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ON OSCILLATORY SOLUTION
OF THE DIFFERENTIAL EQUATION
OF THE n-th ORDER
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Abstract. The properties of proper oscillatory solutions of the non-linear differential equation
of the n-th order are studied. The sufficient conditions are given under which these solutions tend
to zero or are unbounded.
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1. Consider the differential equation
M ¥ =ft,y, e, YY)

where n = 2, f: D - Ris continuous, D = R, X R", R = (=0, ©), R, = [0, )
and there exists a number « € {0, 1} such that

(2) (_l)af(t: Xy eees xn) Xy g 0 in D.

The solution y of (1), defined on R, is called proper if sup | y(#) | > 0 for an
t135t<o
arbitrary 7 € R, . The proper solution y is called oscillatory if there exists a sequence

of its zeros tending to co.

A great number of papers is devoted to the existence of oscillatory solutions
of (1) (see [5]). But the problem of asymptotic behaviour of such solutions for
n > 2 is almost unsolved. The papers [6] and [7] are devoted to vanishing at
infinity of solutions of (1) for linear case, the asymptotic behaviour for n = 3, 4;
@ = 1 is studied in [1], [2]. Our aim is to study the behaviour of oscillatory solu-
tions in the neighbourhood of the infinity, to give sufficient conditions under which
solutions tend to zero or are unbounded.

Denote N = {1, 2, ...}, n, the entire part of n/2, C‘©)(I) the set of all continuous
functions defined on I, C(I), i e N the set of all continuous functions which have
continuous derivatives to the order i, L)(I), ie N the set of all p-integrable
functions on I, L(®)(I) the set of all bounded functions on I.
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M. BARTUSEK

Further let m e N and v e C°(R,). Put

t Tm 2
Im(t;0) = § ... fo(ry)dry...dr, and  J(t;0)=0(t), teR,.
00 0
Let ye C»=m-1(R ). Put
(3) Z . ’l—'lzo‘l( 1 a+i n-— i n J (t'[ (i)]Z
() PR ) i ) am =g AU ).

Let O,, be the set of all oscillatory solutions of (1) and (2).
Lemma 1. Let y € O,,. Then

ZM(t; y) = (=YD y(1) + [n = 2mp — 1] (=10, reR,.
Moreover, if either

) n = 2n,, nyg + a is odd
or
(5) n = 2n0 + 1

then Z™(t;y) 2 0,teR,.
Proof. Let n = 2ny. For n odd the proof is similar.
Put Z(¢) = Z(t; y), & = (=1)**()),
i-1

(6) Zl(t) = Z d:'_JJj'Fl(t; y(l)y(l))’ j = 1, 2, «ees Mgy Zo(t) = 0,
i=0

k—m
Zin() = 3 &7 i (5 Y4 0YD) + I e (85 yyE D) 4
i=0
k
+ Y AT YY),
i=k—m+1
n—j-= j j—m (t _ tO)zj_m
Kin = =854 500) ™ S
J 1 . . (t —1 )Zj
L= . —qn-i—1,()? 0
Ky = L Ko 3 77000 =5
j = 0, 152, -.-,nO; S = 0, l, ...,j; m = 0,1, ...,j; k = 0, ], “.,no — 1, 1GR+.
It is easy to see that

Z;(t) = Zjppi (1) + K., m=0,1,...,j—1,j=0,1,...,n, — 1
holds and thus
Zjp1(1) = Z(t) - d;—j—i'-]zu (85 YUty = Z; (1) -
1 .- 2 ,
- 1 . _._ 2 . ,
=Z1) + (d;! . 54 y l)sz(t; YW)Y+K;,  j=0,1,..,n— 1.
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ON OSCILLATORY SOLUTIONS

From this and from (6) we have

no—1
Z(t) = Zno(t) - Z Kj9
i=0
no—1
™ Z0700) = 3 () YO,
i=0

Now, if we denote

®) vk(t)—MZk 1( 1)““( +k>y8' LR O}

k=0,1,..,n — 1, v,(t) = 0,
then
(1) = vy — ARy Y1),  k=1,..,n,,

no—1

Uo(t) = Zo d;lo[y(no)(l) y(i)(t)](""_i_”.

