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ON A CERTAIN SUBIDEAL 
OF THE STICKELBERGER IDEAL 

OF A CYCLOTOMIC FIELD 

RADAN KUCERA 
(Received June 27, 1984) 

Abstract. In this paper we compare ideals S~ = S n R~ and /" == / n jR-, where S means 
the Stickelberger ideal from Sinnott's paper [4] and / means the Stickelberger ideal from 
Washington's book [7] for the case of arbitrary cyclotomic field. There is found the basis of/~ 
(as a Z-module), the group index [R~ : / " ] is determined and it is shown that the ideals/" and S~ 
are not identical in a general case. 
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1. I N T R O D U C T I O N 

In this paper we shall mean by a cyclotomic field a subfield of the complex 
numbers C generated over the rational numbers Q by a root of unity. Let k be an 

imaginary cyclotomic field. Let £n = e n for any integer n .> 1. There is then 
a unique integer m > 2, m =(= 2 (mod 4), such that k = Q(£m). Let G be the Galois 
group of k over Q9 and let R = Z\Cf] be a group ring of G over the rational 
integers Z. Let h denote the class number of k, h+ the class number of k+ (the 

maximal totally real subfield of k)9 and let h" = —— . 

We shall consider certain subring R~ of R and the Stickelberger ideal S of R. 
Let S~ be the intersection of S and R~. 

Iwasawa [3] has proved that in the special case m — pn+1 (p is an odd prime 
and n ^ 0 an integer) h" is equal to the group index [R~~ : 5""]. Iwasawa's proof 
is based on the representations of a semi-simple algebra. Another proof, based 
on the presentation of a special basis of 5", has been given by Skula [5]. 

The result of Iwasawa has been generalized by Sinnott [4] to the case of any 
cyclotomic field. He has shown that 

[R~ : 5~] = 2<7J-, 
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where a is an integer defined as follows. Let r be the number of distinct primes 
dividing m. Then a = 0 if r -= 1, and 

a = 2r~2 — 1 
i f r > l . 

Sinnott defined S as the intersection of R and 5', where 5' is the subgroup of 
Q[Gf] generated by the elements 

ow- I \-4rV1. a6Z' 
fmodm \ m / 
(f,m).--l 

where the sum is taken over complete set of integers t prime to m and distinct 
modulo m, at denotes the automorphism k over Q sending £m to Zm. For any real 
number x the symbol <x> denotes the fractional part of .x;sox — <x> e Z and 
0 £ <x> < 1. Since 

0(a) = 0(a + w) 

for any integer a, St is generated by the elements 0(a)9 for all a from the complet e 
set of integers distinct modulo m. 

I have been interested in changing the group index [R~ : S"] in the case of 
replacing S' by the subgroup /' of the group 6[G] generated by the elements 0(a), 
for all a from the complete set of integers prime to m and distinct modulo m. 
Since 

0(a) = c-a0(—1) 

for any integer a prime to m, /' is an /̂ -module and 

/' = (0(-l)) R. 
Hence 

I=-I'nR 

is an ideal of R. Since I ~: S9 [4] follows that the elements of / annihilate the ideal 
class group of k. Let /" == / n R. (This ideal has been considered by Washington 
[7], § 6.2. In the general case /" is not equal to S~ (see Proposition 4.3.), so in [7], 
Remark after Theorem 6.19, we have to take S~ instead of /"*.) A question of 
finiteness of the group R~/I~ is fully solved in theorem 4.1 and order R~/I~ in 
case of finiteness is given by theorem 4.2. The proof of these theorems will be based 
on the presentation of a special basis of/"" and the calculation of the determinant 
of the transition matrix from a certain basis of R~ to this basis of/", like Skula's 
proof [5]. 

