^ e n + 

and lemma follows from (2). Lemma is proved. 
Let (4) or (5) be valid. By virtue of Lemma 1 we can denote 

(9) 

0 L = {»| veOm, lim Z ("-'\t; v) = oo}, 
ř->oo 

01 = {v \veO„x,lim | Z(n-l\t; v) \ < oo}. 

2. This paragraph is devoted to the study of asymptotic behaviour of oscillatory 
solutions under the validity of the condition (4). 

00 

Lemma 2. Let y e Ona and let (4) be valid. Then J y(no)2(t) dt < oo if and only if 
limZ (""1 )(/;y) = 0. ° 

Proof. Put Z(f; y) = Z(0 for the simplicity. If lim Zin'X)(t) = 0, then accord-
f->00 

ing to Lemma 1 and (2) 

-Zin'x\o) = j°z(n)(0d* ^ J[/n o )(0]2dr 
o o 

and the statement is valid. Let, on the contrary 

00) J[y(no)(0]2dr = Af <oo 
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hold. We prove the statement of lemma by the indirect proof. Thus, let 
lim Z{n~x\t) = Mx, Mx e( - oo, oo], Mx # 0 (the limit exists by virtue of Lemma 1). 

. • - •co 

From this there exists a number tx e [0, oo) such that 

(11) \Z(t)\^M2t*~\ te[tl9oo)9 
**\M* I v 

where M2 = * ,f for Mx < oo and M2 = 1 for Mx == oo. Further, accord­

ing to Levin's lemma ([5], p. 50) and (10) there exist constants M3 > 0 and t2 e 
e [0, oo) with the properties 

J [ V W dr = M3t
2(BO~° / [ / n o ) (0 ] 2 dt9 0£f}£t<oo,ie {0,1, . . . , n0}> 

There exists a number t3 e [t2, oo) such that 

t n0-l t2 

J[y (0(0]2d/ .= eM3t
2(no"<) + £ J[^ )(0]2dr^2eM3t2 ( B o-°, 

O j=-0 0 

16 {0, 1, ..., n0 — 1}, t e [r3, oo) holds. From this and from (3) there exists f4 e 
e [/3, oo) such that 

12X01 S ly2(0 + {2^(» J^-J^-M^ g 
g y . v a ( 0 + - ^ - < " - 1 , «6[t4,co). 

This inequality is in contradiction to (11) for an arbitrary zero T, T ̂  tl9 T = f̂  
of the function j>. Lemma is proved. It is clear that the following theorem is valid. 

00 

Theorem 1. Let (4) be valid. Then y e 0*a (y e 02
na) if and only if\ [y(BO)(0]2 df == 

= oo (< oo). ° 

Theorem 2. Let (4) be valid, y e Ola and M e (0, oo). Then 

lim sup (| j;(wo"1)(01 - Mtm) = oo. 
r->oo 

Proof. We prove the statement by the indirect proof. Thus suppose that there 
exist numbers t0 e R+ and Mt e (0, oo) with the property 

| yino~1}(0 I - M*1/2 S Ml9 te [t09 oo). 

Then there exists tx = t0
 s u ch that 

| y(l>(0 I ^ IMS10-'-112, te[tl9 oo), 0 = i < n0 

holds and according to (3) 
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(12) I Z(t;y)\ g Mai""1 + y y \ t ) , f e f r , oo), 

where M2 < oo is a suitable constant. On the other hand, as y e 0\a there exists 
t2 ^ tx such that 

Z^'Ktiy) £ 3(II - 1) ! M2,Z(r;^) £ 2M2rw-S 

r e [t2, oo]. 

The last inequality contradicts the (12) for an arbitrary zero r, T > r2 of 7. The 
theorem is proved. 

Theorem 3. Let (4) be valid and y e Om. Let there exist positive constant M and 
a nonnegative function ge C°(R+) such that 

no 

(13) l / ( t ,x 1 , . . . ,x . i ) |^r»o- ig( |x 1 | ) in [M,oo)x.RB 

holds. Then y is unbounded. 
Proof. We prove the conclusion by the indirect proof. Thus suppose, that 

(14) \y(t)\ £MX <oo, teR+. 

