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THE ASYMPTOTIC BEHAVIOUR OF OSCILLATORY
SOLUTIONS OF THE EQUATION
OF THE FOURTH ORDER

MIROSLAYV BARTUSEK, Brno
(Received February 24, 1984)

Abstract. In the paper the structure and the behaviour of the oscillatory solutions of the differential
equation of the fourth order are studied. The sufficient conditions are given under which the
relation lim sup | y®(f) | = o, i = 0,1, 2, 3 holds.

t—=+w

Key words. Ordinary differential equations, nonlinear oscillations, asymptotic properties.

Consider the differential equation
@ y(4) =ft, .y, y",

where f, defined on D = {(t, x,, x5, x5, x;) : t€ [0, ), | x;| < oo} satisfies the
local Carathéodory-conditions and

¢))] St xg, %2, %3, %) %, £0, f(1,0,0,0,0) =0 " on D.

By a solution of (1) defined on [0, b), b.< oo we shall mean a function y which,
along with its derivatives to the third order is absolutely continuous on each
segment of the interval [0, b) and satisfies (1) for almost all ¢.

Definition 1. The solution y of (1) is called oscillatory on [0, b), b < oo if there
exists a sequence {t,},%~, of zeros of y such that lim 7, = . '
k- :
In the present paper the structure and the behaviour of the oscillatory solutions
of (1), (2) will be studied. There are given conditions under the validity of which

the relation limsup | y’(f)| = 0, i = 0, 1,2,3 holds. As the problem of the

[ 2ud ]
existence of oscillatory solutions of (1), (2) is concerned see e.g. [2]. ‘
Put N ={1,2, ...}, R, = [0, ) and L[0, c0) the set of all functions that are
summable on each finite segment of R.,. _
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M. BARTUSEK

Definition 2. The oscillatory solution y, defined on [0, b) is called of the 1-st
type if the sequences {#/}, i = 0, 1,2, 3,4 k e N exist such that

0t <t sti<ti<ti<td, lime =0,

- k- o0
3) () >0  for te(t-y, 1), Yyt =0,i=0,1,2,3,
1y (1) <0  for te(t], 1)), j=1,2,
Y1) =0  on [t 7], ©y"(t) <0, te(ty, 7]

holds where t =1 ort = —1 and ke N.

Definition 3. The oscillatory solution y, defined [0, b) is called of the 2-nd type
if the sequences {tj}, i = 0, 1,2, 3, 4, k € N exist such that

0si<ti<tt<td?stt<td,, . limt =b,

- k- o0
@  (~Doy®)>0  for te[t), ) (te(tlys, 1)) if i=1,2,3 (i=0),
yOth =0, (=1ry1) <0 forte(t], t0,1), j=1,2,
y'(t) =0, te[t7, t], ©y"(t) >0  on(tf, t7,,]
holds where t =1 ort = —1 and ke N.
Let y be an arbitrary solution of (1), (2). Define

) Fit)y= —y" Oy + y*r), te[0,b)

Then
F'(t) = =y" () y(0) + y'(®) y"(®),

(6) F'(t) = —yP@0y@) + y*() 20 for almost all ¢ € [0, ).
Thus F’ is non-decreasing on [0, b).

Lemma 1. Let y be an oscillatory solution of the 1-st type on R, . Then F and F’
are positive non-decreasing on [1{, ) and lim F(t) = oo holds.

t— 0

Proof. The conclusion that F’ is non-decreasing follows from (6) and according
to (3) and (6)
M ' F(@) =y y' () >0
is valid. Thus F(f) is non-decreasing on [#7, ),
F(t) = F() + F'@Q)(t = 1) 2 F(1)) + F'(1) (t — 13) 2 F(17) > 0

holds and it follows from (7) that F is positive and lim F(f) = oo. The lemma is

t— o

proved.

Lemma 2. Let y be an oscillatory solution of the 2-nd type on [0,b), b < co.
Then F'(f) < 0 on [0, b).
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BEHAVIOUR OF OSCILLATORY SOLUTIONS

Proof. It follows from (6) and (4) that F' is non—decreﬁsing, F'(t) < 0,lim# =
k-

= b and thus the lemma is proved.

