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ON A CERTAIN SUBIDEAL
OF THE STICKELBERGER IDEAL
OF A CYCLOTOMIC FI1ELD

RADAN KUCERA
(Received June 27, 1984)

Abstract. In this paper we compare ideals S~ = S N R~ and I~ = I N\ R-, where S means
the Stickelberger ideal from Sinnott’s paper [4] and I means the Stickelberger ideal from
"Washington’s book [7] for the case of arbitrary cyclotomic field. There is found the basis of I~
(as a Z-module), the group index [R~ : I-] is determined and it is shown that the ideals I~ and S~
are not identical in a general case.
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1. INTRODUCTION

In this paper we shall mean by a cyclotomic field a subfield of the complex

numbers C generated over the rational numbers Q by a root of unity. Let k be an
2ni '

imaginary cyclotomic field. Let &, = e » for any integer n = 1. There is then
a unique integer m > 2, m % 2 (mod 4), such that £k = Q(&,,). Let G be the Galois
group of k over Q, and let R = Z[G] be a group ring of G over the rational
integers Z. Let A denote the class number of k, A* the class number of k* (the

maximal totally real subfield of k), and let A~ = L .

h+
We shall consider certain subring R~ of R and the Stickelberger ideal S of R.
Let S~ be the intersection of S and R™.

Iwasawa [3] has proved that in the special case m = p"*! (p is an odd prime
and n = 0 an integer) 4~ is equal to the group index [R™ : $~]. Iwasawa’s proof
is based on the representations of a semi-simple algebra. Another proof, based
on the presentation of a special basis of S, has been given by Skula [5].

The result of Iwasawa has been generalized by Sinnott [4] to the case of any
cyclotomic field. He has shown that

[R™:§"] = 2h~, |
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where a is an integer defined as follows. Let r be the number of distinct primes
dividing m. Then a =0 if r = 1, and

' a=2"2-1
ifr>1.

Sinnott defined S as the intersection of R and S’, where S’ is the subgroup of

Q[ G] generated by the elements
0@ =Y <—-"-‘-> o,  aez,

t modm m

(t,m)=1
where the sum is taken over complete set of integers ¢ prime to m and distinct
modulo m, g, denotes the automorphism k over Q sending ¢&,, to &,,. For any real
number x the symbol (x) denotes the fractional part of x; so x — {x) € Z and
0 S (x> < 1. Since

O(a) = O(a + m)

for any integer a, S, is generated by the elements @(a), for all a from the complete
set of integers distinct modulo m.

I have been interested in changing the group index [R™ : S7] in the case of
replacing S’ by the subgroup I’ of the group Q[ G| generated by the elements @(a),
for all a from the complete set of integers prime to m and distinct modulo m.
Since

0(a) = ¢_,0(—1)
for any integer a prime to m, I' is an R-module and

I' = (@(—1)) R.
Hence

I=InNnR

is an ideal of R. Since I < S, [4] follows that the elements of I annihilate the ideal
class group of k. Let I~ = I n R. (This ideal has been considered by Washington
[7], § 6.2. In the general case I~ is not equal to S~ (see Proposition 4.3.), so in [7],
Remark after Theorem 6.19, we have to take S~ instead of I~.) A question of
finiteness of the group R™/I" is fully solved in theorem 4.1 and order R™/I” in
case of finiteness is given by theorem 4.2. The proof of these theorems will be based
on the presentation of a special basis of I~ and the calculation of the determinant

~ of the transition matrix from a certain basis of R~ to this basis of I~, like Skula’s
proof [5].

