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ON A VECTOR MULTIPOINT BOUNDARY
VALUE PROBLEM
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Abstract. Existence and uniqueness of the solution to a multipoint boundary value problem for
nth-order nonlinear differential systems is proved by using the estimates for derivatives of the scalar
functions and by introducing admissible system of functions with respect to the Green function.
The theory of positive linear operators gives that the obtained result is the best in a certain sense.
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In the paper a multipoint boundary value problem for n-th order nonlinear
differential systems is studied. It is shown how the facts and methods from the
scalar case can be applied to the vector one. Existence theorems for De la Vallée
Poussin problem are obtained by means of the estimates for derivatives of scalar
functions or by introducing admissible system of functions with respect to the
Green function. Here the theory of positive linear operators is applied. The obtained
results extend and generalize some theorems proved by R. P. Agarwal and J. Vos-
mansky in [2]. : , '

In the paper the following vector multipoint boundary value problem

(1) x™ = f(t, x, x', ..., x"™ ),

¥)) xU=1(t)) = a;,;, i=1,..,r, j=L2 ..,m

will be considered where
n222<mgn,1 £ rjarenatural aumberssuchthatr, + r, + ... + 1, = n,

—o<a=1t <..<t,=b<coarereal numbers, a; ;€ R* are vectors, d > |
and throughout the whole paper we assume that

feCD,RY  where D =[a,b]xR'xR'x...x R,

n times
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V. SEDA

The scalar case (4 = 1) has been thoroughly studied. See the monograph [7]
by I. T. Kiguradze, [4] by S. R. Bernfeld and V. Laksmikantham. As to the vector
case (d > 1), there are substantially less papers devoted to problem (1), (2). Among
them the paper [2] written by R. P. Agarwal, J. Vosmansky attracted the attention.
The ideas from that paper are deepened and developed here.

PRELIMINARIES

If x = (xy, ..., x;)T is a column vector, then we denote | x | = (| x; |, ..., | x, DT.
A partial ordering in R? can be introduced by the relation:

If x = (xy, ..., x)7, y = (;, ..., )T belong to RY then
xZy iff x; 2 Y forj=1,..,d
Further we denote u, = (1, ..., )T € R
The set of all real d x d matrices will be denoted as M,,,. Similarly as in the
case of vectors, if L = (I;)), then |L| = (I1;), i,j=1,...,d. Further LS L
iff l;; < I, fori,j=1,...,dand L = (), L = (I;)). U, (0,) will mean the matrix
from M,.4, all elements of which are 1 (0). E; will denote the unit matrix. As

usual, the spectral radius o(L) of the matrix Le My, 0(L) = max | A;] where A;
are all eigenvalues of L.

POUSSIN CONSTANTS

The first result is based on the following estimates for scalar functions.
If x € C"([a, b], R) satisfies

@ X)) =0, i=1,..,r, j=12..,m

then there exist positive numbers C,;, k = 0, 1, ..., n — 1, such that

3) 1x®(D)| S Cpi(b—a) *max|x™(t)|, a=<t<b, k=01,..,n—1.
astsb
The constants C, , have been determined by several authors. E. g. G. A. Bessmert-
nych, A. Ju. Levin in [6] found that
(n—1"? k

4) Cro=—"7— Cox =

—_— k=1,...,n—-1.
nta" ' (n—Kk)'n Loon—1

G. A. Bessmertnych in [5] has proved:
Let I = min {ry, r,} > 1. Then
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ON A VECTOR MULTIPOINT BOUNDARY VALUE PROBLEM

(n . k - l)n-k-l
) C,, ={m=Rn—k* ’
a k—1+1
m=kn-1+1’
R. P. Agarwal in [1] derived:
Let / = min {ry, r,}. Then
(n _ l)n—l (l _ k)l—k
©) c, ={m=Rm—k*’
' k—1+1
m—Kn—I1+1’

k=1LIl+1,..,n

k=L1+1,..,n-1

For their meaning we shall call C, , Poussin constants. Thus the following defini-
tion will be of use.

