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UNIVERSAL CYCLIC RELATIONS 

ViTfiZSLAV NOVAK 
(Received March 14, 1985) 

Abstract. Let n be a positive integer, m a cardinal. Denote by n an n-element cycle, i.e. an 
n-element set with a cyclic n-ary relation. Then for any cyclic n-ary structure G there exists in 
a structure of type (2n)m a substructure G' such that G is a strong homomorphic image of G'. 
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1. Introduction. In [6] there is constructed, for any cardinal m9 an m-universal 
cyclically ordered set. A cyclically ordered set ([4]) is a pair (G, C) where G is 
a nonempty set and C a ternary relation on G which is asymmetric (0c, y9z)eC 
implies (z9y9x)eC)9 cyclic ((x9y9z)eC implies (y9z9x)e C) and transitive 
((x9 y9z)eC and (x9 z9u)eC imply (x9 y9 u) e C). By an w-universality the follow­
ing property is meant: For any cyclically ordered set (G9C)9 where card G = m9 

there exists a substructure in the constructed m-universal set such that (G, C) is 
its strong homomorphic image (the definition of a strong homomorphism follows 
below). The aim of this note is to construct an /m-universal set for sets with a cyclic 
relation of arbitrary arity. 

2. Basic notions. Let G ^ 0 be a set, let n be a positive integer. An arbitrary 
subset C of the n-th cartesian power Gn of the set G is called an n-ary relation on G. 
If G is a set and C is an /*-ary relation on G, then the pair G = (G, C) will be called 
an n-arv structure. An n-ary structure G — (G, C) is cyclic, iff the relation C is 
cyclic, i.e. it has the property 

(xl9x29 ...,xH)e C*>x{ # Xj for i&j and (x2, *3> .... xm9xt)e C. 

Let G = (G,C) be a cyclic n-ary structure and x e G. The element x is noni­
solated iff there exist elements xl9 ...9xneG such that (x9 xl9 ..., #n) e C; 
otherwise it is isolated. 

Let G = (G, C), H «== (//, JD) be n-ary structures. A mapping f:G-+H is 
called a homomorphism of G into H iff it has a property 

*i,*2> .. .,x„eG, (xl9x29 ...9xn)eC*>(f(xx\f(x2\ ..>,f(xn))eD. 

125 



V. NOVAK 

We denote by Horn (G, H) the set of all homomorphisms of G into H. A bijective 
homomorphism/of G onto H such t h a t / " 1 is a homomorphism of H onto £> 
is an isomorphism of G onto £T. A homomorphism/of G into Z_T is called strong ijtf 
it is surjective and has a property 

^i^2> . . . ,y„e# , (yl5 v2, ..., v„) 6 D=> there exist X i e / ^ O O , 
*2 e/ _ 1(v 2) , . . ^ ^ e / " " 1 ^ ) such that (x l 5x2 , ..., x„)eC. 

Let G = (G, C), H = (/I, D) be n-ary structures. A power GHis an n-ary structure 
(K9E) where K = Hom(£T, G) and the relation E is defined pointwise, i.e. for 
fufi* ...,/„ e Horn (fiT, G) there is 

(/i . fiy -.>fn)eE<>(/i(*)> fi{x\ ...,/„(*))e C for any xeH. 

By the symbol n we denote an n-element cycle 

({1, 2, ..., n}9 {(1, 2, ...,«), (2, 3, ..., n, 1), ...,(«, 1, 2, . . . , « - 1)}) 

and also a type of this structure; 2n denotes a structure which is a direct sum of 
two n-element cycles, i.e. 

2n = ({1, 2, ..., n9 1', 2', . . . ,« '}, {(1, 2, ...,«), (2, 3, ...,/*, 1), ... 

. . . ,(*, 1, 2, . . . , « - 1), (1', 2', ..., n')9 (2\ 3', ..., *', 1'), ... 

...,(«',1',2', . . . , (*-1) ' )}) , 

and a type of this structure. 
An n-ary structure G = (G, C) is discrete, iff C = 0; a type of such a structure 

is denoted by m where m is a cardinality of G. 

3. Theorem- Let m be a cardinal. For any cyclic n-ary structure G = (G, C) 
with card G = m there exists a substructure G' of a structure of type (2n)m such 
that G is a strong homomorphic image of G'. 

Proof. Let G = (G, C) be a cyclic n-ary structure with card G = m. Let M be 
any set with card M = m and M = (M, 0) a discrete n-ary structure with carrier M. 
A power (2n)M has a type (2n)m and its carrier, i.e. the set Horn (M, 2n), contains 
all mappings/: M -* 2n. Denote by E the n-ary relation of this power. Let i : G -> 
-* M be a bijection. Let us define a mapping T of G into the set of all subsets of 
Horn (M, 2n) in the following manner: 
(1) Let x e G be nonisolated. We denote by 5(x) the set of all (n — l)-sequences 
(x2, x39 ..., xB) of elements in G such that (x9 xl9 ..., ;cn) e C. For any 5 = 
= (x2, x39 ..., xn) e S'(x) let T(s) be the set of all mappings fe Horn (M, 2n) with 
the properties 

