
Archivum Mathematicum

Erich Müller-Pfeiffer
Comparison theorems for Sturm-Liouville equations

Archivum Mathematicum, Vol. 22 (1986), No. 2, 65--73

Persistent URL: http://dml.cz/dmlcz/107248

Terms of use:
© Masaryk University, 1986

Institute of Mathematics of the Academy of Sciences of the Czech Republic provides access to
digitized documents strictly for personal use. Each copy of any part of this document must contain
these Terms of use.

This paper has been digitized, optimized for electronic delivery and stamped
with digital signature within the project DML-CZ: The Czech Digital Mathematics
Library http://project.dml.cz

http://dml.cz/dmlcz/107248
http://project.dml.cz


ARCHIVŮM MATHEMATICUM (BRNO) 
Vol. 22, No. 2 (1986), 65-74 

COMPARISON THEOREMS 
FOR STURM—LIOUVILLE EQUATIONS 

E. M t t L L E R - P F E I F F E R 
(Received September 19, 1984) 

Abstract. Concerning the fferential equations — (P(x) u0) + Q(x) u = 0 and —(p(x)u')' -f 
-f q(x) u = 0, a ^ x ^ b, Sturm-type comparison theorems are proved where the co. ditions 
on the coefficients in question are, for instance, p ^ P and mean value conditions for q and Q 
on certain subintervals of [a, b]. The results are closely related to well-known theorems of Levin 
and Fink. 
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Consider the differential equations 

(1) L[u] = -(/>(*) u')' + Q(x) u = 0, P > 0, P e C1, Q e C, 
— oo < a = x ^ b < c o , 

and 

( 2 ) /[„] = -(p(x) „')' + q(x) u = 0, p>0,peC\qeC. 

In the special case P = /> = 1 a well-known comparison theorem of Levin [2] 
states the following (see [5]). 

Theorem 1 (Levin): Let P = p s 1 be fulfilled and suppose that there exists 
a nontrivial solution u of (1) with u(a) = u(b) = u'(c) = 0, a < c < b. If the 
inequality 

(3) ] V x ) d x g - | J C ( x ) d x | 
X l * 1 

holds for all pairs of numbers xx, A:2 wffh a ^ xt ^ c i£ x2 £ b, then every solution 
of (2) has at least one zero on [a, 6]. • 

Condition (3) implies that all mean values of q(x) on intervals [xt, x2], jq = 

^ c ^ x2, are non-positive. In the following we shall prove a corresponding 
comparison theorem where mean values of q(x) can also be positive. We give the 
following preparation. 

Let u(x) be a nontrivial solution of the boundary problem 

L[M] = 0 , u(a) = 0 = u(b\ 
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with fixed sign on (a, b); assume that u is positive on (tf, ft). Choose a positive 
function / belonging to C2[a9 ft]. Then because of 

v u' r u' 
lim — = oo, lim — = — oo, 
x\a u x\b u 

it is easily seen that there exist points tl9 t2 with a < tt ^ t2 < b such that 

(4) ffi>=-£f 1-1.2. m**®-, a<X<h, 
/(•i) u(r,) /(x) u(x) 

f(x) u(x) 

Note that there can exist several points tt or t2 with the properties (4), respectively. 
Set 

(5) c, =/( '*)"-^f,) , / = 1,2, 

and define the function 

(6) v(x) = 
cxu(x)9 a = x < tl9 

f(x\ tx = x = /2f 

c2tf(x), f2 < x = 6. 