2. NOTATION 

In this paper the following symbols are used: 

Z* the multiplicative group of Z/nZ 
m an integer, m > 2, m ^ 2 (mod 4) 
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m = p\l ... p*r prime decomposition, Pt, ...,Pr are distinct primes 

™. = — (for i = 1, ...,m) 
P.' 

si order of p{ of the group Z*. (for i = 1, ..., m) 
-V ^ i^faO (<P -S the Euler function) 

G the Galois group of Q(£m) over Q 
j the element of G induced by complex conjugation 

: G -» {f | t G Z, 0 ^ t < m9 (t, m) = 1} the canonical mapping, defined in 
this way, that for any creG 

< * « = & 
[m if m is even 
12m if m is odd -Í" 

: G -> {r | t e Z, 0 S t < w, (t, w) = 1} the mapping, for any ex e G is 

<r if a is odd 
& + m if a is even 4 

X the set of all odd characters x of G (i.e., #(j) = —1) 

keG 

<x> the fractional part of the real number .x;sox — <x> e Z and 0 ^ <JC> < 1 
R = Z[Gf] the group ring of G over the integers Z 
R~ = (1 —L)i£ a subring, often considered as a Z-module 

®(«) = I ( -TJ-V"* e 2[G] (« is an i n t ese r) 
aeG \ m / 

/' = (<9(-l)) R 
I = V n R an ideal in i* 
J- = I n R~ an ideal in i*~, often considered as Z-module 
Definition. A subset S of the set G is called a choice from G, if the following 

conditions are satisfied 
(i) l e S 

(ii) xeSojx$ S for any xeG 
Clearly, a choice from G is for example the set 

lx; xєG Л 1 ^ x < -y-Ь 

3. THE BASIS OF R~ AND THE SYSTEM OF GENERATORS OF /-

3.1. Theorem. 7%e system {Pa; a e S}, wAere /?„ = (1 —J) a and S is any chdice 
from G9 is a basis ofR~. 
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Proof. Clearly {/?,;<reS} c jR"\ Let y be any element of R~. Then there is 
S = Xs^eR s u c h t h a t 7 = (1 —J)5- T h u s 

aeG 

7 = ( l - J ) E ^ = ( l- j )(_:6>+ £ 6» = 
ffeG «-€_• aeG-E 

= (1 - J) E ( ^ + SjJ*) = S (1 - J) (5. + *yj) ° " 
creS <re" 

= I (5. - *>) (l - ; ) «r = £ (*. - <v) j8ff. 
<reis <re.a 

Now we have to show linear independence. Let us assume, that 

0 - £ c A = £c„(l - ; > = Ecff(7 - E c j * = 
a e S are-" < r e " <re.a 

= Z ^ ~ Z C;<T<7 = £ da<7, 
( /E~ <reG — £ aeG 

where 

It follows that d„ = 0 for any <r e G. Hence ce = 0 for any <x e S. 

for cтєS, 
for <т є G — S. 

3.2. Theorem. The system {afc; fc e S}, where 

a* = 

w 
T ( l - j ) © ( - l ) fork=l, 

( ^ 1 + 1 + I z l j _ fc)<9(-l) /or keS - {1} 

tf/i J S is any choice, is the system of generators ofl". 
Proof. Clearly ak e /' for any keE, because £ is an odd integer. We prove that 

also <xke R~: 

«- = "T̂ 1 -»4r I ^ - -^r^1 -ME*"1* + l i O * ] = 
m 2m aєE aєE 

W 

~2m 
w (i -ЯE(-"1

 + J . J O » - ( І - J ) І ^O-"1 - . / O * -
ffeE «ГЄÄ 2m 

(3.1) = ( i - j ) E ^ r ( 2 ^ 1 - ' » ) ^ 
. 6 - 2 m 

where we have used the identity a~x + ja~x = m. Let us notice that 

w 
2m 

(2<- - 1 -m)єZ 

for^any cr 6 G regardless of if m is odd or even, and thus <xle R~. Let k be any 
element in S — {!}. Then 
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/ l +k 1 - £ . \ 1 _ - r r 

*-\s-__-T-'-kyjrS!.' °2_ 
--^(^T-Z^^^tK1"-!^')-

m \ z OEG - ff6G »€C / 

l v / 1 + £ ~ , l - JE r— , - r i \ _ 

Considering that jx = m — x for any x e G 

<** = + Z (*(i - J)^ - (i - .0 fcO * + Z ---f--(- -J)°-

(3-2) _ ( 1 _ J 0 E ( _ _ _ _ ! _ _ _ - + J_L_-) . . 

Since x . y == xy (mod m) for any x, jy e G, we have 
ka^—ka'1 == JET"7— fco^- O(modm). 

It follows that 
^o^1 - fccT1 1 - k _ 

4-—-—eZ, 

m 2 
because £ is an odd integer. Hence a* e i*~ and then {ak; fc e E} _= /"". 
Now, let y be any element in 7". Then there are tf9rje R so, that 
(3.3) y = r .6 ) ( - l ) , 
(3.4) y__(l —/)! , . 