Definition 1. Any nonnegative constants C,;, k =0, 1, ...,n — 1, such that
for all functions x € C"([a, b], R) satisfying (2") the estimates (3) hold will be
called Poussin constants. _

Further we shall use the concept of a generalized norm ([4], pp. 225—228).
If E is a real vector space, then the generalized norm for E is a mapping || . |lg : E =
— R? denoted by

(7) ” X ”G = ((XI(X), ceey ad(x))T, ‘
such that

(@) llxllg =0, thatisa;(x) =2 0forj=1,...,d, xeE;
®) [l xllg =0iff x = 0;

© llexllg=1cl| llxllg, ce R, x€E;

(D Nx+yllgsllxllg+1lyllg, x, yeE.

The couple (E, || . ||)g is then called a generalized normed space. The topology
in this space is given in the following way. For each x € E, and & > 0, let B,(x) =
={yeE: ||y — xl|lg < u,}. Then {B,(x):xeE, & >0} forms a basis for
a topology on E. The same topology can be induced by the norm | . || which is
defined in this way.

If || x || is given by (7), then
(8) [l x || = max (a;(x), ..., a4(x)), x€E.

[| .|| has all properties of the norm. Since the topology of the normed space
(E, Il - l)is given by the basis of neighbourhoods V,(x) = {yeE: ||y — x|| < &},
x€E, & > 0, and V,(x) = B,(x), both (7) and (8) define the same topology on E

and in this sense they are equivalent. From the topological point of view there is
no need for introducing the generalized norm. Yet we have more flexibility when
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working with generalized spaces. This is clear in the case of Contraction mapping
theorem ([2], p. 2) which will be stated as

Lemma 1. Let (E, || . ||g) be a generalized Banach space and let T : E — E be
such that for all x, y € E and for some positive integer p

| TPx — TPyllg = LIl x = yllg,

where L€ M, , is a nonnegative matrix with (L) < 1 and TP is the p-th iterate
of T. Then T has a unique fixed point.

Theorem 1. Let for all (t, uy, uy, ..., uy_,), (t, vg, 04, ..., v,—) € D the function f
satisfy Lipschitz condition
(9) If(t9 Ug, Ugs <oey un—l) _f(t’ Vo, U, LIRS vn—l) | §

n~-1

§2Lkluk—”k|,
k=0

where L, e M;., are nonnegative matrices. Let C,,, k=0,1,...,n — 1, be
Poussin constants. Let

n—1

(10) o T LiCoplb = a) ™) < 1.

Then there exists a unique solution to (1), (2) for all a
=12, ..,m

E.Rd, i= 1, ceny rj,

i'i

Proof. First we transform the problem (1), (2) to a simpler one. Let w be the
unique solution of (2),

1) x™ = 0.

Then x is a solution to (1), (2) iff the function y(¢t) = x(t) — w(t), a £t £ b, is
a solution to boundary value problem

(1mn Y =1ty + w),y + w(t), ..,y D 4wt I(1)) =
=gt vy, ...y V),
2" W) =0, i=1,.,r,j=12..,m

The function g € C(D, R%) and it satisfies Lipschitz condition (9). We shall show
that problem (11), (2”) has a unique solution.
Denote for any x € C([a, b], R?), x(t) = (x,(), ..., x,(t))T, a £ t £ b,

max | x(1) | = (max | x,(t) |, ..., max | x,(t) ).

astsh astsb astsbd
Let S; = {xe C"([a, b], R%) : x satisfies (2')} where
2) x7D(t) =0, i=1,.,rj=12..,m

Then S, is a real vector space and define the generalized norm on S; by
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ON A VECTOR MULTIPOINT BOUNDARY VALUE PROBLEM
I xil; = max | x™(t)|  for each x€S,.
astsh

The properties of the generalized norm can be easily checked. E.g. || x]|;, =0
implies that x is a solution to (1’), (2") and hence x = 0. S, is a complete generalized
space and thus a generalized Banach space. In fact if {x,} is a Cauchy sequence,
then there is a function y € C([a, b], R?) such that x{ converge uniformly to y

on [a,b]. The problem x™ = y(t), (2'), has a unique solution xe S, and
lim||x, — x||; =0.

pr®
Define the mapping Ty : S; = S, as follows: If y € S,, let T,y be the solution x
to boundary value problem (2'),

X = g(t, y(1), Y'(2), .., "7 D(D)).