Theorem 1. Let y be an oscillatory solution on [0, b). Then one of following
conclusions is valid:
L. y is an oscillatory solution of the 1-st type on [0, b),
11. y is an oscillatory solution of the 2-nd type on [0, &),
III. There exists a number b, € [0, b) such that y(f) = O for te[b,, b).
Proof. Denote fort = +1
1° () 20, () > 0,i =1, 2,3,
2° () > 0,ty"() £0,i=0,1,2,
3° () > 0, 1y"(1) £0,tp"()) <0,i =0, 1,
4° 13() > 0, 1y'(H) £ 0, 1yP() <0,i = 2,3,
5° () = 0, () > 0,1y"(t) < 0,i =1, 3,
6° 1y(1) > 0,1y (1) £0,1y"(f) < 0,i =0, 3,
7° ') > 0, 1y'(f) < 0, ty"(t) = 0,i =0, 3,
8° 1) > 0, ty'(t) <0,ty"(1) £0,i =0, 2,
9° (1) 2 0, ©y'(t) > 0, Ty"(1) £ 0, y(1) y'(1) = 0,i =0, 1,
10° ©y'(t) 2 0, 1y"(1) > 0,i =0, 1,2,
11° () = 0, ty'(r) > 0, 7y"(1) £ 0, ty"(¥) < 0,
12° wy(t) > 0, ©y'()) £ 0, y"(f) = 0, ©y" (1 < 0,
13° wy(®) > 0, ©y'(t) £ 0, ©y"1t) < 0, y"(f) = 0,
14° () 2 0, ©y'(H) > 0, ©y"(t) < 0, y™(t) = O,
15° () 2 0, ©y'(t) > 0, Y1) = 0,i = 2, 3,
16° () > 0, 1y'(t) < 0, yV() = 0,i = 2, 3,
17° () > 0, y(H) = 0,i = 1, 2, 3,
18° y() =0,i=0,1,2,3.

These cases cover all the initial conditions at the point ¢. Let the relation j¢ be
valid for y at # = ¢; and let the relation k° take place at ¢ = t,, ¢, > ¢;. Then
we shall write jo(t,) — kO(t,). Generally the notation jo(t,) = {k3(t,), ..., k2(t2)}
denotes that jo(t,) — k2(t,) for suitable ee {1, ..., s} is valid.

We shall investigate the behaviour of y under the validity of all initial conditions

— 189 at the point ¢t = 0.

Let 10 be valid for ¢t = 0 and put © = 1 for the simplicity. If y(0) = 0, then, with
respect to »'(0) > O the inequalities y’(f) > 0, i = 0, 1,2, 3 are valid in some
right neighbourhood of ¢t = 0. According to (2) y” is non-increasing in the interval
at which y(#) > 0 holds. As y is oscillatory it follows from this that there exists
a number r* > 0 with the property y"(1*) = 0, y(f) > 0 on (0,#*], i = 0, 1, 2.
The case y"(f) = 0 for 3 < ¢ < b is imposible with respect to the fact that y
is oscillatory and thus the number ¢z, exists such that 3 < t* < b, y"(t) = 0 on
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M. BARTUSEK

[, 1*], y"(®) <0 on (t*,¢* +¢), y?() >0 on (0,¢* +¢), i=0,1,2, e>0
being a suitable number. Thus y” is decreasing in some right neighbourhood of the
t = t*, By the same procedure the existence of the points ¢2, t!, © may be proved
such that '

<<t <to<bh, YO =0,
YOt > 0 on (0, ), y(f) < 0 on (£, 1°), i = 2, 1, 0 hold. Especially

y©) =0, y°) <0, i=1,23
is valid and thus
1900) — 2°(£%) — 30(s%) — 4°(¢!) — 1°(0).

By repeating of the considerations we can conclude that y is an oscillatory solution
of the 1-st type on some interval [0, b,), b, < b if the initial conditions 19, 20, 30
or 49 are valid for ¢t = 0.

When considering the sign of y?(0), i = 0, 1, 2, 3 and (2) it can be easily seen
that for a suitable number ¢, > 0 the following relations hold:

9°(0) - 2°(ty),  10°(0) - 1°(¢y),  11°(0) — 3°(ty),
12°0) > 4°(1)),  13°(0) - {4°(ty),  9°(r0)},
14°(0) > {3°(r,),  13°(1)},  15°(0) > 3°(1,),
16°(0) — {4°(ry),  15°1))},  17°(0) — 4°(¢y).

Thus in all cases with the exception of 5—8° and 18° the solution y is the 1-st type
on [0, b)), by < b.

Consider the case 5° for t = 0 and = = 1 (for the simplicity). If y(0) = 0, then
in some right neighbourhood of = 0

® | YO >0, i=013 y()<0

holds. As y is oscillatory the number ¢! > 0 must exist such that y'(¢!) y"(¢!) y"(¢!) =
=0, y9(t) # 0 for te (0, t,), i £ 3. First, let y"(¢+') = 0 be valid. Then accord-
ing to (8) ‘

yhH >0, yeHzo, yE)s0

and it is clear, that one of the cases 139, 140, 159, 179 is valid at ¢ = ¢! and thus y
is of the 1-st type. Similarly in case of y"(t') = 0 we have y(t!) > 0, y'(t!) 2 0,
y"(t!) = 0. Thus the cases 10°, 15° or 17° take place at ¢ = ¢! and y is of the
first type,-tao. In the last case, when y'(t!) = 0 is valid y(t!) > 0, y"(t!) <0,
"(t') > 0 holds and thus we have 5°(0) — 6°(¢!).

