Archivum Mathematicum

Vitézslav Novak
Universal cyclic relations

Archivum Mathematicum, Vol. 22 (1986), No. 3, 125--128

Persistent URL: http://dml.cz/dmlcz/107254

Terms of use:
© Masaryk University, 1986
Institute of Mathematics of the Academy of Sciences of the Czech Republic provides access to

digitized documents strictly for personal use. Each copy of any part of this document must contain
these Terms of use.

This paper has been digitized, optimized for electronic delivery and stamped
O with digital signature within the project DML-CZ: The Czech Digital Mathematics
Library http://project.dml.cz



http://dml.cz/dmlcz/107254
http://project.dml.cz

ARCHIVUM MATHEMATICUM (BRNO)
Vol. 22, No. 3 (1986) 125128

UNIVERSAL CYCLIC RELATIONS
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Abstract. Let n be a positive integer, m a cardinal. Denote by n an n-element cycle, i.e. an
n-clement set with a cyclic n-ary relation. Then for any cyclic n-ary structure G there exists in
a structure of type (2n)™ a substructure G’ such that G is a strong homomorphic image of G’.
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1. Introduction. In [6] there is constructed, for any cardinal m, an m-universal
cyclically ordered set. A cyclically ordered set ([4]) is a pair (G, C) where G is
a nonempty set and C a ternary relation on G which is asymmetric ((x, y, z) e C
implies (z, v, x) € C), cyclic ((x,y,z)e C implies (y,z, x)e C) and transitive
((x, y, z) € C and (x, z, u) € C imply (x, y, u) € C). By an m-universality the follow-
ing property is meant: For any cyclically ordered set (G, C), where card G = m,
there exists a substructure in the constructed m-universal set such that (G, C) is
its strong homomorphic image (the definition of a strong homomorphism follows
below). The aim of this note is to construct an m-universal set for sets with a cyclic
relation of arbitrary arity.

2. Basic notions. Let G # 0 be a set, let n be a positive integer. An arbitrary
subset C of the n-th cartesian power G" of the set G is called an n-ary relation on G.
If Gis a set and Cis an n-ary relation on G, then the pair G = (G, C) will be called
an n-arv structure. An n-ary structure G = (G, C) is cyclic, iff the relation C is
cyclic, i.e. it has the property

(X1, X35 e, X,)€eC=>x; # x; for i #j and (x;, X3, ..., X,, ¥1) € C.
Let G = (G, C) be a cyclic n-ary structure and x € G. The element x is noni-
solated iff there exist elements x,,...,x,€G such that (x, x,, ..., x,) € C;
otherwise it is isolated.

Let G = (G,C), H = (H, D) be n-ary structures. A mapping f:G — H is
called a homomorphism of G into H iff it has a property

X1sX25 o0y Xp € G’ (xl’ X25 eees xn) eC =’(f(xl)v f(xZ)’ -"sf(xn))ED'
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We denote by Hom (G, H) the set of all homomorphisms of G into H. A bijective
homomorphism f of G onto H such that f~! is a homomorphism of H onto D
is an isomorphism of G onto H. A homomorphism f of G into H is called strong iy
it is surjective and has a property

VYisV2s ooor Yn € H, (¥4, V3, ..., v,) € D = there exist x, € f ~(y,),
x5 € f71(V,), ..., X, € £~ (v,) such that (x,, x,, ..., x,) € C.
Let G = (G, C), H = (H, D) be n-ary structures. A power G¥is an n-ary structure

(K, E) where K = Hom (H, G) and the relation E is defined pointwise, i.e. for
fisf2s -.s [ € Hom (H, G) there is

(fl’f23 ---u/;u) GEQ(fl(x)s fz(x), ...,f;l(X))E c fOI' any x € H'
By the symbol n we denote an n-element cycle
({1,2,..,n},L{(1,2,...,m),(2,3,....m, 1), ..., (n, 1,2, ... ,n — 1)})

and also a type of this structure; 2n denotes a structure which is a direct sum of
two n-element cycles, i.e. ‘

2n=({1,2,...,n,1, 2, ...,0'}, {(1, 2, ..., n), (2,3, ..., m, 1), ...
s, 1,2, e n = 1,2, ), (2,3, .0, 1),
e @, 1,2, L, (n = DY),
and a type of this structure.

An n-ary structure G = (G, C) is discrete, iff C = @; a type of such a structure
is denoted by m where m is a cardinality of G.

3. Theorem. Let m be a cardinal. For any cyclic n-ary structure G = (G, C)
with card G = m there exists a substructure G' of a structure of type (2n)™ such
that G is a strong homomorphic image of G'. 4

Proof. Let G = (G, C) be a cyclic n-ary structure with card G = m. Let M be
any set with card M = mand M = (M, 0) a discrete n-ary structure with carrier M.
A power (2n) has a type (2n)™ and its carrier, i.e. the set Hom (M, 2n), contains
all mappings f: M — 2n. Denote by E the n-ary relation of this power. Leti: G —»
— M be a bijection. Let us define a mapping T of G into the set of all subsets of
Hom (M, 2n) in the following manner:

(1) Let x € G be nonisolated. We denote by S(x) the set of all (n — 1)-sequences
(%35 X3, ..., x,) of elements in G such that (x, x,, ..., x,) € C, For any s =