It follows from (4) and (5) that v(x) is a continuously differentiable function on 
[a, ft]. Seting 

t>(x) = /i(x)/(;t), a = x ^ ft, 
we have 

p'p-i =v'v~l -fT1 

and (4) implies that 

/ l e C 1 ^ , * ] ; /*'(*) = 0, a = x = /x; 
( 7 ) fi(x) = 1, tx = x = /2; //(*) = 0, f2 = x = ft. 

t; will be used as a test function to estimate the quadratic form of equation (2). 
Supposing 
(8) p(x) = P(x\ a ^ * = ft, 
we have 

J W)2 + qv2] dx = J [(p - P) (t/)2 + (« - 6) t>2] dx + J [P(t/) 2 + Qv2] dx = 
a a a 

(9) £ J (4 - Q) v2 dx + J [P(t/)2 + e»2] dx. 
a a 

(7) shows that the function p,2(x) is monotone increasing on [a, ti] from /i2(a) = 0 
to /i2(ti) = 1 and monotone decreasing on [f2, ft] from fi2(t2) = 1 to /i2(ft) = 0. 
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Therefore, be a mean value theorem of integral calculus, there exist points TX , a _ 
^ i1 ^ tl9 and T2, t2 g T2 ^ 6, such that 

(10) f fa - G)t;2dx = l(q - Q)/2dx, a f_ Tt = *-., *2 = T2 = 6. 
a n 

The second integral on the right-hand side of (9) is handhd by integration by parts 
as follows. 

(11) f [P(v')2 + Qv2] dx = c\ f [P(uf)2 + Qu2] dx + f[P(/')2+ Qf2] dx + 
a a t\ 

+ c2 j [POO 2 + e«2]dx = c2p(ii) «'(<,)«(<,) + p(t2)f\t2)f(t2) -

ti 

- P(*0 /"'(ti)/(<i) + f L [ / ] / d x - c2
2P(/2)u'(t2)«(t2) - jL[/]/dx. 

f l -1 

Thus, we obtain 

(12) f [p(v'f + gi;2] dx = f (« - Q) f2dx + f2L[/] / dx, 
a ti ri 

« = ~1 = 'l = t2 = T2 _S b, 

where the numbers tt and t2 are defined by (4). 

Theorem 2: Let u be a nontrivial solution of equation (1) with fixed sign on (a9 b) 
and u(a) = 0 = u(b) and let f be a positive function belonging to C2[a9 ft]. If (8) 
is fulfilled and the inequality 

(13) ]\q - Q) / 2 dx + J L [ / ] / dx <0 
Xl f l 

holds for all pairs of numbers xl9 x2 with a g Xi _^7i a~d /2 _̂  x2 = 6 where 
t! and t2 are defined by 

(\4\ / ' ( ' . ) _ «'0i) , ! - , < , 

/ '(x) «'(x) / '(*) «'(x) 
-7T~T" = 7~T 9 a < X S tx , —77—T § —7"T" » * 2 = * < "> 

f(x) - u(x) - f(x) - M(X) 

fhe/j every solution v of equation (2) has a zero in (~% b) or v has the properties 
i) v is a constant multiple of u on [a, t{\9 

ii) v is a constant multiple off on [tl912\ 
iii) v is a constant multiple ofu on [t29 b"\. 
Proof: In view of (13) it follows from (12) that 

(15) f [p(O 2 + ^ 2 ] d x < 0 , 
a 
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where v is the test function (6). v belongs to the domain of the closure of the form 
b 

K<P, *) = J (P<P'f' + q<Pf) dx, <p9 ^ G C%(a9 b), 

of equation (2). Because of (15) two cases are possible, 

inf l(<p9 <p) < 0 or inf l(<p9 <p) — 0, 
«*C?.H«HI-»I *e~MMI«-

where || <p || denotes the norm of <p in the Hilbert space L2(a9 b). In the first case 
equation (2) has a nontrivial solution with at least two zeros in (a, b) (cp. [3]). 
Then by Sturm's comparison theorem every solution of (2) has a zero in (a9 b). 
In the second case the infimum of the form is realized by the (normalized) function v. 
Consequently, this function v is an eigenfunction of the Friedrichs extension A 
of the operator A0, 

A0<p = l[<p]9 <p e C0(a9 b)9 

in the Hilbert space L2(a9 b). The corresponding eigenvalue is zero. Now it is 
easily seen that v belongs to C2[a9 b]. v is a classical solution of (2). This proves 
Theorem 2. 