Thus, according to (7), (8) and (2)
no—1

ZOD() = ¥ (=) Ty yOe),
i=0

ZO() = (=151 3(6) + (=)™ 1[y™n]2,  teR,

and lemma follows from (2). Lemma is proved.
Let (4) or (5) be valid. By virtue of Lemma 1 we can denote
04, = {v|v€0,,, lim Z"~(t; v) = 0},
t— o0
©) 02 = {v|v€0,,,lim | Z""V(t; )| < ).
t—=o0
2. This paragraph is devoted to the study of asymptotic behaviour of oscillatory
solutions under the validity of the condition (4).

Lemma 2. Let y € O,, and let (4) be valid. Then j' y("°)2(t) dt < oo if, and only if
lim Z®~Y(¢; y) = 0.

- 00

Proof. Put Z(¢t; y) = Z(¢) for the simplicity. If lim Z®~ V() = 0, then accord-

t—00

ing to Lemma 1 and (2)
-2 Y0) = [Z"()dt 2 [ [y™()]* dt
0 0
and the statement is valid. Let, on the contrary

'(10) jy[y(no)(t)]Z dt=M< o
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hold. We prove the statement of lemma by the indirect proof. Thus, let
lim Z®~ V(1) = M, M;e(—0, ], M, # 0 (the limit exists by virtue of Lemma 1).

100

From this there exists 2 number ¢, € [0, c0) such that

(1]) l Z(‘) i g MZtn‘l’ te [tl’ w)’
M7
where M, = DT for M, < © and M, = 1 for M,; = co. Further, accord-

ing to Levin's lemma ([5], p. 50) and (10) there exist constants M; > 0 and ¢, €
€ [0, o) with the properties

t t
PP dt < Ma?@ ™ [[y™@))*d, 0<p<t<o,ief0,1,..,n}
B [

] 1 T no—1 n“'j n =1
("°)t2dt§e=——M[ ( . ) °,M] .
'.![y ()] 4 2-j§1_ j n—j 3
There exists a number 3 € [7,, ) such that

no—1 t2

t
JDOOF 61 S eMar* ™0 + 5 FIYOOF di S 2eMpt™ 7,
[ i=00

ie{0,1,...,n, — 1}, t€ [t3, o) holds. From this and from (3) there exists ¢, €
€[5, o) such that

1 2 no—1 n"‘j no et
lZ(t)|§.’§'}’(t)+{2j§=:l< i )n—j Ml <

—1%2—!"-1, te[ty, o).

1
< —v?
=2J’(t)+

This inequality is in contradiction to (11) for an arbitrary zero 7, T 2 t;, T = £,
of the function y. Lemma is proved. It is clear that the following theorem is valid.

Theorem 1. Let (4) be valid. Then'y € O}, (y € 0%,) if, and only if? ] dt =
= o (< ). °

Theorem 2. Let (4) be valid, y € O}, and M € (0, ). Then

lim sup (| y™~ (1) | — Mt'?) = 0.
t-o

Proof. We prove the statement by the indirect proof. Thus suppose that there

exist numbers ¢, € R, and M, e (0, o) with the property
|y® D) | — MY < My, 1€ [to, ).
Then there exists #; = #, such that _
[y | S 2Me~ =12 te[t;, ), 0 Si<ng

holds and according to (3)
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a2) |21 S My 4+ 250, 1, ),

where M, < oo is a suitable constant. On the other hand, as y € O}, there exists
t, = t, such that
ZO(y) 2 3(n — 1) ! My, Z(t5 ) 2 2Mt" Y,
te [tz, w].

The last inequalily contradicts the (12) for an arbitrary zero 7, © > ¢, of y. The
theorem is proved.

Theorem 3. Let (4) be valid and y € OL,. Let there exist positive constant M and
a nonnegative function g € C°(R ) such that
no
(13) [f(t, %y, s )| S tmo-tg(Ix,])  in [M, ) XR"

holds. Then y is unbounded.
Proof. We prove the conclusion by the indirect proof. Thus suppose, that

(14) [y £ M; < oo, teR,.
According to Theorem 2 there exists a sequence {#,}T such that
tke [M, 00), lim tk = M,

k-
(15) [ Y™™ 9() | 2 My, keN,
no+1 no—1
M, =2°M; » [2 max g(x)] " ,

0sxsM,;

o=0Bny —2)(nyg + 1) + 1.
Denote
vy = max | yY(1)], keN,je{0,1, ...,n}.
Mststy
Then it follows from (13—15) and Kolmogorov—Horny Theorem ([4] p. 393)
that there exists s € N with the property '

no+1 no—1 no+1 no—1
1/2 o n n a n n
Mzts/ é vno—las _S_ 2 Vos Vns é 2 Ml Vs

If we define a number t, such that t € [M, t,], | ™(z) | = v, holds, then according
to (13), (15) and (14) we have
_no _mo_
2 max g(x)t™® ' <y, <™ max g(x).
OsxsM, 0SxsSM;

Then obtained contradiction proves the theorem.