Then by (9), for any two functions y, ze S, we have
' n—1
(12) )™ — (T2 | £ Y L yP(1) — 29|, ast<b.
k=0

Denote the j-th coordinate of the function y and z, respectively, by y; and z;,
respectively. As by (3)

1Y) = 252 |2 C, (b — a)" ™ nsla:bl Y = 20|
asts

it follows that

(13) | y®P@) = 20@) | £ Coulb —a)" ¥y — 2z 1l;.
(12) and (13) imply that

n-1
[(Ty)™() = (Ty2)™(1) | ék;)LgC,.,;(b - fl)""‘ Iy -zl

and

n—1

| iy — Tyz ||, ékz L,C, x(b — a)"—k" y=2z|.
=0
In view of the assumption (10), Lemma 1 yields the existence of a unique fixed

point of T, in S, . This means that the problem (11), (2”) as well as the problem (1),
(2) has a unique solution.

ADMISSIBLE SYSTEM OF FUNCTIONS
AND ASSOCIATED SYSTEM OF CONSTANTS

Another approach to solving the problem (1), (2) is based on the notion of an
admissible system with respect to the Green function.
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Let G be the Green function of the scalar problem

(1" x™ =0,

@) XY = 0,i=1, ., rpj= 1,2, ., m
Then the functions '
d’G(t, 5)

v ds, agtLb,j=0,1,...,n—-1
t

b
(14) oy(t) = |

are continuous in [a, b].

Definition 2. The system of nonnegative continuous scalar functions €, in
[a,8]), j=0,1,....,n — 1, is called admissible (with respect to the Green
function G) if there exist positive constants k;, j = 0, 1, ..., n — 1, such that

(15) D,(t) £ kE ), ast=sh, j=0,1,..,n-1.

With respect to boundedness of the functions €;, j =0,1,...,n — 1, there
exist positive constants E,,j, l,j»= 0,1,...,n — 1, such that

) G(t s)

(16)]' %(s)ds <k, €(t), a<t<h, 1,j=01,..,n—1

Let k;; = infk,;,1,j=0,1,...,n = 1. Then (16) is also true for k;;, /,
j=0,1,...,n— 1.

Denote
an K, = max(ky,o,ky,1, s kpyn=1),1=0,1,...,n = 1.
Hence
0 G(t s)

%(s)ds < K/ B,(1), ast=sh, Lji=0,1,...,n—1.

By definition of K|, for a constant K; < K; the inequality (18) cannot hold for all
tefa,b],j=0,1,...,n — 1. The constants K;, j = 0, 1, ..., n — 1, will be called
the associated system of constaats to the admissible system €;,j = 0,1, ...,n — 1.
Hence, the following definition will be of use.

Definition 3. The system of smallest nonnegative constants K;,j = 0, 1, ...,n—1,
such that (18) are true for allr e [a, b],,j = 0, 1, ..., n — 1, will be called associat-
ed system of constants to the admissible system €;,j = 0,1, ...,n — 1.

Its meaning is explained in the following theorem.

- Theorem 2. Let €;, j=0,1,...,n — 1, be an admissible system and K;, j=
= 0,1, ...,n — 1, the associated system of constants to that system. Let the func-
tion f satisfy Lipschitz condition (9) with nonnegative matrices L€ Myxq, k =
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=0,1,...,n — 1. Then for any a;;€R i=1,..,r;, j=1,2,...,m, there
exists a unique solution to (1), (2) provided

n—1

(19) o( ¥ KL < 1.
k=0
Proof. The problem (1), (2) is equivalent to the equation
» .
x(t) = w(t) + [ G(t, 8) fs, x(s), x'(s), ..., x""V(s)]ds, a=<t=<b,

where w : [a,b] = R* is the unique solution to (1'), (2). Now we define the
operator T on S = C""!([a, b], R%) by

b
(20)  Tx(t) = w(t) + | G(t, ) f[5,% (5), X'(s), ..., x""(s)]ds, a=<t<h.