According to Theorem 2 there exists a sequence {tk}f such that 

tk e [M, 00), lim tk = M, 
k-*oo 

(15) \yino~1\tk)\^M2tj;
/2, keN, 

np+1 np—1 

M2 = 2'M. • [2 max g(x)] • , 

ff = (Зn0 - 2) (и0 + 1) + 1. 
Denote 

vjk= max | y O ) ( 0 | , fceN,;e{0,1, ...,n}. 

Then it follows from (13 — 15) and Kolmogorov — Horny Theorem ([4] p. 393' 
that there exists s e N with the property 

np-f-l np—1 np+1 np-1 

M2ts

1/2^vno-l9s^2°vos

n vn/ ^2'Mr vns

n . 

If we define a number T, such that T 6 [M, fj, | y(l,)(t) | = vns holds, then according 
to (13), (15) and (14) we have 

lip wp 

2 max g(x)ts

no"1 ^ V ^ ^ T " 0 " 1 max g(x). 

Then obtained contradiction proves the theorem. 

Remark. For y e 0\tl the statement of Theorem 3 was proved without the 
validity of (13). 
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Lemma 3. Let (4) be valid and y^02
na. Let there exist continuous functions 

a : R+ -+ R+, g : R+ ~+ R + such that g is non-decreasing, 

no 

H = liminfd(0'2g('no /2) > 0 
*->oo 

and 
(16) l /( / ,*i , ..-,*„) I ^a(t)g(\x{\) inD 

holds. Then J t[y(no\t)]2 d/ < oo, J /1 y(t)y(n\t) | dt < oo and lim Z(n"2)(t; y) = 
O O .-•oo 

= C #• ±oo, lim Z°-->(.•; y) = 0. 
r->oo 

Proof. The validity of \\mZ{n"u(t\y) = 0 follows from Lemma 2. First we 
t-*oo 

prove by the indirect proof that lim Z(n"2)(t; y) = C ^ ±oo. As y e O j a , then 
- ->00 

according to Lemma 1, Zn~2 is non-increasing on K+. Thus suppose that 

(17) limZ("-2)0;}/)= -oo. 
f->oo 

Now we prove the relation 

(18) lim sup (| yin°-2\t) \ - t) = oo. 
t-+oo 

Thus suppose on the contrary that | ;v(no~2)(t) I _S t + M, teR+. From this 
there exist constants Mx and x e R+ such that (see (3)) 

Z ( . ) - - - ^ J _ - 2 ( Í ; [ У * ~ 1 ) ] 2 ) ---*»--SЛ Í 1 í n" 2 , t є [ т , oo), 

that contradicts to (17). Thus the relation (18) is valid. According to (18) there 
exists an increasing sequence {tk}0 such that 

(19) h - / t . 1 = 1, | y«o-2)(tfc) | = r„ * e N, 

y ° , / = 1, 2, ..., n0 - 1 has a zero in the interval 

Ak = [r*-i, r j , max | y(n^2\t) | =, | y{n°"2\tk) | , fceN. 

Put vik = max |>>(0(/) I, i = 0, 1, ..., n0 - 1, v„0* = tk}1. Let A* cz A* be an 
teAk 

interval such that max I yu\t) \ = vik, m i n | yW(t) | = 0 and yW does not change 
teAik teAik 

the sign on Aik, i = 0, 1, ..., n0 - 1, k e N. Then 

« = 1,2, . . . , n 0 - 2 , 

(20) 4 ^ 2 Я /<+1>(.) ,«>(.) | * ?5 2 У 1 + 1 Д 11 /<>(.)1 а. ^ 4,|+,.„..._..., 
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<,_..» fg 2 J [f1 + r Vo)(0)2] I /"0_1)(01 d. ^ 
^ n 0 - l , k 

_i 4vBO,tvBO_2,t + 2v„0_1,)fcfr_
1
1 J r y ° > ( 0 Y dt. 