Corollary 1: Let u be a nontrivial solution of (1) with fixed sign on (a9 b) and 
u(a) = 0 = u(b) and let f be a positive function belonging to C2[a9 b]. Assume that 
there exists a point c9 a < c < b9 such that 

/'(c) u'(c) f'(x) u'(x) n ^ Y < r / '(*) > «'(*) r < x ^ u 
/(c) u(c) /(X) U(X) /(X) K(X) 

7/(8) is fulfilled and the inequality 

X(qf2dxZX{Qf2dx 
XI X l 

holds for all pairs xx, x2 with a ^ xx ^ c ^ x2 ^ ft, fhew every solution v oj 
equation (2) has a zero in (a, b)9 or v is a constant multiple of u. 

Proof: Set tx — t2 = c in Theorem 2. 

Corollary 2: LetP _ p _ 1 and assume that u is a nontrivial solution of equation(\) 
with fixed sign on (a, b) and u(a) = 0 = u(b). If the inequality 

(16) J € ( * - * o ) 2 d * _ j Q(x-x 0 ) 2 dx 
{XUXZI [XuX2l\ltl,t2l 

holds for a point x0 £ [a9 b] and all pairs xx, x2 with a ^ xx <£ tx ^ t2 ^ x2 _ b 
where rx awd r2 are defined by 

(17) _ i = _____ i _ i 2 
U ° *«-*o u(ti)

9 1 ) 2 ' 
1 . u'(x) ^ 1 ^ ы'(x) 

_ —^--. a < x < í« , _ —^---a < x š řj, ^ , ч , t2 й x < Ь, x - x0 м(x) * x - x0 м(x) 
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then every solution v of equation (2) has a zero in (a, b\ or v has the following pro­
perties: 

i) v is a constant multiple ofu on [a, t^\, 
ii) v is a constant multiple of x — x0 on [tl9 t2], 
iii) v is a constant multiple ofu on [t2, b~]. 
Proof: By choosingf(x) = x — x0 in Theorem 2 it follows that 

/ ^ [ / ] / d x = jG(*-* 0 ) 2 dx. 
*i *i 

Thus, (16) implies (13), and Corollary 2 follows from Theorem 2. The geometrical 
meaning of (17) is that there exist tangents yt(x) = Xt(x — x0), i = 1, 2, touching 
the curve of u at ti9 respectively. 

The special casef == 1 leads to the following corollaries. 

Corollary 3: Let u be a nontrivial solution of (I) with fixed sign on (a, b) and 
u(a) = 0 = u(b) and assume that 

u'(tx) = 0 = u'(t2), a < tx = t2 < b; u'(x) = 0, a = x = tx; u'(x) ^ 0, 

t2 = x = b. 

If (8) is fulfilled and the inequality 

(18) \ g d x = J Qdx 
[*l,*2j [xi ,x2]\[t i ,r2J 

holds for all pairs of numbers xl9 x2 with a ^ xx ^ ft = t2 ^ x2 g b9 then v has 
a zero in (a, b) or v has the following properties: 

i) v is a constant multiple ofu on [a, tx~\, 
ii) v = const on [ti9 t2], 

iii) v is a constant multiple ofu on [t2, b~\. 
Proof: Setf= 1 in Theorem 2.. 
A special case of Corollary 3 is the case tx = t2 — c,a < c < b. Then inequality 

(18) has the form 
X2 X2 

| q dx ^ J Q dx, a ^ xt ^ c ^ x2 ^ b. 
*1 xi 

In this special case Corollary 3 is closely related to a result of Fink [1] concerning 
the smallest positive eigenvalues Xt and X2 of the problems 

(p(x) u')' + X,qi(x) u = 0, u(a) = 0 = t/(6), 
and 

(p(x) u')' + A2q2(x) ti = 0, u(a) = 0 = w(6). 