It can be proved in the same way, that either y is the oscillatory solution of the
1-st type on some interval [0, b;), b; < b or the following relations

6°(t) — 7°(t%) — 8°(t3) — 5°(t5)
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BEHAVIOUR OF OSCILLATORY SOLUTIONS

and (4) for t{ = ¢\, i=0,1,2,3, t0,, = ¢* hold. We can conclude that in cases
5—89 is of the 1-st or 2-nd type on some interval [0, b,), b; < b. The last case
is 189, i.e. '

© yDO0) =0, i=01,23.

Let us exclude the trivial solution y = 0 on [0, b) from our considerations —the
“theorem is valid in this case. Then there exists 7, 0 < v < b such that y(f) = 0
on [0,7], sup |p(r)| > O for an arbitrary &, 0 < ¢ < b — t holds. Suppose,

[r,t+e]

that there exists a number ¢ > 0 such that y(¢) # 0 for te J = (0, &). Put for the
simplicity
(10) ¥ >0 on J.

According to (2) y” is non-increasing on J, y"(f) £ 0 on J. Then successively
¥ £ 0en J,i = 2, 1,0, that contradicts to (9), (10). Thus there exists a sequence
{£930__, such that lim £ =0, £ > 0, yit)) = 0 and the point t such that
k—+—o ’
y(r) # 0. Thus we have for ¢+ = t one of the investigated cases 1—17° and y is
oscillatory solution of the 1-st or 2-nd type. Moreover, according to (5), (6) and (9)
F'(f) 2 0 on [0, b) and thus according to Lemma 2 we can conclude that y must
be of the 1-st type on some interval [0, b,), b; < b.
Now, let y be of the 1-st type on [0, b,), b, < b. Then according to (3), (5), (6)
F(1) 2 F(t) = y(t) y'(t) = K > 0,
F(1) 2 F tg) + K(t — 15) 2 F(1g) = y'*(1) > 0,
YA = F(t) 2 y'*(te) > 0,  limty = b,
k=
holds and thus b, = b must be valid.
Let y be oscillatory solution of the 2-nd type on [0, b). Then it follows from the
continuity of y at ¢t = b, that

¥ (b, =0, i=0,1,2,3.
~ But this solution was met in the case 18°. The theorem is proved.

Remark 1. Let y be an oscillatory solution on [0, b) and let © exist such that
yP() =0,j=0,1,2,3, 7€[0, b), Then numbers 7,,7,, 0 < 7, < 7, < b exist
with the properties: y(f) = 0 on [r,, t,], y is non-trivial in every right (left)
neighbourhood of the point 7,(z,), y is oscillatory of the 1-st (2-nd) type in the
interval (z,, b) ([0, 7,)) and the sequence {#,}2 . of zeros of y exists such that
L > 1,, lim = 1,.

k=~

This statement was proved in the course of the proof of Theorem 1. We must

only prove that y is oscillatory on [0, ;). Suppose on the contrary that y > 0

on J = [ty — ¢, 1), & > 0 (the case y < 0 may be investigated similarly). Then
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according to (2) y" is non-increasing and with respect to y”(r,) = O the relation
y" > 0 holds on J. As y(r,) =0, i =0,1,2,3 we have successively y* < 0,
¥ > 0and y < 0 on J which gives the contradictions with (2).
In the rest of the paper y will denote an oscillatory solution of (1), (2) of the
first type defined on [0, o). Let M;, M, and M, be non-negative constants. Put
DMy, My, My) = {(t, Xy, X3, X3, X4) 1t Z My, | X | 2 My, | x2| 2 M,
lel §M3lfM3 < 00,|in < wforM3 = 00,i= 3,4},
DZ(M19 MZs MS) = {(ts X1 xz;xa,';&) it g Mla I X4 ‘ g Mla ' X2 I é M29
| x3| = My, | x4 | £ My}

Theorem 2. The relations lim sup | y?(¢) | = o0, i = 0, 1 and

1= 0
Y@z cve, kz2
are valid where C is a positive constant.
Proof. According to Lemma 1, (5) and (6)
11) | y'(9) 12 = F(t)) 2 F(1) + F'(1) (18 — 1) 2
2 F'Ji’)( 4 )tk =C, kz2
t

and thus the statement of the theorem for i = 1 is valid. Let us prove by the
indirect proof that it is valid also for i = 0. Thus suppose that