If we denote Kk = 2tfc~_!1 J [y ("o)(0]2 dl, then by virtue of Theorem 1 lim Kk = 0' 
and thus J* *"**' 

1 
v„0-i,* = y [ ^ f c + V x * + 16vi,0-2,kVno,fc] ^ 4x/vW0_2fkvW0>fc, k ^ k0> 

ko e N is a suitable number (see (19), too). 
From this and from (20) we can easily get by means of the induction 

np-i i 

(21) v__ 5. ̂ o - ' X " ^ ' - 1 ^ " 0 C k 2. k0, i e { 0 , 1 , . . . . n0}. 

Especially for / = n0 — 2 and by virtue of (19) we have 
_ "Q-2 2 _ 1_ _2_ 

(22) tk g vno_2>K g 4 2 ( " - 3 V "° v;k° ̂  2" "o v0"k°, k £ ki 

where kx ^ k0 is a suitable number. 
Let {Ak} be a sequence of intervals such that 

3* = [<x*, 0*], Ak c Ak, ok - crk = 1, max (| XO I) = v0jfe, 
teAk 

k e N. Then with respect to (21) 
1 n p - l 

I y(t) I ^ v0fc — J I y\t) I dt £ vok - v u ^ v0ft - 4"o(wo" l\J» v0k
no , k _> k0 

. _ k 

and thus there exists k2 ^ kx such that by virtue of (22) 
np np 

(23) \y(t)\^h2 Zdk
2 , te2k, k^k2. 

TJ 

Let £ > 0, e = -— be an arbitrary number. As y e 0*a it follows from Lemma 1 

that lim J ( - l ) a y ( n ) (0y (0 dt = 0 and therefore there exists a sequence {gj j 0 
fe-»oo _к 

such that 
00 

lim _f = 00, . i e U 4 | j;(n)fef)>>(_.) | __ e, i6iV. 

t-*oo * = 1 

From this, and according to (1), (16) and (23) we have 

6 = lim inf [afe) g(| ><<>,) |) | y(Qi) | ] £ 
»->00 

up wp 

_t lim inf [_(_»_) g(_f
2 ) e.2 ] __ if _. 2e. 

. - . 0 0 
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This contradiction proves the validity of lim Z(no~2)(t; y) = C ^ ±00. From 
f->oo 

this, from Lemma 1 and by means of integration per partes we have for v(t) = 
= [y(no)(0]2, resp. v(t) = ( - l )V n ) (0y (0 : 

J tv(t)dt = J f v(t)dt dt g ] J Z(n)(r; y)dt dt = Z(n-2)(0; y) - C < 00. 
0 O r o r 

The lemma is proved. 

Theorem 4. Let (4) be valid and y e 0\a. Let positive constant K and the continuous, 
non-decreasing function g : R+ ~+ R+ exist such that \img(x) > 0 and 

x-*oo 

\f(t9xt9...9xn)\Z:—g(\xl\) in K9co)xRn 

holds. Then limj>(0(0 = 0, i = 0, 1, ..., nQ - 2. 
t-*0O 

Proof. Let M > 0 be a constant such that g(M) > 0 and let Dt = {/ : t e R+, 
1X0 I ^ M},D2 = tf+ - D L ^ O = I ^ O I f o r f e D ^ O = 0 for f e * + - D * , 

.1 = 1,2. Then, according to Theorem 1 y\no) eL2(R+), i = 1,2, yt e L(co)(R+). 
As the assumptions of Lemma 3 are fulfiled, then 

(24) 00 > J 11 y(n>(0 X01 d*£ f g(| X01) I y(t) I d* :> g(M) J I y2(01 dt. 
O K £ 

Thus j 2 6 L1CR+) and according to [3] p. 236 

(25) I/'>(/) I £KX <oo, tetf+, / = 0, 1,...,«0 - 1 

for a suitable constant Kt. We prove by the indirect proof that lim y(t) = 0. Thus 
f->00 

; suppose on the contrary that there exist a sequence {tk}[* and a constant K2 > 0 
such that 
(26) 1X^)1^X2, keJV, l inu*=co, f fc St iC. 

k-*co 

Let xk e .#+ be the first zero of y lying on the left of fk, Ak = [tfc, f J . Then it 
follows from (24), (25) and (26) 

00 > Jg(l y(t) I) I X01 dr = £ f g(| X 0 I) IX0 i d* = 
K 1 = 2 J< 

£ £ [max I /(«)1]"1 fgis) s ds = 00. 
i = 2 i e j | 0 

This contradiction shows that limXO = 0 and the statement follows from (25) 
f-*oo 

a Kolmogorov — Horny Theorem ([4]). 