Thus 

(3.5) y -. (1 - j ) , = 1 ( 1 -j?n =-1(1 - I ) ? - 1 ( 1 - j)C • O(- l ) . 

Let us denote 
У = = Z У?У> 

yєG 

C-= _C,У-
yєG 

rç = = Z ПУУ> 
yєG 

*y = £-- * * 

í = 

for any y є 

- I tj. 
w *-_ ' 

»•* 

.veS" 

We prove that f is an integer. Using (3.4), we get 
7i + 7j = li — rjj + rjj — rji = 0. 

By (3.3), 
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y = C . ©( -1) = S C,y . -J- I 7 ^ = - i - £ ( E C , ^ ) *• 
yeG m <xeG m w e G yeG 

It follows that 

m yєG 

Hence 

yj = — Z Wy = Z cy - — Z Cyy. 
m yeG yeG m yeG 

0 = ľ i + ľ i - - І C , . 
N yєG 

To prove / e Z, it is enough to verify, that 

£ tj = 0 (mod w). 
' yeS 

Since H> is the least common multiple of the numbers 2 and m, we verify this 
congruence modulo m and modulo 2: 

£M>^E^ = £ ( C - C ^ = 
yeS yeS yeS 

= E W - £ C(™ - ?) = E C? = w?i = 0 (modw), 
y e S y € G - .5 yeG 

E ',? = E ', = E (C, - C) = E C, = 0 (mod 2). 
3>€.S ye.ti yeS yeG 

Thus f e Z. The theorem will be proved, if we show 

y = tai - Z W 
y e £ - { l } 

By (3.1) and (3.2), 

*«i- Z ^ = ̂ I^(W)E^(2^-m)a-
yeS-{l) w yeS (tea L m 

y e £ - { l } «Te£\ m Z / 

Let us notice that we get zero in the second sum for y = 1. Consequently, we can 
take this sum over the whole choice S. 

*«i ~ Z h = 
y e S - { l } 

-5—(1 - .0 E *, E ( -> - 1 - »* - 2>^_1 + 2 ^ _ 1 - »» + «w * = 

= 4 r ( 1 - I) £ t, E ( > ^ - j ^ 7 1 ) f f = 
z "» ye£ <r6.5 

= ^ T ( 1 " '> I (C> - W -- ̂  = 
z m yeS aeG 
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= T (W) .©(- l ) . I (C,+# , , )* -
z yeE 

= y ( i - j ) 0 ( - i ) C = y 

according to (3.5). The theorem is proved. 

4. THE GROUP INDEX [R' : I~] 

Let A denote the absolute value of the determinant of the transition matrix from 
the basis {pa; <re 3} to the system of generators {ota; a e 3}. Clearly 

«i = (1 -»&•&• &=i ~ »>' =£~(2°~ ~ nOP. 
and foг any kєS — {1} 

n •. v lЬ-^-fcg-1 1-Ř\ 
*k = {í-j)L{ m + — У = 

-I 
ќa~ ka 

Hence 

A = \ 
2m 

(2 - m) w 
2m 

i-k 

(2a'1 - m) 

i Є - í 1-k ka-l-ka-y 1-k 
+ —т: - + —~ m m 

If we multiple the first row by the number 
2m and the other rows by the 

number 2m and if we add the first row multiplied by the number tc to the k th 
row for each ke 3 — {1}, we obtain 

m — 2 ... m — 2a ~l ., 

Л = w 
(2m)N m - 2í ... m - 2ka x ... 

Let us consider a mapping f: 3 -> 3, defined in this way: 

,, . fx"1 if x"ie39 

(jx x if x * £S. 

It is easy to show that f is the bijective mapping. With the help off we permute 
the columns in the determinant (if a"1 £ 3, we must multiple crth column by —1): 

13 
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A = w 
(2m)» •I 

(4.1) 

rø - 2 ... m - 2(/(ff))_ 

m-2JE ... m-2fe(/((г)) 1 = 

w 
(2m)N • I 

m — 2 ... m — 2čґ ... 

m — 2Æ ... m — 2fc(г ... 

Let 

Then 

A[ -= (m _ 2fc(т)kt<TєS, C = tø(fc)W-,*вЯэ 

-0 = C. A = (dXta)xeX-t<reS. 