Clearly T: S - S.
The space S will be provided by the generalized norm
| x || = max (max | x(t) |, ..., max | x "~ V(r)]),
astsb . astsb

whereby max (x4, ..., x,) for x,, ..., x, € R? is defined componentwise, i.e.

if x; = (Xy45 ooy Xg)T> i =1, ..., n, then max (x,, ..., x,) = ( max x;;, ...,

i=1,....n
vy omax  xg)T. )
i=1,...,n
Clearly max (x;, ..., x,) = x; foreach i = 1, ..., n.
(S, || . 1) is a generalized Banach space. We shall show that Lemma 1 can be
applied to the operator T given by (20). To that aim denote
(21) K= max k;,

where k;, j = 0,1, ...,n — 1, are arbitrarily chosen but fixed numbers satisfy-
ing (15).
Let u,ve S and let je {0, 1, ..., n — 1}. Then, on the basis of (20), (9), (15)
and (21) we obtain the following inequalities. First
| T9(u) (t) - T ()| =
6 G(t s)

lIA

(Z L [ u®(s) — v¥(s) ) ds <

%5

n—1

SK€MY Lllu—vl, ast<h
k=0
Suppose that for a natural p the inequality
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(22) I (TP)(J')(u) (t) _— (TP)(J’)(U) ) | <
n—1 n-1
S K60 (L KL L Liliu—vl,  ast<bh
k=0 k=
is true. Then using (20), (9), (22), (16), (17) we come to the inequalities
| (T’ *H9Dw) (1) - (T l)(”(v)(t)l s

2 LiK$(s) [ Z K,L)*™* z Lllu—v|]ds=

-1

= K%t)( Z KkLk)pZ Lillu—vf, ast=sh
k=0 k=0

lid G(t s)

=] %2

Hence, by induction, we get that (22) is true for all natural p. The inéquality (22)
implies
I TP(w) — T"(v) I=

<K[ max (max%,1)] ( Z K Ly)*~ 3 Z Lyllu—vl.
i=0,1,...,n—1 aStsb
n—1

By (19), lim (Y, K;L,)?~'= 0, and hence there exists a number P, such that for
) p—o© k=0
allp > P,
n—1
Q(K[ max (max @,(t))](z KLy)™™* Z Lilu—vl) <1

o,1,..., n—1 astsh

Lemma 1 then implies that the operator T has a unique fixed point in S which
gives the statement of the theorem.

Corollary 1. Let the function f satisfy Lipschitz condition (9) with nonnegative
matrices Lye My, 4, k = 0,1, ...,n — 1. Let

k
23) = max j a—G%i) ds, k=0,1,..,n—1
astsb a t
Then for any a;;eR% i=1,....,r;, j=12,...,m, there exists a unique
solution of (1), (2) provided
n—1
(24) \ e(TeL) <t

Proof. Clearly the functions &;, j < 0, 1, ..., n — 1, given by (14), form an
admissible system of functions. As

b
@) | 0 G(t, 5)

d(s)ds < ¢ ,(t), ast=<bhjl=01,..,n-1,
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the associated system of constants K;, / = 0, 1, ..., n—1 to that admissible system
of functions fulfils the relation

K,

IIA

C,,1=0, 1, ceey B — 1.

n—1 n—1
Thus o( Y. KiLy) < o( Y, cLy) < 1and, by Theorem 2, the statement of Corollary 1
k=0 k=0

follows.

OPTIMAL VALUES OF THE ASSOCIATED SYSTEM
OF CONSTANTS

As we have seen the set of all admissible systems of functions is not ampty
and in view of Theorem 2 the problem arises what are the best (smallest) constants
K, k=0,1,...,n — 1, for this set. The answer to this question can be given by
applying the theory of positive linear operators developed by M. A. Krasnoselskij
and others. This theory will be taken from the survey paper by H. Amann [3],
books by M. A. Krasnoselskij and others [8], [9].

Consider the Banach space E = C([a, b], R) with the supnorm, partially ordered
by the relation x £ y iff x(t) < y(¢) for all ¢ € [a, b]. Then (E, £) is an ordered
Banach space with positive cone P = {xe E : x(t) 2 0, a £ t < b}. P is normal,
i.e. every order interval [x, y] = {z€e E : x £ z < y} is bounded, and P is generat-
ing, i.e. E = P — P ([3], pp. 625—628).

