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MATRICES REPRESENTABLE
~ BY DIRECTED GRAPHS
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(Received January 31, 1984)

Abstract. Let G = (V, E) be a directed graph such that ¥V = {v,, v, ..., v}, {dit, d7, ..., d}
is the set of all outer-degrees and {d7, d5, ..., d;"} is'the set of all inner-degrees of vertices of G.
To the graph G we can assigne a pair of matrices Mg = [a,/li» and Mg = [bmlnycr as follows:
the element a;; is the number of vertices v € ¥ having the inner-degree d;” such that (v), v) € E,
the element b,,, is the number of vertices v € V having the outer-degree d} such that (v, v)€ E.
Matrices Mg and Mg will be called the out-distribution matrix of G and the in-distribution matrix
of G respectively. In this paper we give criteria for graphicity of a pair (M+, M™) matrices i.e.
necessary and sufficient conditions under which there exists a digraph G such that M+t = M7
and M~ = Mg. We give also a procedure for constructing a graph realizing a graphic pair
(M*, M™) and we characterize the set of all graphs on the fixed vertex-set and with the same out-
distribution and in-distribution matrices.

Key words. Out-distribution (in-distribution) matrix of the graph, realization of the pair of matrices,
graphic pair of matrices, demi-bipartite graph (d. b-graph), switching, pair of sequences realizable
by d. b-graph, alternate anti-cycle (a, a-cycle), a, a-cyclic partition of the graph.

Introduction. . Let G = (V, E) be a simple graph where V = {v,, v,, ..., 1}
and let {d,, d,, ..., d;} be a set of non-negative integers. A matrix Mg = [a,/]
wherei = 1,2, ..., kandj = 1, 2, ..., n will be called the distribution matrix of G
iff a;; is the number of vertices of the degree d; adjacent with the vertex v; (see [6]).
The distribution matrix of a graph G contains informations not only on degrees :
of vertices but also about degrees of the neighbours of any vertex.

In [6] the necessary and sufficient conditions for a matrix M of non-negatxve'
integers were formulated under which M was the distribution matrix of a simple
graph. It was also characterlzed the set of all graphs on the fixed vertex set havmg
the same distribution matrix. \

“In this paper we solve the same problems for du‘ected graphs, namely -

Let G = (V, E) be a directed graph where V = {vy, v, ..., v,}. Let D*(G) =
= {d}, ds, ..., di} be the set of all outer-degrees of vertices of G and D™(G) =
= {d;,d;, ...,d; } be the set of all inner-degrees of vertices of G. We denote
by a;; (i =1,2,...,0and j = 1,2, ..., n) the number of vertices v € ¥ having the
inner-degree d;” such that (v, v) € E. Similarily we denote by by;(m = 1, 2, ..., k)
the number of vertices v € ¥ having the outer-degree d,, such that (v, v)) €E.. -
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Z. MAJCHER

The matrix Mg = [a;;] will be called the out-distribution matrix of G and
the matrix Mg = [b,;] will be called the in-distribution matrix of G. So to any
directed graph G we can assign the pair (Mg, Mg) of the distribution matrices.

In Section 1 we define precisely the matrices Mg and Mg.

A pair (M*, M) of matrices of non-negative integers will be called graphic
iff there exists a directed graph G such that M* = M; and M~ = M;.

In Section 2 we reduce the problem of graphlclty of a pair of matrices to the
problem of graphicity of a pair of sequences.

" In Section 3 we formulate criteria of graphicity of a pair of sequences. We also
give an algorithm for constructing a graph realizing a pair of sequences.

In Section 4 we give criteria of graphicity of a pair of matrices. :

In Section 5 we present a procedure for constructmg a graph realizing a pair
(M*, M7). '

In Section 6 we characterize the set of all realizations of a graphic pair of matrices.

1. The distribution matrices of a directed graph

Let G = (V, E) be a finite directed graph, i.e. ¥ is a non-empty set, E < Vx V.
For v e V we denote:’

Ti@w) = {ueV;(v,u)eE}, TI;@)={ueV;, .v)eE},
degs(®) = |F(v)|,  degg(v) =),
D¥(G) = {degg(v);veV},”  D7(G) = {degg(v); ve V}.
Assume that for the gfaph G we have:
D*(G) = {d{,d;, ..., d}, D™(G) = {dy,d;, ..., d }.
Fori=1,2,...,kandj=1,2,...,1] we define:

) Vi={veVidegs(v) =d/'}, V; = {veV;degs(v) =d;},
) E;={(u,v)eE;ueV;, veV;},
3 1Y) = |V nTW)], t"(v)=|V,.‘“nF5(v)|.