2. NOTATION

In this paper the following symbols are used:

Z>  the multiplicative group of Z/nZ
m an integer, m > 2, m % 2 (mod 4)
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m = p}' ... p;” prime decomposition, p,, ..., p, are distinct primes

m,-=—'% (fori=1,...,m)

s;  order of p; of the group Z; (fori =1, ..., m)
N = 3¢(m) (¢ is the Euler function) '

2ni

n=em

G  the Galois group of Q(&,,) over Q

J  the element of G induced by complex conjugation

iG> {t|teZ 0=t <m, (t,m)=1} the canonical mapping, defined in
this way, that for any c € G

0'(6,,,) = 5:',,

welm if m is even
T 12m  if mis odd

"G - {t|teZ,0 £t <w, (t, w) = 1} the mapping, for any ¢ € G is
~ |& if & is odd
g = ep =

d+m if G is even

X~  the set of all odd characters y of G (i.e., x(j) = —1)
F, =Y x(k).k (for ye X7)

keG
{x> the fractional part of the real number x;so x — (x> e Zand 0 < {x) < 1
R = Z[G] the group ring of G over the integers Z
R~ = (1 —j)R a subring, often considered as a Z-module
O() =), <—%> 6 'e€Q[G] (ais an integer)

oeG
= (0(—1) R
I—I’nRanxdeal in R
I~ = In R anideal in R™, often consndered as Z-module

Definition. A subset = of the set G is called a choice from G, if the followmg
«.ondmons are satisfied

() le&

(ii) xeE<«jx¢ = for any xe G
Clearly, a choice from G is for example the set

{x;xEGA1§x<—%1—}.

3. THE BASIS OF R~ AND THE SYSTEM OF GENERATORS OF I-

3.1. Theorem. The system {B,; o € E}, where B, = (1 —j) o and E is any choéice
from G, is a basis of R™.
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Proof. Clearly {f,; 6 € E} =« R™. Let y be any element of R™. Then there is
8 =Y 6,0 € R such that y = (1 —j) . Thus

oeG
y=>U=)Yd0==10-(} 5+ Z 6,0) =

oeG oek oeG—

=(1-)) 25(5,0 +8j5j0) = 3, (1 =)@, + 5,.,1) o=

oe&

= 2(50 - 6]11)(1 '—])0' = Z (50 - 6ja)ﬁa'

ceE oces

Now we have to show linear independence. Let us assume, that

0= z dﬁ,——zc,(l—j)6=ZCGG—ZC,jO'=

oe& geZ ge s geZ
=Yco— Y cj,a—Zd a,
ge& ceG— & oeG
where
Cq for o€ &,
d, = -
—Cjq for e G — E

It follows that d, = 0 for any o € G. Hence ¢, = 0 for any o € =.

3.2. Theorem. The system {a,; k € E}, where

> =De(-1 for k=1,

k=
(lzk + lzkj-—k)@(—l) for keE — {1}

and E is any choice, is the system of generators of I~

Proof. Clearly «, € I for any k € Z, because £ is an odd integer. We prove that
also ¢, € R™: '

=2 =) S0 = (1 = D[ To 0 + T jo ol =

oeG oce& oe&

=g =DEE +jjeNe=(-)F 5 ~jo o=

(ERY =(1-)Y ——;n--(ZC"l —m)o,

L

where we have used the identity 0™ + jo™ ! = m. Let us notice that
—‘”--(20“1 —m)eZ

“for“any o € G regardless of if m is odd or even, and thus o, € R™. Let k be ‘any
element in £ — {1}. Then

,10
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ak=(1-2+k + l—z-kj_k>.__z,, o=

oeG

1 (1+k o —3
=-n_1—(_7_ oo + 2 Zja lcr—zka cr)

oceG oeG 0ceG
<1+k o+ l—kja_‘——ka"L>a+

2
1+k'f—_L l—k“l“l 7 —1):
aeE( o+ 50 — jko jo.

Considering that jx = m — % for any x€ G

1 (k1 —])a“ - -])ka")a + Z

m ,c= cef

=1 _ —1 _
(3.2) =(1—j)z<k“ — + 12k>a.

oeZ

k

Oy = A-=j)o=

Since X . 7 = xy (mod m) for any x, y € G, we have
ko' —koT'=Fko T —koT'= = 0 (mod m).