Let k€ {0, 1, ...,n — 1} and let G be the Green function of the scalar problem
(1M), (2"). Define the operator A4, : E — E by

b k
26) Ao = J | 2502

x(s) ds, aslt<Lh xeE.

Ay is a positive linear operator and using Ascolli lemma we can easily prove that
it is completely continuous. If %, belongs to an admissible system of functions €,
Jj=0,1,...,n — 1, then the operator 4, is %,-bounded from above ([9], p. 78),
because for any x € P, x % 0, there exists a constant ¢ = ¢(x) > 0 such that

@n Aty = | L9 | 1945 < (maxxe) a0 =
a astsbh
< (max x(O) &) = ()G, astSb.

astsbh

At the same time we have shown that 4, is @,-bounded from above.
Further we need theorems on the estimate of spectral radius of a positive linear
operator. A part of Theorem 5.3 from [9], p. 85, will be stated here as

Lemma 2. Let (E,, <) be an ordered Banach space with positive cone P, which is
normal and generating. Let A : E, — E, be a positive linear operator such that there
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is an element xq € Py, xo *+ 0, and a constant K = 0 with
Axo _<_.._ Kxo.

Let A be x,-bounded from above or x, be an inner point of P, .
Then the spectral radius ¢(A) of A satisfies

o(4) £ K.
Remark 1. In fact, the lemma has been proved for K > 0, but by a limit process
we get its validity also in the case K = 0.

With respect to this lemma, g(4,) can be estimated from above where 4, is the
operator defined by (26), by the relation
x(s) ds)/x(t)]

: b ! Ak
a'G(t, )
A,) < max _—
o4y T astgh l:(«'x[ otk

for any function x e C([a, b], R), x(¢) > 0 in [a, b], because such a function is
an inner point of P.

Especially,
(28) o(4)) £ «,
¢, being defined by (23).

Lemma 2 also implies that the following lemma is true.

Lemma 3. Let €;, j =0, 1, ..., n — 1, be an admissible system of functions and
let K;,j=0,1,..,n — 1, be the associated system of constants to that admissible
system. Let A, be the operator given by (26). Then

29 K;zo04), j=0,1,..,n-1

We shall show that for each k€ {0, I, ..., n — 1} there is an admissible system
of functions such that the constant K, from the associated system of constants
is equal to ¢(4,). In the proof we need some theorems on positive linear operators.
First we state Theorem 5.4 from [9], p. 81, as Lemma 4.

Lemma 4. Let (E;, <) be an ordered Banach space with positive cone P, which
is generating. Let A : E; = E, be a positive linear operator such that there is an
element x, € P;, x; # 0, and a constant K = 0 with

- Ax 2 Kx,.
Then the spectral radius o(A) of A satisfies
e(d) z K.

In view of this lemma, ¢(4,) > 0 will hold for the operator A4, defined by (26) if

b k
min | 960 s) G(i’ $)
astsb a t

ds > 0,
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b k
since g(4x) = min [( | g G(t ) x(s) ds)/x(t)] for any x € C([a, b], R), x(t) > 0
astsh a
in [a, b].
Especially,
akG(t s)
30 A
°o aazmn §| S0

Part of the famous Krejn—Rutman theorem ([3], p. 632, Theorem 3.1) is
stated here as Lemma 5.

Lemma 5. Let (E,, £) be an ordered Banach space with positive cone P,. Let P,
be total, i.e. the closure P, — P, = E,. Suppose that A : E; = E, is a positive
linear, completely continuous operator and it has a positive spectral radius o(A4).
Then o(A) is an eigenvalue of A with an eigenvector in P, .

We also need the definition of a ug-positive operator ([9], p. 77). If (E,, <) is
an ordered Banach space with positive cone Py, 4 : E; — E, is a linear positive
operator, and u, € Py, u, # 0, then we say that A4 is uy-positive, if for each nonzero
element x € P, there exist constants a(x) > 0, f(x) > 0 such that

a(x) uy £ Ax = B(x) u,.

In other words, A4 is #y-bounded from below as well as uy-bounded from above.
Lemmas 4, 5 and Theorem 2.11 in [8], p. 80, imply the following lemma on
existence and uniqueness of the positive eigenvector.