.For a graph G we define two functlons, namely out-distribution g and in-
distribution #; as follows:

tX: VN, t5:V N,
te() = (t*1(), t* ), ..., t '),
10) = (7@, ), -, THO)T

(N is the set of all non-negative integers).
Let V = {v,, v,, ..., v,}. Then we get a pair (Mg, Mg) of matrices where

@
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MATRICES REPRESENTABLE BY DIRECTED GRAPHS

M(: = [1;(01), tg(vz), sy t;(vn)],
Mg = [t5(vy), 16 (v2), .-, tc (V)]
M¢ is a (I xn)-matrix called the out-distribution matrix of G and Mg is a (k xn)-

‘matrix called the in-distribution matrix of G. Then the graph G is called a realiza-
tion of the pair (Mg, Mg). '

)

Example 1. Let G be a graph in Fig. 1.

For the graph G we have:
D*(G) = {(3,2,1}, D™(G) ={2,1},
Vi ={v} Vi = {vy,0;, 04, s},
Vi = {vz,vs}, Vi = v},
Vi = {vs, 04},

+-[32111 -
'MG“[00001]’ Mg =

N OO

1
1
0

(= )

11
114.
00|

. 2. Graphic pair of matrices -

Let M = [a,,a,,...,%,] be a matrix of non-negative integers such that
a column a, is of the form «; = (af, a, ..., @)T for i = 1,2, ...,n. Let M®
denote an (r x n) matrix with the same columns as in M but ordered as follows:

~

r r r .
o, precedes a; iff (Y.af> Y a)) or (Yai=Yajandi<j). -
s=1 s=1 s=1 s=1 . ) "

For the matrices from Example 1 we have:
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: - fo1110
R TP P 1
20000

Let for some matrices M*, M~ the pair (M*®, M~™) have the form:

[, +1 +1 +1 +1 +1 1
PSS S U S e RO S A t,‘SJ
M*tW® =1 . : : : s
v : : : L :
_tll cee tlS] see til LN tis‘ cee tkL LR tkSk
() -1 -1 -1 -1 -1 -1
. Y ST TP TR Jut SOV TP tir,
M@ = : : : : : o,
- Zk .—k : “k k- “k
-tll eee tl" vee til e tjrj vee t”. cee t‘r‘ B

k 1 :
where Y ;=Y r; =nandforanyi=1,2,...,k,j=12,..,L,p =12, ..,

1=1 i=1

g =1,2,...,r, we have:
t‘;l + cen + tl;l = di+’ d1+ . > d:, .
tet+ ok tt=dy,  d > >¢L.

The aim of this paper is to give necessary and sufficient conditions for the pair
(M*, M~) to be graphic. This problem reduces itself to finding criteria of the
pair (M"(‘) M""’))

First we need some auxiliary notions.

Considere a triple D = (X, Y, E), where X, Yare non-empty sets andE c XxY.
The triple D = (X, Y, E)we shall call a demi-bipartite graph or briefly a d . b-graph.

From any graph G = (¥, E) we can form a-d. b-graph (X, Y, E) as follows:
Foranyve V:degi(v) + 0=>ve X, degs(v) + 0=>ve Y,

. degi(v) = degg(v) =0=>veX orvel.

Note that the edge-setin G and its d . b-graph is the same, so if G has no isolated
vertices then d . b-graph obtained in this way is unique. However to any graph
G = (V, E) there corresponds a trivial d . b-graph (¥, V, E).

Let a = (ay, a,, ..., a,), b = (b, b,, ..., b,) be two sequences of non-negative
integers, A d.b-graph D = (X, Y, E)where X = {u;, u,, ..., u,}, Y= {v1,05, ..s Um}
we shall call a realization of the pair of sequences (a, b) iff for any i = 1,2, ..., n,
j=1,2,..., m the following conditions are satisfied:

‘ (7) . degp(uy) = ay, B degy (v)) = bja“ :
v degr(u) =0  for u;¢ X Y,degy(v) =0  for ;¢ X Y.
Thcn the pair (a, b) will be called the pair of deml-degree sequences of D and we
denote it by (a, b)p.