It follows that

ko '—ke' | 1-k
+
m 2
because £ is an odd integer. Hence o, € R~ and then {o,; ke E} = I".
Now, let y be any element in 7~. Then there are ¥, n € R so, that

eZ,

(3.3) y=¥¢.0(—1),
(3.4 y=>0—=jn.
Thus

G5 3= -jn=d0 =g =Dy =730-D{. 6.

Let us denote

Y= 2 b
yeG
C = Z CyY’
yeG
n= Z ny)»
yeG
t, = gy — gjy for any y € E,
Z t,9.
W yesz

We prove that ¢ is an integer. Using (3.4), we get

nty=n—n+n—m=0
By (3.3), |

11



R. KUCERA

y=0.0(-D)= Tty = To lo=— T (T Lyo Do
yeG 0eG

0eG yeG

It follows that

Hence
0=y +7,=2¢.

. * yeG
To prove t € Z, it is enough to verify, that

Ytp=0  (modw).
" ye&

Since w is the least common multiple of the numbers 2 and m, we verify this
congruence modulo m and modulo 2:

Z t,ﬂ Z Ly = Z & -Lpy=

ye& yeZ ye&
= 2 &y — Z {m —y) = Z (y=my; =0 (mod m),
ye& y€EG —- E y€G
=Y t=Y(-{)=2x,=0 (mod2).
ye& ye& ye& yeG

Thus ¢ € Z. The theorem will be proved, if we show

y=tag — Y Lo,
yeE—{1}

By (3.1) and (3.2),

1 . -
oy — Y tey=— Y t9. (1~ DY —2-—(20 ! —m)o —
yeE-{1} W yez geZ
. ‘a'1 — yo~! 1 -
. :,(1-,)z<y o 120
yeE-{1} geZ m

Let us notice that we get zero in the second sum for y = 1. Consequently, we can
take this sum over the whole choice Z.

tal - Z ty =
yeE—{1}

—-—-—-—(1 -DYt, Z(Zyo ol —mp - 2g" " + 2yo~ 1-—m+m)‘z)a=

ye8 o€k

=D EH T 0o ~iye o =

ye& o€f&

5 =D T G = L) zca_"ya =

ye &

12
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= 7= 6(=1. 5@ +ity)y =

ye&
1

(I-pe(-nHi=y

D

acc ording to (3.5). The theorem is proved.

4. THE GROUP INDEX [R~ :I]

Let 4 denote the absolute value of the determinant of the transition matrix frqm
the basis {,; o € Z} to the system of generators {«,; o € £}. Clearly

— — i — 1 — —3 —_— _1 —
o, =(1 ])NEE 3 (20 m)a—dzes 3 (2o m) B,
and for any ke & — {1}

ocex m 2 /a=
ko '—ke!  1-k
=a§=( - m - + 2 >ﬁa'

Hence
w w -
o Gmm e 5@ —m)
F—F 1-% fhol-kel 1—F
.+. ces

m 7 p” +—3

If we multiple the first row by the number —-—2—v-:-n- and the other rows by the
number 2m and if we add the first row multiplied by the number £ to the k th
row for each k € £ — {1}, we obtain

Im=2 ..m=20""

w

= Alm=2k .. m=2ke ... ||
emV | . . !

4

Let us consider a mapping f: & — Z, defined in this way:
-1

ﬂn={fﬂ
jx

if x"tes,
if x"1¢5&.

It is easy to show that f is the bijective mapping. With the help of f we permute
the columns in the determinant (if ¢~ ! ¢ =, we must multiple gth column by —1):

13
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m=2 ..m-2f() "

= w . -.— k '; - e =
4= G |1 = 2 e m = 2 G@) |
@ m—2 ..m-—2§
N . .

- (2m)N'| m;‘zk m%zl"«?