Concerning the importance of the quantity of these eigenvalues for oscillation 
or disconjugacy of the corresponding equations compare [4, p. 53], 
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In the following the restriction x0 4 [a, b\\ supposed in Corollary 2 is to be 
omitted. Assume that there exist points x0 e (a, b) and t with x0 < t < b such 
that 

1 u'(t) A 1 ^ u'(x) 
- v y and = ---—-, t = x < b, t - x0 ~ u(t) x - x0

 = w(x) ' 

where u is the solution of equation (1) from above. Then, the function 

0, a _ x < x0, 
(19) v(x) = < x - x0, x0 = x = t, 

(t - x0)u~x(t)u(x),t = x = b, 

belongs to the Sobolev space w\(a, b)1) which is identical with the domain of the 
closure of the form of equation (2). By using this function v the estimate (12) 
gets the form 

(20) J 0(t/)2 + q(x) i?2] dx = j (q - Q) (x - x0)2 dx + J Q(x - x0)2 dx, 
a xo XQ 

a < X0 < t = T ^ b. 

Of course, an analogous estimate holds when the point t is situated to the left 
of x0. Finally, the point x0 can be identical with one of the endpoints of the 
interval (a, b). The following corollary corresponds to the case a < x0 < t < b. 

Corollary 4: Let P = p = 1 and assume that u is a nontrivial solution of equa­
tion (1) with fixed sign on (a, b) and u(a) = 0 = u(b). Let further x0, a < x0 < b, 
and t, x0 < t < b, be points with the properties 

1 u'(t) A 1 ^ ti'00 
- w and > —----, t < x < b. t — x0 u(t) x — x0 M(X) 

If the inequality 

(21) J < K x - x 0 ) 2 d x = J e ( x ~ x 0 ) 2 d x 
xo t 

holds for all points ^ with t < £ ^ b, then every solution v of equation (2) has a zero 
on lx0,b). 

Proof: It follows from (20) and (21) that 

J[p(v')2 + ^ 2 ] d x = 0, 

where v is defined by (19). In the case 

4) tf'afo W is the completion of Co (a, b) by using the norm 

\\9\\i-{!(i9f\z + \9\2)dxY'2. 
a 
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b . 

inf j(p\<p'\2 + q\<p\2)dx<0, 
< M C « ( X 0 , - ' ) , l k | | - l xo 

there exists a nontrivial solution of (2) on [x0, b] with at least two zeros in (x0, b) 
and, consequently, every solution of (2) has a zero in (x0, b) (compare the proof 
of Theorem 2). Assuming the case 

inf \(p\<p'\2 + q\<f>\2)dx~0 
tpeC$(xo,b)t \\<p\\ = 1 x 0 

the (normalized) function v(x), x0 ^ x g b, of (19) realizes the infimum. Hence v 
is a nontrivial solution of (2) on [x0, b~\ which has the zero x0. This proves Corol­
lary 4. 

In the case x0 = a we obtain the following result. 

Corollary 5: Let the suppositions of Corollary 4 be fulfilled for x0 = a. Then 
every solution v of equation (2) has a zero in (a, b), or v has the following properties: 

i) v is a constant multiple of x — a on [a, f], 
ii) v is a constant multiple ofu on [/, b~\. 

t = a:If 

,~^ 1 ^ u'(x) 
(22) ^—TT> a<x<b, 

x — a u(x) 
and the inequality 
(23) j q(x - a)2 dx ^ J Q(x - a)2 dx 

a a 

AoWs /or all £, a < £ < b, then every solution v of (2) has a zero in (a, b) or v is 
a constant multiple of u. 

The proof of Corollary 5 is analogous to the proof of Corollary 4. 

Example: Every solution of the equation 

(24) - IT + *(X)II=0, « * - l , - y ^ X l g y , 

has a zero in I ——, — J if there exists a point c, —— ̂  c ^ — , c 4= 0, such that 

(25) max J (q + 1) (x - c - cot c)2 dx ^ 0 
я _- _- _- _-я * » 

- ^ - X l - C - X 2 - 2 
or if 

(26) sup ( } 4 dx) ^ - 1 . 