The pair (a, b) of sequences of non-negatwe integers will be called graphic 1ﬁ‘ :
there exists a d . b-graph D such that (a b) = (a, b)p.
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MATRICES REPRESENTABLE BY DIRECTED GRAPHS

Let G = (¥, E) be a directed graph, |
D*(G) = {d{, d;, ...,d,f}, D7(G) = {d{,d;, ..., d; }. _
Fori=12,..,kandj=1, 2, vees Iuwe define the follo_wing subgraﬁhs of G:
® Gy = (Vi WV}, By '
By (1) and (2) the trlple i, Vi, E,,) is a d . b-graph. In the sequel we shall

treat notation (8) and notation G;; = (V}", ¥;, E, ,) as equivalent.
It is easy to see that

(9) G : U GU = ( —U' Vi+ v Vj-, . _U Eu).
st R s A =

Lemma 1. If a graph G = (V,E) is a reaIIization of a pair of matrices (M*¥,
M™®) of the form (6), then for anyi = 1,2, ..., kandj = 1,2, ..., I the d . b-graph
Gy is a realization of a pair of sequences ((ARA tj"'), where t" = (137, ... t,,;')

'_' = (’11’ . tjrj) :
Proof. Let G,; = (V, V, » E;;). Put
: ittt R 7R i
N ¥ N R A
‘ . YRR b [Tl Pois

The columns of M; H#) are out-distributions of vertices of ¥;"; the columns
of M; ™ are in-distributions of vertices of V.

Let ,

’ Vf = {vigs voos U3} Vi ={wWj, s w_,,,}
and . . .
MP® = [t5(0), . r t(0)), . M7® = [t5(wyy), ..o s LWy )]
By (3), (4) and (7) we infer that the graph G,; is arealization of the pair of sequences'
((‘u > . tmj), (tjla . tjr,)) _
Lemma 2. Let (M*™, M=) be a pair of matrices of the form (6). Let

= {vll’ P Ul“, ceey U;!, veey v‘s‘, ey vkl, veey vk‘k}

and X; = {v;y, ..., vy ) fori = 1,2, ..., k. Let forj = 1,2, ..., 1 Y, be a set such

that ) Y, =V, Y, AY,= (bfor J1 #J2s J1s J2€{1, 2 . I}. Further let
J=1,0,1
H,j = (X,, Y;, F;;) be a d. b-graph realizing a pair (t, ) by ‘) fori=1,2,. Lk,

Jj=12,..,1 Then the graph H= ) Hyis arealization of a pazr of matrlces '

(M(t) M- (m)) 1;’1 -k
‘Proof. Let for i=1,2,...,k and j = 1 ey H,, = (X,, Y,, F,,), X, =

{vu’ sees vm}9 YJ = {wJI! e wju} Y! = nn Yh =0 for J1 *12
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U x= U x=v

i=tk | j=1,..,1

Then

Let us fix veV. Let veX;, and veY;,. So v = v, = w;, for some
pef{l,2,...,s,}andge{l,2, .., r;}. Observe thatvis a vertex of all graphs H,,;

forj=1,2,..,1 is a vertex of all graphs H;;, for i = 1, 2, ..., k and v does not
belong to others.

By assumptions we have:
degﬂi (vlop) - tlop" . deg;fuo(wjoq) = t].;'q'

Hence and by the fact that the sets F;; are mutually disjoint, we get:

+ +1 T
tH(viop) = (tiop) . iop)
P -1 T
tH(Wjoq) = (tJDq’ .o JO‘])
Since the sequences (t,op, sty and (t7h, ..., 75y are columns of M ® and

M;® of the form (10), the proof is ﬁmshed

3. Criteria of graphicity of a pair of sequences

From Lemmas 1 and 2 it follows that the problem of graphicity of a pair of
matrices (M *®), M~) reduces itself to the problem of graphlcny of palrs of
. sequences. We start to solve this problem.
- We define some operations on-d . b-graphs.
Let D= (X, Y, E) be a d.b-graph realizing of a pair of sequences a
= (a,, a5, ..., a,), b = (b,, by, ...,.b,) and let X = {uy, uy, ..., 4}, Y
= {v1, 05, ..., v,,,}
a) Assume that forsome i€ {1, 2, ...,n},j€{1,2, ..., m} wehaveu;,v; ¢ X n Y.
Put any '

