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CHARACTERIZATIONS OF ELEMENTS 
OF BEST APPROXIMATION 

IN NON-ARCHIMEDEAN NORMED SPACES 

T. D. NARANG, Amritsar 
(Received September 7, 1982) 

The problem of existence and uniqueness of best approximation in non-
archimedean (n.a.) normed spaces has been discussed by Monna [2], [3], Ikada 
and Haifawi [1] and some others. In this note we shall give some characterization! 
of elements of best approximation in n.a. normed spaces. 

Let G be a subset of a n.a. normed space X over some nontrivially valued field F 
and x e X\G. An element g0 e G is said to be a best approximation to x if 

I I * - g o II ^ l l * - * L geG. 

We shall denote the set of all best approximations to x in G by L0(x) i.e. 

LG(x) = {g0eG : \\ x - g0\\ g \\ x - g\\,geG}. 

It can be easily seen that for a linear subspace G of a n.a. normed space X, 
g0 e LG(x) if and only if g0 e LG\tx + (1 - t) g 0] for all scalars t e F. 

An element JC of a n.a. normed space Xis said to be orthogonal (cf. [6]) to an 
element y e X(x 1 y) if 

dist (*,[>]) = | | x | | , 

i.e. if || x 4- ay \\ ^ || x || for every scalar a e F. 
x is said to be orthogonal to a subset G of X if x 1 y for all y e G< 
The following characterization of elements of best approximation was observed 

in [4]: 
For a linear subspace G of a n.a. normed space X, g0 e LG(x) if and only if 

x - g0 1 G. 
A n.a. normed space X is said to be spherically complete if every nest of closed 

spheres in X has a non-empty intersection. 
A n.a. normed space X has the extension property if every bounded (continuous 

if the underlying field is nontrivially valued) linear transformation on any subspace 
G of X can be extended to whole of X without increasing its norm. 
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It is well known (cf. [5]) that a n.a. normed space Xis spherically complete if 
and only if X has the extension property. 

The following theorem gives another characterization of elements of best 
approximation in spherically complete normed spaces. 

Theorem 1. Suppose G is a linear subspace of a spherically complete n.a. normed 
linear space X,xe X\G and g0 e G. Then g0 e LG(x) if and only if there exists 
fe X* such that 

0) /(g) - 0, 
(ii) l / ( * - * o ) l - II*-.Toll 

and 
(iii) \f(x-g)\£ \\x-g\\. 

for every ge G. 
Proof. Let g0 eLG(x). Then for every geG, 

0 ) l l * - g 0 l l ^ l l * - * l l . 
In particular, for a & 0, 

(2) II x - g0 || £ 

for every geG. Let 

Define f0 on M as 

x-go + ~ 

M = {g + a(x - g0) : a є F}. 

\fo(g + «(* - So)) I I = I « I II x - g0 IK 

for each geG. Therefore f0(g) — 0 and 

\fo(x-go)\ = \\x-go\\. 
Now for a Ф 0, 

l/o0r + a ( * - g o ) ) l = l«l | | x - g 0 | | = 

= l«l go + — a by (2) -

- II g + *(x - g0) || 

for each geG. The inequality is trivial for a = 0. Therefore for every zeM9 

l/o(*)l5 0*«. 

Since X is spherically complete, it has extension property and so f0 can be 
extended to a continuous linear functional f on X such that 

for every xeXand 
\f(x)\ú\\x\\ 

A-)-/o(-) 
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for every zeM, whence f(g) =- 0, \f(x - g0) \ * || x - g0 || and | / (x - #) | ^ 
^ II * — £ II for every geG. Thus the relations (i), (ii) and (iii)are established. 

Conversely, let the given conditions be satisfied. Then by (ii) 

I I * - S o II - l / ( * ~ So) I ~ 
= l / ( x ~ S ) l ; g by(i) 
S l l * - * l l by (iii) 

for every geG. Hence g0 e LG(x). 
As a consequence of Theorem 1 we get the following. 

Theorem 2. Let X be as in Theorem /, M a linear manifold in X, x e X\M and 
m0 e M. Then m0 e LM(x) if and only if there exists fe X* such that 

(iv) f(m - m0) « 0, 
(v) | / ( * - O I = | | * -m 0 | | 

and 
(vi) | / ( x - m ) | S \\x-m\\ 

for every me M. 
Proof. Since M is a linear manifold in X and m0 e Af, M - m0 is a linear 

subspace of X. Also m0eLM(x) ifTm0eLM„mo(x - w0). Hence, by Theorem 1# 

there exists fe X* such that 
(3) f(m - w0) = 0, 
(4) \f(x-m0)\ = | x - m o | t 

(5) \f(x - m0 - m + /n0) | g || x - m0. - m + m0 || 

for every me M. These relations are (iv), (v) and (vi). 
Conversely, let the conditions given in theorem be satisfied. Then by (v) 

II* - ™oll = \f(x - w0) | -=* 
- I A * - " 0 1 by(iv) 
£ || x - m || by (vi) 

for every m e M. This implies that m0 e LM(x)9 which completes the proof. 
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