Let
A= (m —_— 2ka)k,0s£’ C = (X(k))xeX',ksS’
D=C.A= (dz,a)xex',ae?.'
Then
dyo =kz 1(k) . (ko ~ka) = Y. x(jk) ko —:; 1K) ko = =Y y(k) ko =
Py keG—E €Z

ke G
= —k}:-Gx(ka")’? = —(x(a))_‘hZGx(k)’? = —(t0))' . Fy.
In the following lines a vinculum denotes a complex conjugation.
IdetDl = Idet(—x(a) . Fx)xeX‘,aeE‘ =
= l l_[ le . |det(X(a))xEX",veEl =

xeX-
(4'2) : = | l—l Fz‘ . ldet(X(a))xeX“,aeEI =
XeX~
= H F,|.|detC|=|detC|.|detA4].
xeX-

Let us assumed, that the matrix C is a singular matrix. Then there exist cdmplex
numbers ¢, (x € X7), from which at least one is non-zero, such that

Y cx(k)=0

xeX-

for any ke Z. The same fact holds also for any ke G—E:

Y e = 3 xG)ealh) = = ¥, ealik) =0,

xeX-

because jk € E. Hence, the characters x, y € X~ are linearly dependent. But any
finite system of distinct characters of any group is linearly independent ([6], § 54,
Unabhingigkeitssatz). Thus, the matrix C is regular and by (4.2)

|detd| =[] F,I.
xeX-

Consequently, by substitution to 4.1

4. = ld . .
( 3) A (2m)~ llg_Fl I

14
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Let us consider, that
G~ 2Z)

(this isomorphism assigns to ¢ € G the class containing &). If y is any character
of G, we denote also by y the Dirichlet character modulo m associated to x by
means of this isomorphism. Hence, X~ is also the set of all odd Dirichlet characters
modulo m (i.e. such that y(—1) = —1). Then

Fo=Y x(k)k=7Y x(i)i
keG i=1
for any y € X~. With the help of [4], lemma 2.1:
| - _ _1!‘(")*‘.
_Wi;x(z)l = (JI"["(I x*(p)))< T ‘;x @) 1),

where x* denotes the primitive character inducing x, f(x) its conductor and the
product is taken over all primes dividing m. Thus

J*)
44 F, =(£'I"(1 *(p)))( 00 Zx*(l) l)

We use the analytic class number formula (see, for example [2]):

. _ 1 I®
.5 b= 0w IT 75 2 (- D,

where Q is 1 if m is a prime power, and Q is 2 otherwise. The formulas (4.3), (4.4)
and (4.5) imply

1

4 wlxg_ 7 Fx l
o)
= WIzH (2f( y & Zx*(t) )H(l - x*®)| =
1
(4.6) = oh ];I ﬂnl 1 - x*(p)I.

4.1. Theorem. The group R™/I- is finite if and only if s, is even and

st
p? = —1l(modm,)

foreachi=1,..,rorifr=1,
¢ Proof. If r = 1, then m = p** and p; | f(x) for any character y € X~. Hence
%*(p,) = 0 and from (4.6)
4.7 : Ad=h> [TA-2*P))=h" %0
x6X~ .
and the group R™/I" is finite.

15
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Hereafter let us suppose, that r > 2. Clearly R™/I" is finite if and only if 4 # 0.
From (4.6) 4 # 0 if and only if there does not exist an odd character x modulo m
and ie {1, ..., r} such, that y*(p,) = 1.

We shall show that it is right if and only if —1 is an element of the subgroup H
of Z, generated by p;.

Indeed, if x*(p;) = 1 for an odd character y modulo m, then p; ¥ f(x) and x is
induced by any character ¥’ modulo m;. Since y'(p;) = 1, the character y’ is unit
on the whole subgroup H generated by p;. Since x'(—1) = —1, —1 is not an
element of H.

On the ‘other hand, if —1 ¢ H, then there exists a character ' modulo m, such
that y'(—1) # 1 and y'(x) = 1 for any x € H (see, for example [1]). Thus specially
x'(p) = 1 and y'(—1) = —1, because the order of —1 of the group Z, is 2 and
it implies that y'(—1) is 1 or —1. Let y be the character modulo m induced by x'.
Then x(—1) = —1 and x*(p,)) = 1.