DJ(w,oj) = (X’ Y,’ E’) . where ‘,Y' = (Y\{UJ}) v {ui} ‘

and E’ is obtained from E by substitating any arc (4, v;) by (u, u;) for every ue
elp (vj). o

Then we say that the graph Dy, ,, arises from the graph D by joining vertices
U and U

b) ASS'ume that for some ie {1,2,...,n}, je {l,2,...,m} we have u;e X n ¥,
deg*(u;) = a;, deg” (l‘i) =by, v;¢ Y. '

Put

Dy, = (X, Y7, E" )~ where Y" = (Y\{«;}) U {v;}

and E” is obtained from E by substituting any arc (u, u;) by (u, v;) for every ue
eI'p(u).
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MATRICGES REPRESENTABLE BY DIRECTED GRAPHS

Then we say that the graph D, arises from the graph D by splitting the vertex u,
into vertices u; and v;

c) Assume that (u,, vj, Uy, vp) is a sequence of vertices of the graph D such that: .

1° u, e X, vj,v,€ Y, u;, + uy, and v; #+ vy,

2° (uy, v), (uy, v;) € E and (uy, vy), (uy, v)) ¢ E.

Put

D(up v, Ui, U7) = (Xa Ys E’”)a
where E”" = (E\{(4;, v)), (tps 0)P U {(s, v1), (s v}

Then we say brleﬂy that the graph D, ,,. u,, o) IS @ (*)—sw1tchmg of D..

Note that the graphs D,(,,,,,,,,, Dyv,s D, v, w,op are d.b-graphs realizing
the pair (a, b). ' ‘

Lemma 3. Let a = (a,, a,, ..., a,), b = (b;, b3, ..., b,) be sequences .of non-
negative integers and s = min {n, m}. If the pair (a, b) is graphic, then there exists
a sequence Dy, D, ..., D, of d . b-graphs realizing the pair (a, b) and such that for
ref{0,1,...,s} | V(D,)| = m + n — r, where V(D,) denotes the set of all vertices
of D,.

Proof. Let D = (X, Y, E) be a realization of the pair (aq, b) The sequence
D,, D,, ..., D, we form as follows.

IanY @, then D, = D.

If XY #+ 0, then we obtain the graph D, by splitting any vertex of X n Y
into two.

Put

DO = (XO’ YO’EO)’

Xo = {uy, uy, ..., u,}, Yo—{v,,vz,...,vm}.

Note that for D, we have: Xy, n Y, = 0, deg*(u) = a;, deg ) =0 for i=
=1,2,...,ndeg*(v)) =0, deg™(v;) = b;for j = 1,2,.

Let for somere{l,2,..,s}D, =(X,, Y,,E)bead. b-graph obtained from D,
by joining exactly 2r vertices. Then the sequence Do,,Dl, ..., D, satisfies the
required conditions.

Obviously for n, m > 1 there can exist many d . b-graphs- D, since in Dy we
can join arbitrary r vertices of X, with arbitrary r vertices of Y.

By the method used in the proof of the Lemma 3 we have .

Corollary 1. Let a = (ay, a3, ..., a,), b = (b4, by, ..., by) be a pair of sequences.
of non-negative integers. The pair (a, b)is graphic iff the sequence

R ((0’ bl)a et (09 bm)’ (‘11’ 0): e (an’ 0))
of pairs is realizable by a directed graph.
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. Lemma 4. Leta = (a,, a,, ..., a,),b = (by, b,, ..c,b,)and b, 2 b, = ... 2 b,.
Then the pair (a, b) is reaItzabIe by a d. b-graph iff the followmg condmons (11)
and (12) are satisfied:

an | z

n[\/]g

k n :
(12) Y b; <Y min{k,a}, where k=12, ..,m
=1

Praof. This result follows from Corollary 1 in this paper and Theorem 1
Chapter 6 in [1].

The recursive Havel — Hakimi’s criterium for a sequence to be graphic was
proved for simple graphs ([4], [2]). However in this paper we need such criterium
for realizability of a pair of sequences by demi-bipartite graphs. Now we start
to determine ‘such criterium, using a similar idea as that of Havel —Hakimi’s

(see [3]. -
" Let a = (a;, ay, ..., a,), b =(by, by, ..., b,) be non-increasing sequences -of
non-negative integers such that @, < m. '

Denote

red (a,5) = ((0, @z, ..., @), (by — 1, ey By — 1, Bag gy ovs b)).