Remark. The statement of Theorem 4 was proved for the linear equation under 
-weaker assumptions in [6]. 
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Theorem 5. Let yeO\A. Then l im/ (0 = 0- Moreover, if there exist positive 
f->00 

constant K and continuous functions g : R+ -+ R+9 gt : R* -• (0, oo) such that 
g > 0 o n (0, oo), 

(27) \f(t9 xl9 x29x39Xi) | ^ —g(\ xt |) gi(x29x39x4) 

on 
[K, oo) x R4, then lim y(n(f) = 0, i = 0,1. 

f-»to 

Proof. Put for the simplicity Z(t;y) = Z(t). It is clear according to (3) that 

z"(0= - / (0 :K0 + / 2 ( 0 ; 
( Z " ( 0 = -ym(t)y(t) + y'(t)y"(t). 

It was proved in [2] that there exist sequences {tj,}^., i = 0, 1, 2, 3 such that it 
holds tie [K, oo), yw(t[) = 0, yw(t) # 0 for t e [*?, oo), f * /J and ^ < tl < 
< t\< t\< t\ + 1, keN, ie{0, 1,2,3}. From this 

(29) ( - 1)'+V'>(0 y(t) > 0 (< 0) for t e (t°k, t
l
k) 

(for te(tl
k,t°k + 1)), keN 

It follows from (28), (29) that zm(t) g y'(t) y"(t), t e [t°k, /rj and thus 

(30) r a i ) - Z"0°) < -2 / 2 ( . ° ) = -2Z"(t°). 

As Z" is according to (10), (28) non-decreasing and non-negative, we can conclude 
from (28), (30) 

(31) limZ"(0 = 0, \imy'(tl) = 0, l i m / ( 0 = 0. 
r->oo fc->00 f->00 

Thus the first part of the statement is valid. 
By virtue of (31) 

(32) J 11 yw(t) y(t) \dt^] fZ(4)(0 dt£ J J Z(4)(0 dt dt = Z"(0) < oo. 
o o o r 

(33) l im / ' ( 0X0 = 0. 
r->oo 

We prove by the indirect proof that lim y(t) = 0. Thus suppose without loss of 
*->oo 

generality that there exists a constant M > 0 with the property 

(34) \y(t\)\^M9 keN. 

Denote {xk}9 keN the sequence such that xk e (t%9 tl), | y(xk) | = — , keN. 

Then it follows from (33), (34), (28), (31) that for a suitable Mt < oo we have 

ly (O(0l ^Ml9 t e Ak = [xk9 tH *eN , t = 1,2,3. 
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From this and from (27), (32) and (31) 

0 4- ít\yw(t)y(t)\dt^M2ig(\y(t)\)\y(t)\dt^ 
k-*co Лk ^k 

м м 

2 J g(s)s ds -+ oo. max |yi(OI Mjl *~*°° 
teAk 

M2 = min g\(x2, *3> *4) > 0. The gained contradiction proves the theo-
|x.|3Mj,l--2,3.4 

rem. 
3. This paragraph deals with the case when (5) is valid. 

Theorem 6. Let y e 0\a and (5) be valid. Then the following statements hold: 
a) j ( n o ) is unbounded on R+. 
b)If(x + n0 is odd and M e (0, oo), then 

lim sup (| y*»-i\t) | - M 0 = oo. 
*-+O0 

c) Let there exist a non-negative function ge C°(R+) such that 

(35) \f(t,xl9x29...9xj\£t'«-* g(\xt\) 

holds in D9 where a = — [1 - ( - l ) a + n o ] . Then y is unbounded on R+. 