Remark. For y e O}, the statement of Theorem 3 was proved without the
validity of (13).
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Lemma 3. Let (4) be valid and y € O},. Let there exist continuous functions
a:R,—> R,,g:Ri— Ry such that g is non-decreasing, :

no_
H = liminfa(t)t2 gt™'? >0
t—
and

(16) [ St X1s ooy x,) | = a@® gl x ) in D

holds. Then [t[y"()]*dt < oo, [t]y(t)y™()]dt < o0 and lim Z"~2(t; y) =
0 [} t— o
= C # o0, limZ" V(t;y) = 0.

t— 0

Proof. The validity of lim Z"~1)(¢; y) = 0 follows from Lemma 2. First we
prove by the indirect proo‘f—’:;at lim Z®=2(t;y) = C # +00. As ye 02,, then
according to Lemma 1, Z" "2 is n:)_r;:ncreasing on R, . Thus suppose that
17 lim Z"~2(t; y) = — 0.

Now we prove the relation o
(18) lim sup (| y*"2(1) | - 1) = eo.
)

Thus suppose on the contrary that |y ~2)f)| <t + M, te R,. From this
there exist constants M, and t € R, such that (see (3))

2
n - - .
Z(t) — -”29“Jn—2(t; [.V("o ”]2) < Mt 2’ te[r, o),
that contradicts to (17). Thus the relation (18) is valid. According to (18) there
exists an increasing sequence {#;}¢ such that
(19) tk - tk"l g 1: |J’("°_z)(tk)| _% tk’ kEN,
yP,i=1,2,...,n, — 1 has a zero in the interval

4y = [ty-1> 4], max |y~ | = Y™™t 1, keN.
tedy

Put vy = max|yD(N) |, i =0,1,....,n5 — 1, y,x = t;:}y. Let 4y < 4, be an
tedx

interval such that max | »?(f) | = vi, min | p(¢) | = 0 and p» does not change
tedix tedix

the sign on 4;,i=0,1,...,n0 — 1, ke N. Then
(200 Vi< 245 Ly @ YO 148 S 2v, 4 17000 1dE S By, wVie1p
ik

Ay
1= 1’2, ey N -—2,
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LA 2 B U B €2 ) o | A O T T2

dng -1,k

S Wy kVpo-2,k + AP .‘ [y()]? dt.

If we denote K, = 24, j [»"()]* d¢, then by virtue of Theorem 1 lim K, = 0
and thus k=0

1 - -
Vio—1,k = —2‘[Kk + VK& + 16Vn-2 1Vnot) S 44/ Vmo-2.m0ks K 2= ko,

ko € N is a suitable number (see (19), too).
From this and from (20) we can easily get by means of the induction

noi i

@1 Vg S 4o DmotizDy mo im0 s o i€40,1, ..., no).

Especially for i = n, — 2 and by virtue of (19) we have

_m-2 2 _2 2
(22) S Ve S AP0 i <2 Ty, k2 k

where k; = kg is a suitable number.
Let {4,} be a sequence of intervals such that
Ay = [ak’ ak]’ 4y < 4, G, — o =1, max (A¥®D = vors
tedy
k € N. Then with respect to (21)

1nol

I.V(t)l 2 Vox — ,“y (t)|dt 2 Vor — Vix = Vox — grotno= l)t k-1 Vo ’ k= ko

Ay

and thus there exists k, = k; such that by virtue of (22)
no _ﬂ

(23) lyOlz6® 267, tedy, k2k,.
Lete > 0,¢e < % be an arbitrary number. As y € 02, it follows from Lemma 1
that lim j'(—l)“ ™(f) y(f) dt = 0 and therefore there exists a sequence {g,}{

k- © Ak

such that

© lim g; = oo, ecU 4, | y(")(Qi) ye)| =S¢ ieN.
k=1

From this, and according to (1), (16) and (23) we have
¢ 2 lim inf [a(ey) g(l y(e) N 1 ¥(e) 11 2
i-» o0

o Mo

2 lim inf [a(e;) gles’ )Qiz J=Hz2e.

i-» o
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‘This contradiction proves the validity of lim Z™~2)X(¢; y) = C # +o00. From
=0

this, from Lemma 1 and by means of integration per partes we have for v(f) =
= [¥"(D)]?, resp. v(t) = (=1D)*™(@) y(1):

fr@de=[ fo@t)dtde < [ [Z™(t; y)dtde = Z02(0; y) - C < .
0 0t 0t
"The lemma is proved.