Lemma 5. 4 pair (a, b)vis realizable by a d . b-graph iff the pair red (a, b) is.

Proof. Let G’ = (X", Y, E") where X' = {uy, uy, ..., 4}, ¥’ = {v;, 03, ..., U}’
realizes the pair red (@, b). We form a d . b-graph G = (X, Y, E) where X = X',
Y=Y,E=E U{u, %)} re{1,2,...,qa)- Obviously G realizes the pair (a, b).

Let G = (X, Y, E) realizes the pair (e, b) and X = {uy,u,,...,u,}, Y=
= {v,, 5, ..., v,,}. We show that from G we can obtain a d.b-graph H =
= (X, Y, F) realizing the pair (a, b) and such that {(u;, v)}x ¢ (1,2,..0) < F. Let
G # H. Then there exists r < a, such that (u,,v,)¢E. So there exist s > a,
* such that (4, v,) € E. Since degg(v,) = degg(v,), so there exists ¢ > 1 such

that (u,, v,) € E and (u,, v,) ¢ E. Thus we ean apply the following (*)-switching:
G, = G("l Vs, Uy Or)* ‘

" The same procedure as for- G we can repeat for Gy and after a finite number of
steps we get H.

Now we form a d . b-graph G’ = (X, Y’, F’) such that X' = X, Y’ = Y, Fl =
C= F\{(ul, U}k € (1,200} The d . b-graph G’ realizes the pair red (a, b).

By Lemma 5 the following Algorithms 1 and 2 are correct.

Algonthm 1 (for graphlcxty of a pair of sequences)
‘ Let a = (a,, a;, ..., a,), b = (bl, b,, ..., b,) be non-increasing sequences of
non-negative integers. h
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MATRICES REPRESENTABLE BY DIRECTED GRAPHS

IF a, £ m THEN
REPEAT
“(at, bY): = red (a, b);
a: = sort a'; {sort a' decreasing}
b: = sort b!;
UNTIL (a! is the zero-sequence OR b is the zero-sequence OR there is a negative
element in &!)
IF a and b are zero-sequences THEN (a, d) is graphlc.
ELSE (a, b) is not graphic;
ELSE (a, b) is not graphic;

Algorithm 2 (for constructing d. b-graph realizing a pair of sequences)
Let a = (ay, a3, ..., a,), b = (b, b,, ..., b,) be non-increasing sequences of
non-negative mtegers and let the pair (a, b) be graphic. '
The required realization of the pair (g, b) is a triple G = (X, Y E) such that
= {uy,ty, ..c,tly}, Y = {0, 03, ..., Up}, E. = U E,,whereE,, = {43, 0)}ja 100
We give the procedure for finding the set 7. *='~
FOR k: = 1 TO n DO
BEGIN
I: = 0 {the number of found positive integers in b}
= 1 {index of element in b}
T: =0
WHILE 1 < g, DO
BEGIN
IF b, >0 THEN
BEGIN
Ti: = T, v {j};
bji=b,-1;
L=1+1
END
ji=j+1
END
END

4. Criteria for graphicity of a pair of matrices (M*, M ™)
Let ¢ = (¢4, €3, ..., ;) be a sequence of non-negative integers. Dénotc c=
(15 €25 ---» &1), Where (¢q, c3, ..., ¢;) is @ permutation of ¢ such that ¢, 2 ¢, 2

Z..2 6

Theorem 1. Let (M*, M™) be a pair of matrices of non-negative integers such
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that the pair (M*™®, M=) is of the form (6). Then the pair (M*, M) is graphic
i foranyi=12, .. kandj=12,..,1the following conditions hold:

@) , Ztu _thp!