Lemma 6. Let (E,, <) be an ordered Banach space with positive cone P,. Let P,
be generating and let A : E, — E, be a positive linear, completely continuous,
operator which is uy-positive for an element uy € Py, ug + 0. Then there exists up to
a multiplicative positive constant a unique eigenvector of A in P, and that vector
corresponds to o(A). '

Proof. As A4 is uy,-bounded from below, by Lemma 4 the spectral radius o(A4)
of A is positive. Hence, by Lemma 5, there exists an eigenvector of 4 belonging
to P, which corresponds to g(4). Now we apply Theorem 2.11 in [8], all assump-
tions of which are satisfied. By this theorem the uniqueness follows.

By Lemma 2.1 (p. 77) as well as by Theorem 2.16 (p. 90) in [8] we come to the
following statement.

Lemma 7. Let the assumptions of Lemma 6 be satisfied. Then for every y € Py,
y % 0, the equation
Ax — Ax =

has exactly one solution x € P, if A > g(A) and no solution in Pl Jor A £ o(A).
Letke {0, 1, ..., n — 1}. We summon fundamental properties of the operator 4,

which is deﬁned by (26). E, P, go(A,), @, have the same meaning as above. We
remind that P is normal and generating,

85



V. SEDA

Lemma 8. A4, : E— E is a positive linear, completely continuous operator.
Further:

(a) A, is ®,-positive.

(b) e(4,) > 0.

(c) There exists a unique, up to a multiplicative positive constant, eigenfunc-
tion €y of A, belonging to P. €, corresponds to 9(A,) and A, is €,-positive.

(d) €, = 0 is not true on any subinterval of [a, b].

Proof. Our considerations will be based on the following property of the

Green function G for the scalar problem (17), (2") (see [10], p. 375). It is true that
J g
31) fﬁét‘;——ﬂ =0 foratoe[a,bjandalls,a<s<b, je{0,1,...,n—1}
t

if
(32) there is an /€ {1, 2, ..., m} such that t, =1, 0 <j < r, — 1. Conversely,
if (31) is valid, then for all functions y € C"([a, b], R) satysfying (2") we must

have yU)Xt,) = 0 which is only so possible when (32) is true Thus (31), (32) are
equivalent each to other.

Statement (a). We have already found (see (27)) that A4, is &,-bounded from
above. Since for each xe P, x # 0, A4,x(t) = 0 does not hold on any subinterval
[a;, b,] < [a, b], the ®,-boundedness of A4, from below will be shown if to any
function x € P, x % 0 on any subinterval [a,, b;] = [a, b] there exists a constant

a(x) > 0 such that
(33) Ax(t) Z a(x) (1), astsh

By (14), &,(t) = (4, 1) (¢), a £ t £ b. Hence, the equivalence between (31) and (32)

implies that @,(t,) = 0 iff there exists an /€ {1, 2, ..., m} such that ¢, = ¢, and

k £ rp — 1. Therefore (34) ®,(t) > 0 for all te[a,b], t +£1¢;, j=1,2,...,m
as well as for.t = ; such that k = r,.

If we show that any point ¢, with k < r,— 1,1 = 1,2, ..., m, there exists a one-

sided limit

lim Ax(1)/D,(1), lim Ax(t)/P(1)

t=t;+ =t —
and it is different from O (it is positive), then (33) is true with a positive constant a(x)
and the proof of (a) is complete.
Supposel £l <m,k £r, — 1,1, < t. By Taylor’s formulaforanya < s < b
there exists a (s), ¢; < t(s) < t, such that
'G(t,5) _ 06, | G, s) (1-t) |
agk - ot PYR 1!
6"G(1:(s) s) (t—t)"*
ot (i = k)!
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and, in view of (31),
3*G(t,s) _ 9"G(x(s),s) (t—t)" 7"

atk - ath (r‘ _ k)‘ s a é S é b.
Hence
b g 51 Ak
b r "
- —<—_> @] _<__>_ is

exists, and by (34), it is finite and different from zero. A similar result follows for
1 <1< mand for lim A,x(t)/P.().