For completing of the proof of the theorem it is enough to notice that if s, is
even and

p? = —1(mod m,),
then really —1 € H and on the contrary —1 € H implies that s; is even (the order
of the element —1 divides the order of the group H) and

si

p2 = —1(mod m)),
(there is only one element such that its order is 2 in the cyclic group of even order).
4.2, Theorem. If the group R™[I™ is finite, then
[Rm:17]=2".h",
where b =0 if r =1 and ’

i=1 8

ifr=2.
Proof. Let us notice that if R™/I" is finite, then
[RT:I"]= 4
If r = 1 then by (4.7)
A=h"=2".h". )

Hereafter let us suppose, that r > 2. For /€ Z let X;" or X;” denote the set of all’
even or odd characters modulo /, respectively. It is easy to show that if /,, /, aré
a relative prime integers then for any character y € X, there exist the unique
characters Xy, X2, Where x, € X;_ and x, € X} or x, € X,/ and x, € X;;, such that

1 = 21,0) - 2209
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for any integer y. Besides that,

2*0) = 110) . 130)

for any integer y, too. Hence
I=I I)I( 1= x*p)| =
fI( M «Il. |1—x1(pi)x2(p,)|))(n It "‘7(”‘)";(”‘)‘))
i XjeX~ q"‘zeXm‘

XreXta feX,
where g; = p¥'. Let us notice that y3(p) = x2(p)), because p, ¥ m;. If p,| f(x))

then xl(p.)! 0 Moreover p; | f(}h) if and only of y, is not the unit character.
Consequently

(4.8) H Hll—x*(pi)|=ﬁ IT 11— xp)I
i=1 yeX-

i=1 XeX-
mi

Since the group R™/I” is finite, we have 1 — x(p,) # 0. Hence, tﬁere exists a loga-
rithm

In (1 — x(py).
Since

z'l

1 n

tMs

In(l-z)= —

2

for | z| <1 and | x(p;) | = 1, by Abel’s theorem on continuity up to the circle
of convergence

In (1 — () = — 3, D"
n=1 n
considering that the sum on the right side converges by Dirichlet’s test. Thus

L (p) = exp (— 5, W ) :
By (4.6) with the help of (4.8)

1 r
(4.9) =5h" I

It is easy to show
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%(p(mi) if a= 1(mod m),
2 xa) =

xsX,;u

——;—qo(mi) if a = —1(mod m;),
0 otherwise.

By the proof of the theorem 4.1,

" p{ =1 (mod m))
if and only if
: n = 0(mod s,
and
p! = —1 (mod m,)
if and only if

= —2‘—(mod 5;)-
Thus
n=1 xeX,;, 1= t
' 2
_ o(m) ¢ (-1 _ o(m;)
== ‘;1 = 5 In 2.
By (4.9),
_ 1. - - o(my) _
4 _Th iI;[1 exp(——si—ln 2){ =

o(m) - -1+ f 2m0
om) .

=%h‘l'[2 soo=hT.2 =Y =2

»

Since 4 = [R™ : I"], the theorem follows.

The following proposition solves the problem, when the ideals-/~ and S~ are

identical.

‘4.3, Proposition. If r =1 then I" = S™,ifr>2thenI” # S~. _
Proof. If r = 1 then the groups R™/I” and R™/S~ are finite and have the same

order. By their definitions I~ = S~. Hence I~ = S".

Hereafter let us suppose that r = 2. If the group R™/I” is not finite then I~ # S~
because R™/S~ is finite. Let us assume that R~/ is finite. It is easy to show that

I Z;l = H Z’<

k*i

18 .



STICKELBERGER IDEAL

where [ denotes the direct product of groups and g, = pgg. Therefore an order of
any element of Z, has to divide the least common multiple of @(p¥), ke
€ {1, ..., r} — {i}. Considering that these numbers are all even, their common
multiple is also
23
2 ﬂ-g"-)- = 22""p(m)).

k=1,..,r

Consequently
s; £ 227 Tp(my)
and then

b=——1+2@g—1+r2"2>2”2—1.
i=1 i

That follows that [R™ : §7] # [R™ : I7]. Therefore I~ # S~.
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