4... = I X(fc) • (/to - to) = I X0k) to - X x(fe) to = _ £ z(/c) k* = 
fce£ fceG-S fc€5 fceG 

= - L r t t o " 1 ^ = -Oc(a))"1 I x(k)£ = -Wo))'1 • Fx. 
fceG fceG 

In the following lines a vinculum denotes a complex conjugation. 

|detD| -= | d e t ( - ^ . F x ) z . x - i # . , | -

(4.2) = | n^l-|det(x(ff)W-.«-l = 

= | JI F z | . | d e t c | = |de tC| . | de t^ | . 
X*X-

Let us assumed, that the matrix C is a singular matrix. Then there exist complex 
numbers cx (j e X~), from which at least one is non-zero, such that 

ZczX(fe) = o 
X*X~ 

for any ke3. The same fact holds also for any fceG — 3: 

I cxX(k) - £ xO) cxx(jk) - - £ cxOk) = 0, 

because jk e 3. Hence, the characters x> JCG JF~ are linearly dependent. But any 
finite system of distinct characters of any group is linearly independent ([6], § 54, 
Unabhangigkeitssatz). Thus, the matrix C is regular and by (4.2) 

| d e t . A | - | l\Fx\. 
XeX-

Consequently, by substitution to (4.1) 

(4.3) 

14 
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Let us consider, that 

(this isomorphism assigns to o e G the class containing cr). If x is any character 
of G, we denote also by x the Dirichlet character modulo m associated to x by 
means of this isomorphism. Hence, X"* is also the set of all odd Dirichlet characters 
modulo m (i.e. such that /(—1) = —-1). Then 

*eG i = l 

for any / e F . With the help of [4], lemma 2.1: 

-=-£*>' - <JJ» - ^ ( - T S T I ' H ' 
where #* denotes the primitive character inducing #, fix) its conductor and the 
product is taken over all primes dividing m. Thus 

/ m f(x) \ 

(4.4) FX = ( n u - Z * ( P ) ) ) ( 7 ^ Sz*(0y • 
We use the analytic class number formula (see, for example [2]): 

where g is 1 if m is a prime power, and Q is 2 otherwise. The formulas (4.3), (4.4) 
and (4.5) imply 

=w' n ( - d z £**(0 0 n (i - **o>» i = 

(4.6) = <U~n ni--x*(p)i. 
4.1. Theorem. 7%e group R~/I~ is finite if and only ifs( is even and 

Si 

Pi2 == -ltmodmf) 
for each i = 1, ..., r, or if r =-= ^ 
f Proof. If r = 1, then /w = />«* and /?i |/(*) for any character * 6 X~. Hence 
£*(^) =- 0 and from (4.6) 

(4.7) A - r f l ( l - x * ( P i ) ) - f c - + 0 

and the group R~/I~ is finite. 
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Hereafter let us suppose, that r > 2. Clearly R~jl~ is finite if and only if A 7* 0. 
From (4.6) A # 0 if and only if there does not exist an odd character x modulo m 
and 16 {1, ..., r} such, that x*(Pi) = 1-

We shall show that it is right if and only if —1 is an element of the subgroup H 
of Z*t generated by />,. 

Indeed, if x*(Pt) = - fc>r an odd character x modulo m, then p if fix) and x is 
induced by any character x' modulo mf. Since x'iPi) = 1, the character #' is unit 
on the whole subgroup H generated by pt. Since x'(—0 = —-» —- is not an 
element of H. 

On the other hand, if —1 £ H, then there exists a character x' modulo mt such 
that #'(— 1) # 1 and x'(x) = 1 for any x e H (see, for example [1]). Thus specially 
x'(Pt) = - and /'(—-) = —1, because the order of —1 of the group Z*. is 2 and 
it implies that x'(—1) is 1 or —1. Let x t>e the character modulo m induced by x'-
Then*(-1) = - 1 andjC»(p l)=l. 

For completing of the proof of the theorem it is enough to notice that if s, is 
even and 

si 

pt2 - -l(modmf), 

then really — l e i / and on the contrary —1 e H implies that s{ is even (the order 
of the element —1 divides the order of the group H) and 

pt2 = -l(modm£), 

(there is only one element such that its order is 2 in the cyclic group of even order). 