Theorem 4. Let (4) be valid and y € O2,. Let positive constant K and the continuous,
‘non-decreasing function g : R, — R, exist such that lim g(x) > 0 and

b iad ]

1 .
If(t’ xl"""xn)lg"'t—g(lxl |) In K’ OO)XR"

holds. Then lim yV(f) = 0,i=0,1, ...,n, — 2.

t= 0
Proof. Let M > 0 be a constant such that g(M) > O and let D, = {t : te R4,
|¥®| = M},D, = Ry, — Dy, y(t) = |y(t) | forte Dy, y(t) = 0forte R, — D;,
i = 1,2. Then, according to Theorem 1 y{" e L3*(R,), i = 1,2, y, € L“(R.).
As the assumptions of Lemma 3 are fulfiled, then

(24) o> (,f £l y™() y(t) | de 2 Eg(l y®ODIy@®dt 2 g(M)I [ y2(1) | de.

"Thus y, € L'(R,) and according to [3] p. 236
(25) |y | £ K, < o, teR,, i=0,1,..,n = 1
for a suitable constant K, . We prove by the indirect proof that lim y(¢f) = 0. Thus

two
;suppose on the contrary that there exist a sequence {#,} and a constant K, > 0
such that )
(26) ¥t 2 K, keN, lim ¢, = o, = K.
k=
Let 7, € R, be the first zero of y lying on the left of #,, 4, = [1, #]. Then it
-follows from (24), (25) and (26)

w > [eODLO 14z T {exODhOdr2
2 3 tmax YOI Js0)s ds = o
"This contradiction shows that lim y(f) = 0 and the statement follows from (25)
.a Kolmogorov — Horny Theorer;:a]]).
Remark. The statement of Theorem 4 was proved for the linear equation under

-weaker assumptions in [6].

152



ON OSCILLATORY SOLUTIONS

Theorem 5. Let y € Oi_,. Then lim y'(t) = 0. Moreover, if there exist positive

t— o0
constant K and continuous functions g : R, - R,, g, : R®> - (0, ©) such that
g > 0 on (0, ),

1
(27) | f(t x5 X2, X3, %) | 2 Tg(l x5 1) g1(x2, X3, x4)

on
[K, ©)xR*,  then lim y®(t) =0, i=0,1.

t—+ a0

Proof. Put for the simplicity Z(¢t; y) = Z(z). It is clear according to (3) that
Z'(t) = =y"(0) y(1) + y'*(0);

Z't) = —y"(0) y(@O) + Y0 y"(©).

It was proved in [2] that there exist sequences {t{};%,, i = 0, 1, 2, 3 such that it

holds t}e [K, ), yP(t}) = 0, y(t) # 0 for te[t], ), t # t; and 1) < 1} <

<tl<ti<ty,,keN,ie{0,1,2,3}. From this

(29) (=)D y(e) >0 (< 0)  for te(t, 1)

(for te(t, tg+,)), ke N.

It follows from (28), (29) that z"(f) < y'(£) »"(9), t € [13, #4] and thus

(30) Z'(t) — Z'()) £ =2y'%(10) = =2Z'(ty).

(28)

As Z" is according to (10), (28) non-decreasing and non-negative, we can conclude
from (28), (30)

(31) lim2Z'(t) =0, limy'(t})=0, limy'(t)=0.
t—+o0 k= t= o

Thus the first part of the statement is valid.

By virtue of (31)

(32) aj?ti Yy y(t) | dt ?tZ“)(t) dt < ? ?z“’(:) dtdt = 2"(0) < .
0 0 0t
(33) lim y"(t) y(t) = 0.

We prove by the indifect proof that lim y(¢f) = 0. Thus suppose without loss of

t— o
generality that there exists a constant M > 0 with the property
(34 |yt | 2 M, keN.
Denote {7}, ke N the sequence such that 7, e (12, t}), | ¥(to) | = M , ke N.