= (X3, X3, ..., X,) € S(x) let T(s) be the set of all mappings f € Hom (M, 2n) with
the properties

fGG) =1, fli(xy)) = n, f(i(xx)) =n — 1, ..., fli(x,) = 2,

fis aconstant mapping on M-{i(x), i(x,), ..., i(x,)} with a value in the set {1’, 2, ...,
n'}. Finally, we put T(x) = |J T().
seS(x)
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(2) Let x € G be isolated. Then we put T(x) = {f} where f(i(x)) = 1 and f(t) = 1
for any t e M — {i(x)}. Note that fe T(x) implies f(i(x)) = 1 and f(¢) # 1 for any
te M — {i(x)}. From this there follows x,ye G, x #y=>T(x) n T(y) = 0, for
fe T(x) n T(y) implies f(i(x)) = 1 = f(i(y)), thus i(x) = i(y) and x = y. The
mapping T is therefore injective. We define an n-ary relation D on the set {T(x);
x e G} by
(T(x,), T(x,), ..., T(x,)) € D <« there exist f; € T(x,),
f2 e T(xy), ..., f,e T(x,) with (f1, f2, ..., f) € E.

We show that T is an isomorphism of G onto ({T(x); x € G}, D). Clearly, T: G —
= {T(x); x e G} is bijective. Let x, x,, ..., X, € G, (xy, X3, ..., x,) € C. Let us
define mappings f1, f3, ..., f, : M = 2n so:

f1G(xy) = 1, £1(i(x3)) = n, f1(i(x3)) =n — 1, ...

e [ili()) =2, 1)) = 17 forte M — {i(x,), ..., i(xp)}
F2(i(xy)) = 2, f,(i(x;)) = 1, fr(i(x3)) = n, ...

v [2i(x) =3, fo(t) =2"  forte M — {i(x,), ..., i(x,)}

L) = 1, f(i(6)) = n — 1, f(i(x) = n = 2, ...
v i) =1, fi1) =7’ forte M — {i(x,), ..., i(x)}

Then s; = (X3, X3, ... X,) € S(x1), f1 € T(5y), $2 = (X3, X4, -.0s X, X1) € S(x2), 2 €
€ T(sy), ... Sy = (X1, X2, «eey X,_y1) € S(x,), fo € T(s,). From this f, € T(x,), f; €
€ T(x,), ..., f, € T(x,). Further, we see easily (f;, fa, ..., fy) € E. Thus (T(x,),
T(x,), ..., T(x,)) e D. ,
On the other hand, let x,, x,, ..., x, € G and (T(x,), T(x,), ..., T(x,)) € D. Then
there exist f; € T(x,), f; € T(x5), ..., f, € T(x,) such that (fy, /5, ..., f,) € E. Thus

[1i(x)) = 1, f,(i(xy)) = 1, ..., £,(i(x,) = 1 and hence it must be
fii(xy) = 1, f2(i(x)) = 2, f3(i(xy)) = 3, ..., f,(i(xy)) = n
f.l(i(XZ)) =n, [,(i(x2)) = 1, f3(i(x;)) = 2, ..., £,(i(x;)) = n — 1

AGE) = 2, £0()) = 3, £10(6)) = 4, ey fili(x)) = 1.

By definition of the set T'(x,) the element x, is nonisolated in G and for the sequence
s = (X3, X3, ..., X,) it holds s € S(x,) and f; € T(s). Thus (x;, X, ..., x,) € C.

We have shown that T': G — {T(x); x e G} is an isomorphism of G onto
({T(x); x € G}, D); as a consequence we have that the n-ary structure ({T(x);
x € G}, D) is cyclic.

Further, we put G’ = |J T(x) and G’ = (G', E n G™). G’ is a substructure of

x€G

(2n)™. Let us define a mapping ¢ : G’ - {T(x); x€ G} by @(f) = T(x) where
f€ T(x). We show that ¢ is a strong homomorphism of G’ onto ({T(x); x € G}, D).
Clearly, ¢ is a surjective mapping. Let f,, f3, ..., [, € G5 (f1,f25 -, f,) €E and
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f1€T(xy), € T(xy), ..., fo€ T(x,). Then @(f)) = T(xy), ¢(f2) = T(x,), ..., ¢(f)) =
= T(x,) and (T(xy), T(x3), ..., T(x,)) € D by definition of the relation D. Con-
versely, let (T(x,), T(x,), ..., T(x,)) € D. Then, by definition of D, there exist f, €
€ T(x,) f; € T(x,), ..., f,€ T(x,) such that (fy, fa, ..., f,) € E and, clearly, f, €
€ @ N T(x)), f€ 0~ H(T(xL)), ..., € o~ N(T(x,)). Thus ¢ is a strong homomorp-
hism of G’ onto ({T(x); xe G}, D). But then T~'0 ¢, as a superposition of
a strong homomorphism and an isomorphism, is a strong. homomorphism of G’
onto G and the theorem is proved.

4. Remark. A cyclic n-ary structure of type (2m)™ is thus m-universal in the
following sense: To obtain all cyclic n-ary structures of cardinality m up to iso-
morphisms, it suffices to find all substructures of (2n)™ and all their strong homo-
morphic images.
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