Proof: Compare equation (24) with the equation 

- j ś » l < 0 < « Ş j 
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- M " - « = 0, « ( - y ) = 0 = « ( ! ) , 

71 

and take u = cos x. In the case where \ c\ < — , c 4= 0, apply Corollary 2. Condi­

tion (17) is fulfilled for tx = f2 = c and JC0 = c + cote. Then (25) corresponds 
71 

to (16) with Q = —1. In the case where c = —— apply Corollary 5 under the 

supposition t = a. In this case the condition (25) has the form 
max J (q + 1)(x + ^-) dx <i 0. 

2 "•"- 2 2 

71 

An analogous condition is valid in the case c = —. Inequality (26) corresponds 
to (18) of Corollary 3. 

Corollary 6: Let P = p = 1 and consider the solution u of equation (1) determined 
by the initial values u(c) = a > 0, w'(c) = ft > 0, a < c < 6. //* fhc inequalities 

X2 

2 j 6(* - c + aj3~1)2dx 
(27) — 2 = - " - « = 0 

hold for all numbers xY, x2 with 

max (a, c — ajS~ *) g jq < c < x2 ^ b, 

then the solution u does not vanish in at least one of the intervals (a,c) or (c, b). 
In the case where u(c) = a > 0, u'(c) = 0, the same conclusion is true when 

(28) -TT^T* = irhr *fQ dx=° 
(b — a ) - *2 "" * i xj 

for all xx, x2 with a ^ xx < c < x2 ^ b. 
Proof: Assume that u has a zero a' in (a, c) and a zero b' in (c, 6). We may 

.assume that u is positive on (a',br). Now apply the Corollaries 2 — 5. First let 
u'(c) > 0. It follows from 

1 = u\c) = fi 
c — x0 u(c) a 

that x0 = c — a/?""1. Thus, replacing a by a' and ft by 6', Corollary 2 can be 
applied when c — a/P1 < a'. The points rx and t2 can be determined such that (17) 
is fulfilled with a = a' and 6 = 6'. Now it follows from (27) that (16) is fulfilled 
by setting 

q(x) = -
( Ь - a ) 2 * 
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( * $ 
The solution v = sin [n-z —} of equation (2), however, does not vanish on 

\a\ b'~\ contradictory to the conclusion of Corollary 2. Assume now a' < c — otf}"1 

and apply Corollary 4 with a = a! and b = b'. The point f, c :g t < b\ can be 
determined and (27) implies (21) with 

Thus, considering the solution v = sinl 7C J of equation (2) we again obtain 

a contradiction. Finally, in the case a' = c — a/?""1 apply Corollary 5 with a = a' 
and b = b'. Analogously, the assertion of Corollary 6 under the supposition ft = 0 
follows from Corollary 3. This completes the proof of Corollary 6. 

The case u(c) = a > 0, u\c) = p < 0 can be handled analogously. 

REFERENCES 

[1] A. M Fink, Comparison Theorems for Eigenvalues, Quart. Appl. Math. 28 (1970), 289-292. 
[2] A. Ju. Levin, A comparison principle for second-order differential equations, Soviet. Math. 

Dokl. 1 (I960), 1313-1316. 
[3] E. Miiller-Pfeiffer, On the existence of nodal domains for elliptic differential operators, Proc, 

Roy. Soc. Edinburgh 94A (1983), 287-299. 
[4] W. T. Re id, Sturmian Theory for Ordinary Differential Equations, Applied Mathematical 

Sciences 31 (1980), Springer-Verlag New York —Heidelberg—Berlin. 
[5] C A. Swans on, Comparison and Oscillation Theory ofLinear DifferentialEquations, Academic 

Press, New York and London, 1968. 

E. Muller-Pfeiffer 
Pddagogische Hochschule „Dr. Theodor Neubauer" 
5064 Erfurt 
G.D.R. 

73 


		webmaster@dml.cz
	2012-05-09T19:20:25+0200
	CZ
	DML-CZ attests to the accuracy and integrity of this document