2
Then it follows from (33), (34), (28), (31) that for a suitable M; < o we have

(YD) | = My, tedi=[n,tl], keN,i=12,3.
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From this and from (27), (32) and (31)
0 « Jty®O¥0ldtz Mz} gy®ODIy@®)|de 2

k=0 di
M
> M, { g(s)sds - oo.
max | yy(t) | /2 k=
tedy
M, = min g1(x2, x3, x4) > 0. The gained contradiction proves the theo-

|xi|SMy,i=2,3,4
rem.

3. This paragraph deals with the case when (5) is valid.

Theorem 6. Let y € O3, and (5) be valid. Then the following statements hold:
a) " is unbounded on R, .
b) If a + ng is odd and M € (0, ), then

lim sup (] y™~1(t) | = Mt) = .
1> o0
c) Let there exist a non-negative function g € C°(R,) such that

(35) £t X1 X, s %) | S 6707 °g(1 31 )

holds in D, where ¢ = —;—[1 — (—1)**™). Then y is unbounded on R, .

Proof. The statement a) can be proved similarly to the Theorem 2. Now, we
prove the case b). Put

Zi() = Z(G ) + - T, (L ™OT), teR,

and suppose, on the contrary, that
|y™=D(@) | = Mt < M, <®, teR,.
Then according to (3)
(36) | Z,()| S Mpt"™',  teR,,
where M, < o is a suitable constant. As y € O},, then
lim Z&~9(t) = lim [Z(t; y) + _'2’_ [y(ﬂo)(t)]z] = 0.
t—=o t- |\

This relation contradicts to (36) and b) is valid. The case c): If « + ng is odd, the
proof is similar to that of Theorem 3. If « + n, is even, then the statement follows
from Kolmogorov —Horny Theorem, (35) and a). The theorem is proved.

Theorem 7. Let y€ O3,. Then ye O%,. Moreover, if there exist continuous
Junctions g : R, - R,, h: R, = (0, ©) such that g(0) = 0, g(x;) > 0 for x;, > 0
and
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(37) | (2, X1, X3, x3) | = 8(1 x4 1) A(] x5 [) f” R, x R* holds.
Then lim y(t) = 0 and y’ is bounded on R. .

{1~ o0

Proof. It follows from [1] and (37) that there exist sequences (Y2, i=
=0, 1,2 such that t, < t{ < tf < tg+,, lim t; = o0,

k— o0
(38) Y1) =0,  (=D*YOD) ) >0 for te(y, 1),
(=DYPD () >0 for te(t,t).), k=1,2,...,i=1,2.
According to (3)

7 - 1 / 1 i -, n
Z'(t;y) = =5y O+ y0y' (1) Z'@6y)=y0)y"®) 20

holds. From this (for ¢t = t,?) we can see that Iim Z7(¢t;y) = M, M e (— oo, O]

t- o

and thus y € O3, and

(39) fy®y"(Hdt <o, lim|y' ()] =+ —M.

t—> o0

We can conclude that y’ is bounded, | y’(t) | £ M , . Further, 1t follows from (39)
and (2) that '

I ' A M, b6 _
0 « [y(®)y"()dt = [y e(y®Dy®dtz —=~ [ sg(js|)ds,
k-0 tY M1 t0 Ml 0

k

Mz - min h(x) > 0.

0=xsM;

Thus lim y(¢3) = 0 and lim y(f) = 0. The theorem is proved.

k~— o0 = o0

Theorem 8. Let ye O;; and let a constant M > 0 and continuous functions
g, :R> > R,, g, :R3 > R, exist such that g,(x;, x,,%x3) >0 for x; >0,

(40) gl(l X1 |9|x2lalx3 l) é |f(ta x19x29x3)|9

(ta X1, X2, x3) € -R+ XR3
and
lf(ta X1s X2, x3) ‘ ...S: gZ(' X1 l: l X2 !a l X3 D’

(¢, Xy,%X5,%X3) ER, XR? | x3| < M holds. Then y € O3,.

Proof. According to [1] and (40) there exist sequences {t,';}?ul ,i=0,1, 2 such
that 1) < ti < t1 < th4, limtg = oo, yO(8) = 0, yO®r) y(®) > 0 for te(ty, £i)

k- o0

YOy <0 forte(r, 8,), k=1,2,..,i =1,2. By virtue of (3) Z"(t; y) =

= —%—- Y2 — y@) y'(), Z"(t,y) = —y"(@) y(t) = 0 holds. If ye 03, then

¢
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IMme=M<waM%ymb:ﬂﬁwaMpmmyBMMM
k>0 k= .
on R, that contradicts to Theorem 5 of [1]. Theorem is proved.
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