[ $ad $ 5

Statement (b). By (a), there exists a K > 0 such that 4,$, = K&,. On the basis
of Lemma 4, this implies that g(4,) > 0.

Statement (c). The first part of this statement follows from Lemma 6, all assamp-
tions of which are satisfied. By (a), for each x € P, x 0, there exist two constants
B(x) = a(x) > 0 such that

(35) a(x) @, < Ayx £ B(x) D,
Hence, there are f§; = o, such that

4P £ AE, < BiPy-
Since 4,%, = o(4,) €., we have

% Bk
9 oy TEG =gy ™

and thus, with respect to (35), (36), we get that

a(x) o(Ay) B(x) o(Ay) ¢
Bx Xk *

which means that A4, is €,-positive.

Cr S Ax =

Statement (d). If €,(t) = 0 were true on a subinterval of [a, b], then by (36)
the same would hold for &@,. But this is in contradiction with (34) which proves (d).
On the basis of Lemma 8 we prove the following theorem.

Theorem 3. Let k€ {0, 1, ...,n — 1} and let €, be a nonnegative eigenfunction
of the operator A,. Then the functions

» ,on 1 8’G(t, s)
&7 0= g || "o

ast=sh j=0,1,...,n-1,

€x(s)ds,
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Jform an admissible system of functions with respect to G such that for the associated
system of constants K;,j=0,1,...,n — 1,

(38) Ky = o4y
is true.

Proof. The functions ¥; determined by (37) are all contmuous and non-
negative in [a, b]. Clearlv %, satisfies (37) for j = k.

First we show that the functions €,, j =0, 1, ..., n — 1, form aa admissible
system of functions with respect to G. In agreement with (26), we define the ope-
rator 4; : E — Eby

Jj |
(39) ij(t)—j Mi x(s) ds, a<t<b,xeE j=0,1,..,n—1.

By (14), (15), (37) and (39) we have to find such constants k; > 0,j =0, 1, ...,n—1,
that

“0) (1) = (4D (1) £ —<4%((1), ast=b

k;
(A x)
But the proof of (40) runs in the same way as the proof of (33). Hence we can

assert that the existence of k; >0, j=0,1,...,n — 1, with propecty (40) is
guaranteed.

Finally we prove (38). In virtue of (17), (16) and (37)
Ky = max (ky,o, ki, 15 s k1) Z 0(4y).

On other hand, (29) gives an opposite inequality and hence, (38) is true.

APPLICATION TO SECOND ORDER SYSTEMS

The obtained results in Theorems 2, 3 will be applied to the vector boundary
value problem of the second order
@4n x" = f(t, x, x'),
(42) x(a) = ay 4 x(b) = ay ;.
Suppdse that fe C([a, b] x R*, RY) satisfies the Lipschitz condition
43) |f(t; uo, uy) — ft, 00, 01) | S Lo |t — 0o | + Ly |0y — v, |

where L,, L, € M,,, are nonnegative matrices.

Let G, be the Green function for the corresponding scalar homogeneous
problem

»

x" =0, x(a) = 0, x(b) = 0.
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Then
&—_—It’)—(iz}i)—-, assLtsh,
Gl(t’s)=— N
__(_b__s_)g:.‘.’_)., <t<s<bh
b—a
s—a
s-a <
0G(1,s) |b—a’ 9SsSish
dt s—b , a<t<s<b
b—a
Consider the functions
b _ b
o =160 91ds, B0 = (29D s agis

Similarly as the functions (14), they form an admissible system of functions with
respect to G,. By [2], p. 2,

(4 Bolt) = 5-(t — a) (b — 1),
() =[t—a+® -1 [20b —a)], as<t<bh

The constants &,, ¢, determined by (23), are

_ 1 _
Co = max Py(t) = g‘-(b - a)?, ¢, = max &,(t) = —21—(b - a).

astsh astsh

Hence, similarly as in the proof of Corollary 1, we get that the associated svstem
of constants K, K, satisfies

(45) K, = —18—(b -a?, R, < iz(b - a).