4.2. Theorem. If the group R~/I~ is finite, then 

[R~ : / - ] = 2>./T, 
where b = 0 if r = 1 and 

<Kmf) Ь = - l + £ 
i = l s ? 

ifr£ 2. 
Proof. Let us notice that if R~jl~ is finite, then 

[R~ :r] = A. 
If r = 1 then by (4.7) 

A = h-=2".h-. 

Hereafter let us suppose, that r > 2. For le Z let X,+ or X,~ denote the set of all 
even or odd characters modulo /, respectively. It is easy to show that if lt, I2 are 
a relative prime integers then for any character %e^uh there exist the unique 
characters Xi»Xi» where Xi e ,̂7 and #2 e A^ or Xi e -*it and Xi e -̂ il» such that 

Xiy) = XiCy) • x2(y) 

16 
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for any integer y. Besides that, 

x*(y) = XiOO .xl(y) 

for any integer y, too. Hence 

f l I I | l - X * ( P i ) l -
i = l XeX-

- n ( n . n . 11 - xtwx^iAfnx... n i » - « T W « J W D \ 

where qi^pV- Let us notice that Xi(Pi) = Xi(Pi\ because p,^ m<. If PJ/(Xi) 
then xt(Pi)^= 0- Moreover pt \f(xi) if and only of Xi is not Jhe unit character. 
Consequently 

(4.8) n nn-z*(pt ) i - -n n u - z o o i . 
i = l x e X " i = l * e * ~ 

Since the group R~/I~ is finite, we have 1 —x(Pi) ^ 0. Hence, there exists a loga­
rithm 

In (1-*(/>,)). 
Since 

oo n 

l n ( l - - ) = - £ * 
n = l " 

for | z | < 1 and | x(P») I = 1, by Abel's theorem on continuity up to the circle 
of convergence 

In ( l -Z( f t ) )= - I (XiPi)r 

« = i n 

considering that the sum on the right side converges by Dirichlet's test. Thus 

^ ^ . ^ ( . f M ^ l ) . 
By (4.6) with the help of (4.8) 

-i-4*-n n|exp(-f ^ - ) U 
I-1X-X.-J V « - i n J\ 

(4.9) = | / J - n | e x p ( _ s £ * ^ ) | = 
1 '--I V-. .V"1 y | 

= T«-n|exp(-£l £ z(p?))|. 
2 '='1 V "=1 "x-xi, 11 

It is easy to show 

17 



S X(a) = 

R. KUCERA 

(p(mt) if a = l(mod mf), 

(p(mf) if a = — l(mod m,), 

otherwise. 

By the proof of the theorem 4.1, 

pn == 1 (mod mf) 

if and only if 

and 

if and only if 

Thus 

n == 0 (mod sg) 

pf = —1 (mod mi) 

n = ----(modsi). 

I — Z X(Pi) = L — — ( " I ) —y — 

ф(iи,) - (-1 ) ' <p(щ) 
Sl í = l t 

ln2. 

By (4.9), 

^-T*-X!h(Jv-,"2)i 
4 r <p(mj) 

= т - й " П - ѕ' =h~ 
-i+ ir лѕa-

2 '=' " =2ьft-. 

Since J = [/*~ : / " " ] , the theorem follows. 

The following proposition solves the problem, when the ideals I~ and S~ are 
identical. 

4.3. Proposition. If r = 1 then I~=S~,ifr>_2 then T~ ¥= S~. 
Proof. If r = 1 then the groups R~/I~ and R~/S~ are finite and have the same 

order. By their definitions I" £ s~. Hence I~ = S~. 
Hereafter let us suppose that r >: 2. If the group R~/I~ is not finite then I~ ^ S~ 

because ^""/iS" is finite. Let us assume that R~jl~ is finite. It is easy to show that 

* z£,s n z£-
ST** 

,18 
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where J] denotes the direct product of groups and qk = pjjj. Therefore an order of 
any element of Z*t has to divide the least common multiple of <p(P"k), ke 
e {1, ..., r} — {/}. Considering that these numbers are all even, their common 
multiple is also 

2 n ^ • = 2 2 >(m i ) . 
fc=l,...,r L 

Consequently 

and then 
st ѓ 22-'ę{mд 

Ь =- -l + £ --íî-i -> _ І + r2--- > 2'-
2 - 1. 

І = l 5 ř 

That follows that [R~~ : S"] ^ [,R" : / " ] . Therefore /" T-= 5 ' 
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