/(*(*)) - 1, f(i(x2)) = n9 f(i(x3)) = n - 1, ...,/(/(*„)) = 2, 

/ i s a constant mapping on M-{i(x)9 i(x2)9 ..., i(xn)} with a value in the set {1\ 2' , . . . , 
ri}. Finally, we put J(x) = (j T(s). 
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(2) Let x G G be isolated. Then we put T(x) = {/} where f(i(x)) = 1 and/(f) = l' 
for any t e M - {i(x)}. Note tha t /e T(x) implies f(i(x)) = 1 and/(f) # 1 for any 
tsM - {/(*)}. From this there follows x j e G , x # j> => !T(x) n T(y) = 0, for 
fe T(x) n T(y) implies /(/(*)) = 1 = f(i(y))9 thus i(x) = i(y) and x = y. The 
mapping Tis therefore injective. We define an n-ary relation D on the set {T(x); 
xeG}by 

(T(Xl), T(x2)9 ..., T(xn)) eDo there exist ft e -T^O, 

/ 2 G r(*2), . . . , / , G r(xrt) with( / l 5 / 2 , . . . , /„)££. 
We show that Tis an isomorphism of G onto ({T(x); x e G}, D). Clearly, T:G -> 
-*{r(x) ;xeG} is bijective. Let xl9 x2, ..., xne G, 0ci,*2> . . . ,x B )eC Let us 
define mappings fl9f29 ...,/„ : M -> 2n so: 

/i(*(*i» = l, ZiO'fe)) = *, /i(*'(*3» = * - 1 , . . . 
..., f,(i(xn)) = 2, /-.(/) = 1' for * G M - {/(x,), ..., /(*„)} 

fi(i(xi)) = 2, /2(/(x2» = 1, /2(i(*3» = n, ... 
..., f2(i(xm)) = 3, /2(r) = 2' for t G M - {/fo), ..., *(*.)} 

/„0'(*i» = n9 f*(i(x2)) - i i - l - /„(/(*3» = « - 2, ... 
..., /»(*(*,,» = 1, fn(t) = "' for / G M - {«*-.), ..., i(**)} 

Then*! = (x2 ,x3 , .^, xn)e S(x1),fleT(si),s2 = (x3,x4> ..., *„, x1)eS(x2)9f2 e 
G J(s2), ..., Sn = (Xl5 X2, ..., *„_!) G S(xn),/, G r(5w). From this/i G .Tfo),/, 6 
G r(x2), . . . , / , G r ( 4 Further, we see easily (fl9f29 ...,/„) e E. Thus ( T ^ ) , 
T(x2)9...9T(xn))eD. 

On the other hand, let xt, JC2, ..., xn G G and (T^O, T(x2), ..., T(xn» G D. Then 
there exist ft e T(xt)9 f2 e T(x2), ...,fne T(xn) such that (fl9f2, ...,/„) G£. Thus 

/iO'(*i» = U/jO'fe)) = 1, —,fn(Kxn)) = 1 and hence it must be 
/i(i'(*i» = l,/aC(*i» = 2,M(xi)) = 3, ...9fm(i(xt)) = n 
fi(t(x2)) = n9f2(i(x2)) = l,/3(i(*2» = 2, ...,/„(/(*2» = n - 1 

/ IO 'OO) = 2, /,(/(*„» = 3, /,(/(*„)) = 4, ..., /„(/(*„)) = 1. 

By definition of the set T(xt) the element xt is nonisolated in G and for the sequence 
s = (x2, x3, ..., xn) it holds 5 G SO*̂ ) and/x G r($). Thus (xi9 xl9 ..., xn) e C. 

We have shown that T: G-+{T(x); xeG} is an isomorphism of G onto 
({TO*); .xeG}, D); as a consequence we have that the n-ary structure ({T(x); 
x e G}, D) is cyclic. 

Further, we put G' = (J T(x) and G' = (G', £ n G'"). G' is a substructure of 

(2n)M. Let us define a mapping q>: G' -> { r W ; x e 6 } by </>(/) = T(JC) where 
fe T(x). We show that q> is a strong homomorphism of G' onto ({-T(x); x e G}, D). 
Clearly, <p is a surjective mapping. L e t / l 5 / 2 , . . . , / „ G G ' , ( / l f / 2 , ...,/„) e £ and 

127 



V. NOVAK 

ft € T(Xl\f2 e T(x2\ ...,fneT(xn). Then <p(fx) = T(xx\ <p(f2) = T(x2\ ...,<?(/.) « 
» T(xn) and (.H*-), r(x2), ..., r(xB))e/) by definition of the relation D. Con­
versely, let (T(xt)9 T(x2), ..., T(xn)) e D. Then, by definition of D, there exist/ t e 
e r ^ A e r ^ ) , ...,fneT(xn) such that (/\, / 2 , ..., fn)eE and, clearly, / ^ 
e ^""H^ i ) )* / ! e ^ ( J C ^ ) ) , . . . , / . , eq>m'1(T(xn)). Thus <p is a strong homomorp-
hism of G' onto ({T(x); xe G}, D). But then T~l o q>, as a superposition of 
a strong homomorphism and an isomorphism, is a strong homomorphism of C 
onto G and the theorem is proved. 

4. Remark. A cyclic n-ary structure of type (2n)m is thus m-universal in the 
following sense: To obtain all cyclic n-ary structures of cardinality m up to iso­
morphisms, it suffices to find all substructures of (2n)m and all their strong homo-
morphic images. 
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