. m 3
(i) Yt < Y min {m, 1;’} for m=12,..,r;.
r=1 r=1

Proof. = Assume that G realizes the pair (M™*, M ™), so the pair (M **®), M~(®)
too. By Lemma 1 the subgraphs G,; realize the pairs of sequences (@, t 7Y for
i=1,2,..,kandj=1,2, .., From Lemma 4 it follows that the condmons @
and (ii) are satisﬁed. ; ' c '
< By Lemma 4 forany i = 1,2, ...,k and j = 1,2, ..., [ the pair (17, £;") is
realizable by a d . b-graph. In view of Lemma 3 as realizations of (7, 1;%) we

can take the d . b-graphs H,; from Lemma 2. Thus thed . b-graph H = |J) H;;
i k

is a realization of the pair (M**), M~(¥) 50 of the pair (M*, M™) as well

~ Theorem 2. A pair of matrices (M**), M=) of the form (6) is graphic iff for

any i =12, ..,k and j=1,2,...,1 the pair red (¢;*7, t,-") is realizable by
ad. b-graph.

The proof follows from Lemmas 1, 2, 3, 5 and is similar to that of Theorem 1.

5. Construction of a graph realizing a pair (M, M)

Let us consider a graphic pair (M*, M) of matrices of non-negative integers
where M* is an (Ix n)-matrix and M~ is a (k x n)-matrix.
Let G = (V, E) be a graph we look for.
A procedure of finding G consists of the followmg 5 steps.
1 We denote
V = {Ui, 02; seey vn}:
F=[t5(0), 15 (v2), - 16 (00)],
T = ['E(vl)’ tG—(Uz), LARE ] t&(vn)]'

2. We form matrices M*(® and M~ from (6).

3. We write down the sets V;", ¥ for i = 1, 2 ..kandj=12,..,1

4. We construct the d . b-graphs G,, = (V' V;, E,)) realizing pairs (1", ¢)
forx-12 Lkandj=12,..,1L

5. We form the graph G = U Gy;.
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MATRICES REPRESENTABLE BY DIRECTED GRAPHS
Observe that the d . b-graphs Gy; and consequently the graph G need not be
uniquely determined.

Example 2. Let (M*, M~) be a pair of mamccs from Example 1. We shall
construct a realization.G = (¥, E) of (M", M), ‘

1. Let V = {vy, p,, U3, U4y Us),
M* =[tg(vy), ..., ts(vs)],
M~ =[t5(vy), ..., t5(vs)):

3]21011
2. M*W = [0 { 01 l 0 0] [‘G(”x) ¢ (Uz): 1 (vs), 'G(Ua), 'o(%)] |
0111 ' 0
M @ =10111]1|=[ts5(v), t5(v;), t5(vs), 15 (vs), 15(v3)].
2000 ! 0 A
3. Vf = {vl}’ Vi = {1’1’ Uy, Uy, 05},'

- V; = {”z:v_s}, Vi = {vs}.

V; = {va ’ 04}'

4. tf t= (3)’ tfz = (0)9 t;l = (2’ 1)9
ot = (o’ 1'19' 1)9 t;l = (0)’ tl-.z = (0’ 19 ls 1)! .
F2=(0,1), t3t =(1,1), - t%=(0,0),
;2= (1)» ‘ t1‘3 = (29 0,0, 0)’ t2-3 = (0)
The d. b-graphs Gy, are in Fig. 2.
\Y .
1 oV1 Vz VS
. N\, o | Pt X\,
o Py I o :
Vi V2 V4 Vs Va ~ Vi VoV, VB
v v va Vv, Va V
o 2 5 4 °3 o"
G2z 631 . _ Gas
(-] (-] (]
Fig. 2
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5.G= |J G. Thegraph Gisin Fig. 3.
3 .

Fig. 3

" 6. The set of all realizations of a pair of matrices (M *™®, M~ ";))

Let (M*(®), M~{*) be a pair of matrices of the form (6). Let ¥V = {v,, v,, ..., v,}
be a set. Denote by R, (M*®), M~(®) the set of all labeled dnrected graphs G =
= (V, E) realizing the pair (M +8) MO, :

For the set R,(M*(®, M~ () we have similar properties as for the set R, (M*)
(see [6]).

Any of the operatxons (‘) sthchmg in a d.b-graph G, for ie{l,2, ..., k}
and je {1, 2, ...,1} will be called a ("‘) switching in G.

Let G = (V, E), H = (V, F) be directed graphs.

Denote G =~ H = (V, E = F) where — is the symmetric difference.