Comparing the inequalities (iv), (ix), (vi), (xi) in [2], p. 3, with (16), we get that

5 3 —
koo = W(b - a)?, Koy = \/j\/gl (b — a)’
8
fro=55 =0 Fy=30b-a)
and

max (Ko,0» Ko.1) = l/—3;_1(b - a)?,
43

max(Ex,‘o’.El.l) = —;—(b - a).
Hence, in view of (17), »
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[

(46) Bl le-an Rsie-a

J
Because the estimates in (46) are better than the estimates in (45), on the basis
of Theorem 2 we get condition (8) in [2], p. 1, i.e. if

w

J3-1 1 ,
(47) g(—;Jg—(b —a)’L, + Fb-aL )<,

then the problem (41), (42) has a unique solution for any two vectors a, ;, a;,, €
€ R

Let E, P have the same meaning as above. Consider, now, the operators
A,,A, : E - E, which according to (39) are defined as follows:

b
Aox(t) = IIGl(t, s)|x(s)ds, as<t<h,

aGl(t s)

Ax(®) = x(s) ds, astZh.

As Gy(t,5) £ 0in [a, b] x [a, b}, the eigenvalue problem
Ayx =ix, A%0

is equivalent to the problem

X'=-2x x@=0 xb)=
the eigenvalues of which are
(b-a)?
lk=?n—z—~ k=1,2,...,

and the corresponding eigenfunctions uniquely determined up to a multiplicative
constant are

kn(t — a) _
x,,(t) Sln_b_:-t—l__—, k=1, 2, .es

By Lemma 8, ¢(4,) = A, = (b — a)?/n2. The corresponding eigenfunction is

%(t)—smif,‘——;l, as<t<bh

By (33) and (x) in [2], pp. 23,

= 0G,(t,s)| 5

a0 - 51| % *( ) g,(s)ds =
2 . n(t—a) wb—2t+a) n(t — a)
_b_asm b—a + (b-a)z cos b—a "
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By Theorem 3, €., ‘61 form an admissible system of functions with respect to G,
and for the associated system of constants Ky, K,

—m2
1=\ (Zo) = ‘_—‘—(b za)
n

is true. By the inequalities (v), (x), (vii), (xii) in [2], p. 3, we get that

= b — a)’ = (b — a)?
Koo = ,  kpy=
= 4 4
k1.0=—‘2‘(b‘a)» kyy = z(b—a)
n n
Hence ,
= 1 , = 4
Ko=‘—2'(b"‘a)a K1=—2—(b—a)
T n

Using these results we get condition (6) in Theorem in [2], p. 1, i.e.
1 2 4
(48) g?(b—a)Lo+—n;(b—a)L, <1,

which is sufficient for the existence of a uaique solution to (41), (42) for any two
vectors ay 1, a, , € R%.

Consider now the operator 4,. By (30), (28) we obtain that the spectral radius
o(4,) of A, satisfies

(49) L (b~ a) = min &,(t) < o(dy) = max B,(t) = - (b — a),
4 astsb a3tsh 2

where &, is given by (44). By Lemma 8, there is a uniquely determined (up to
a positive constant) positive eigenfunction &, of A4, correspondmg to o(4,).
By (37), we define

1) = —(}) [1G(t,5)|@,(s)ds, astsh.

Then, by Theorem 3, %, €, form an admissible system of functions whereby
for the associated system of constants Kg, K; we have K} = Q(Z,) The inequality
(49) can be 1mproved By the inequality (xi) in [2], p. 3, as well as by the fact that
min &,(¢) = ——-(b — a) > 0, Lemma 2 implies that 9(4,) £ -l-— (b — a). By (44),
aStsb

@, cannot be an elgenfunctxon of 4,. Hence in (xi) the sign of equality cannot

hold. Thus the difference -3—- b-a)d, — 4,8, =y 20, where yeP,y + 0.

1
By Lemma 7, ¢(4,) < 3 (b — a). Thus

a1
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(50) T - S o(d) <55~ a)

and we can state the result:
There exists a constant Kg > 0 such that

&) e(KoLo + oA Ly) < 1

is a sufficient condition for the existence of a unique solution to (41), (42) for any
two vectors a, ,, a,,, € R%.
The condition (51) is not contained among conditions (6), (7), (8) of Theorem

in [2], p. L.
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