Proof. The statement a) can be proved similarly to the Theorem 2. Now, we 
prove the case b). Put 

Z,(ft = Z(t; y) + £ jm_x (t9 [y
(no)(0]2), t e R+ 

and suppose, on the contrary, that 

| / " - " ( J ) | - Mt S M, < oo, teR+. 

Then according to (3) 

(36) |ZX(0I %M2t
n~\ teR+9 

where M2 < oo is a suitable constant. As y e O*a, then 

lim #rx\t) = lim \z(t; y) + ^ [y(no)(0]2] = oo. 

This relation contradicts to (36) and b) is valid. The case c): If a + n0 is odd, the 
proof is similar to that of Theorem 3. If a + n0 is even, then the statement follows 
from Kolmogorov-Horny Theorem, (35) and a). The theorem is proved. 

Theorem 7. Let yeO30. Then yeO\0. Moreover, if there exist continuous 
functions g : R+ -> R+, h : R+ -* (0, oo) such that g(0) = 0, g(xt) > Ofor xt > 0 
and 
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(37) | f(t, xt,x2, x,) | = g(| x, |) h(| x2 |) inR+xR2 holds. 

Then lim y(t) = 0 and y' is bounded on R+. 
•* 

f - *oo 

Proof. It follows from [1] and (37) that there exist sequences {*£}?=-1> * 
0, 1, 2 such that t%<tl<tl< f°+ t , lim ** = oo, 

fc-*oo 

o . . (38) /"(/І) = 0, ( - IV+У<>(/) y(t) > 0 for / є (/" tl

k), 

( - !)'/'>(/) У(t) > 0 for / є (/І, í?+1), fr = 1, 2, . . . , / = 1, 2. 4-1/? 

According to (3) 

z"(t; y) = - y /2(0 + J<0 У(0; z'"(t, У) = X0 У(0 = o 

holds. From this (for t = fjj) we can see that lim Z"(t;y) = M, M e (-00,0] 
ř-*oo 

2 and thus y e Oi0 and 
00 

(39) f y(t)ÿ"(t)dí < 00, lim | ÿ(ťk) \ = J-M. 
řO í-*oo 

We can conclude that y' is bounded, | j ' ( 0 I 1= Mj. Further, it follows from (39) 
and (2) that 

řk 

ZlL f v(A a(\ víi\ \\ v'(t\ňt > —Ž- f 0 « - J 3<0 A O dl Ž ^ f 3<0 8(1 J<01)/(O dř Ž - r r í «(W)<k. fe->oo ř« M t řo M 1 0 

M 2 = min й(x) > 0. 
O^x^Mt 

1 Thus lim y(t\) = 0 and lim y(t) = 0. The theorem is proved. 
fc-»oo f-*00 

Theorem 8. Let ye03l and let a constant M > 0 and continuous functions 

gx : R+ -> R+, g2 : R% -> i£+ exist such t/iaf gi(x1? x2 , x3) > 0 for J^ > 0 

(40) gt(\ xx I, I JC2 I, I x3 |) = | / ( t , ^ ! , x 2 , x3) I, 

(£, -Xj , X^ ђ X3) Є .ІІ4- ^ ^ 
3 

ÚTlď 

f(£, xl9 x2, x3) I ;= g2(\ xx I, I x2 I, I x3 

(t, xt,x2, x3) e R+x R3, I x3 | ^ M Ao/ds. TAen j e O j 1 # 

Proof. According to [1] and (40) there exist sequences {4}*°=i, i = 0, 1, 2 such 
that t°k < t2

k < tl < t°k + 1, lim /• = oo, ;*'>(/& = 0, /'>(/) j<0 > 0 for / e (t°k, t') 
k-*ao 

yw(t) y(t) < 0 for / e (4, t°k+1), A: = 1, 2, ...., i = 1, 2. By virtue of (3) Z"(/; y) 

Y y'2(f) ~ y(t) f(t), Z-(/, j ) = - j - ( / ) y(0 = 0 holds. If y e Of,,., then 
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limZ"(f; y) = Mx < co and — y'2(tl) = Z\t\\ y) -> Mt. Thus y' is bounded 
k-+<x> 2 jfc->oo 

on .R+ that contradicts to Theorem 5 of [1]. Theorem is proved. 
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