Let ¢ be a sequence of vertices of the graph G ~— H having the following form:

(13) o= (W Wy, e, U Wty 1),

where for s, te.{l, 2, 0y m} Upyy = Uy, (Uy, W) EE, (Uyyy, w,)eF and for s
%+ 2:(u,, w)) * (U, wp), (Uysy, Wy) *+ (Uyhq, W)

The sequence ¢ of the form (13) will be called an alternate anti-cycle or briefly
a. a-cycle :

Lemma 6. Let G, HeRy(M”") M- ‘*’) G = (V,E) and H = (V, F). Then
SJori=1,2,..,kj=1,2,..., lany non-trivial component of the graph G;; —~ H,; =
=Vt v V,‘ . E, ;= Fyj) can be considered as an a . a-cycle of the form (13) where

“u, eV, woeV;, (u,, w)eE \F,; and (u,4y, w,) € Fy\E;; for s =1,2, ..., m

Proof. For ueV;" denote I'j(u,G) = {weV;: (u,w)eE,}, I'}iu, H) =
= {we V;: (u.w)e F,;} where i = 1,2, ...,k and j = 1,2, ..., I. Since #5(u) =
= tz(u), so there exists an arc x’ € E;;\F,; with initial point in u iff there exists
anarc x* € F;,\E;; withinitial pointinu. So | I'}}(4, G) | = | I'}i(u, H) | . Analogous-
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ly |r.‘,(w, G)| = | I';(w, H)| for we V. Hence it follows that if I'j(, G) +
* I‘,,(u, H) then u belongs to a cycle of the form (13) The same holds for the
vertex w.

Let G, HeR,(M*™, M~ ™), G = (V, E), H = (V, F)andfor i = 1, 2, ...,kand
i=142..,1G;=W'VV],E), Hy= (V] uVj, F). D:note by €, a set
of all alternate anticycles formed from the arcs of the graph G; - H,; in thls way
that every arc of G;; = Hj; belongs exactly to one cycle.

The set €, will be called an a . a-cyclic partition of the graph G,, -~ Hy,.

The number

1
(G, Hy, €,) = 7 | E(Gy +~ Hy)| — | €]
will be called the distance of the graphs G;; and H|; with respect to the set €,;.

Lemma 7. Let G,He R,(M*®, M~®)) G = (V,E), H=(V,F) and for
i=12 ..,k and j=1,2,..,1 we have: Gy = (AR, Vi,Ey), H; =
= (Vi* v ¥V, F,j) and €,; is an a.a-cyclic partition of the graph G,; ~— H,;. Further
let 5(G;;, Hyy, €,;) = p and p > 0. Then there exists a sequence G,; = GZ, G,‘,, aes
G} = H,; of graphs and a sequence €y -ons €1 of a.a-cyclic partitions of the graphs
G,} -~ Hyy, ..., Gjj = Hy;respectively — suchthatm < pandforanyr = 1,2, ...,m
the following two conditions are satisfied:

Gjisa ("‘) switching of G,, ,
o(Giy, Hy, €5y < (Gjj sHu, g M.

Proof. The proof of the Lemma 7 is analogous to the proof of the Lemma 4
from [6]. Here we list the differences:

In the Case 1 instead of u; + w, and {u,, wz} ¢ E,; we con51der the case:
(uy, wy) ¢ E,;. '

In the Case 2 instead of uy = wyor{u;, w}e E,, we consxder the case: (u,, wz) €
€ E;;.

In the Case 2.1 we have here: (u;, w,_) € E};.

We omit the Case 2.2. .

Theorem 3. Let G = (V,E) and H = (V, F) be two different realizations of
a pair (M +®) M) of matrices of the form (6). Then there exists a sequence
G = G° ., G = H of graphs belonging to R,(M*™®, M~ (%)) such that Gt

(')-sthchmg of G' forse{0,1,...,r —1}. "

Proof We decompose the graph G H into the subgraphs G,y = H; for
i=12 ..,kand j=1,2,...,I Next we apply the Lemma 7 and we get the
sequence Gu = Gy, Gij, ...,G"' ") = H,; for any graph G,; = H,,. Then we
order all graphs as follows . :
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. r] <G:n¢(iaj’ u) <i(m, n,w),
whete <, denotes the lexicographic order.

Remark 1. The statement of Theorem 3 can be also derived from [5, Th. 1]
but it is not a simple consequence.

Corollary 2. The set R, (M*™*), M ‘(*))'can be generated by a single graph

G € Ry(M*™, M~) using (*)-switching operations finitely many times.
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