(12) lyo)| =M, te[0, ).
Put ’
Jk+1 = [t} te1], A =t) — tk AV =8 -, 4P =1; — ], 4 =
=1 — 1, Aw"’tk t

where 1; is defined (uniquely, see (3)) by the relations

tre ), 21 yh) | = Iy\tk)l
1t follows from (3), (5) and (6)

0

F(1p) = (1)) = 2 I y (t))'"(t) dr 22|y’ ()| 1ym) | S 2M |y (1) |

k

FOZFE) =1y 1y )] 2 MiFE)Y?,  tedysy, My = 1/2M).
F'(t) 2 M,F>*(1)) = Mx( 321 - %F”Z(E)F’(ﬁ)(t - ti’)),

t€Jis1, ¢e(, 0.
- According to Lemma 1
a . F() >0, F@)>0,
F and F'-are non-decreasing on [¢7, o) and thus for k 2 1
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BEHAVIOUR OF OSCILLATORY SOLUTIONS
F(t)z M, [Fa/z(t) 5 FY3(R, ) F'(1) Ak+l] s

(14) F’(‘)[l + 7M1F”2(‘2+1) Ak+1] 2 MF(1),  teldi,,.

Let us divide {rg}7 into two subsequences {f§ }xen, > {t,},,, n, in the following way:
N,AN, =90, NyuUN, =N, keN, if, and only if = M1F1/2(t,,) 4, S 1. Let
k € N,. 1t follows from (14) that
2F'(f) = M FY(1),  tel,,
1 1M
\/F(tg) \/F(tk 1) 4

As F is non-decreasing, then by adding of these inequalities for k € N; we get

4.

1 1 1 1
2 —— + 2 45
JF@) hezr:n( VFt)  VFE-) ) 4 kezl:h *
where s = min {N,}. Thus
(15) Y 4, < .

keN;

Now, let k€ N, and let N, = {n,}, se N3, N3 = {1, 2, ...,5} or N3 = N. Then
it follows from (14) and the definition of N, that

3MFY3(1)) AF'(1) 2 M F3%(p), tedy
holds and thus by integration on the interval J;

20,0 1 1
6F"/ (:,)A,,[— JrD + «/F(tf-l)]gdb |

(]
F(4) > 49 49 —a> 1
F(t2-y) 36

Thus according to (13) _

(16) F2)= F(t2)«', seN,

is valid and

( —y(t)) FO 5 e, My = T8 50,
1) y? aM?

se N, te(ty-15 tn)-

By integration on [z}, 1], t < 15, we get

R0 @) , a
(t) MZG'(‘ ) )
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and by integration on [z}, 7] the following inequality is valid

1 = N (t:') < exp{—————Mzas A,‘,"’z}.

<y 2
From this
an CAD S MR, M, = \/ 1; In2
2
A,(:) é M3a—s/2, SGN3-
Next, as

1
{1ywide=L000_ 1 ye)a

Af‘) A(iS)
and with respect to the fact, that |y | is increasing on (tL, t) (see (3)) we have
A = AP, Therefore by virtue of (17) 4D = A + 4P < 2M,e™*'* and
(18) 3 A0 < o0
. kEN;
holds.

Let us investigate the intervals [#7_,, #i ]. As according to (3) the function | y' |
is non-decreasing on [#;_,, t?] and concave on (#, t,), we have:

v

t;l‘ tic tl‘;
Mz |yl = J1ymlde= [ +[/
i t

tk-1 -1

’ 1‘ !
2 [y (-01 @ = 6-0) + 5 1 YE) [ (% = 1),
M Z |y (-)1 4P = VFU-,) 4P,  keN,.
From this, from (16) and (13) i

AP < J[———Z M a”%?, SEN;

~ VE@S
holds and thus Y 4{® < oo. This inequality with (18) gives us Y 4, < oo.
ieNy ieN2
Thus with respect to N = N; U N, we can conclude that ) 4; < co which gives

ieN
us the contradiction to the definition interval of y. The theorem is proved.

Lemma 3. Let a constant M > 0 exist such that | y'(t})| £ M, ke N, = N,
Ny = {k}2 1 holds, where i = 2 or i = 3. Then lim | y(t}) | = oo, lim | y'(t})| =

s 00 g

= o0,
(19) lim (£, — t2) = co.

$— 00
»

Proof. Denote #;, = i, i = 1,2, J, = [, ¢}], 4, = 1} — %
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The conclusion lim | y'(12)| = co follows from 'I‘heorem 2. Then accordlng
= a0
to (3)
o - |y )| = .f Y1) [de <1 y"(15) ] 4 AsJI ly"(1)|dt < 471 y"(1) ]

and thus with respect to the assumptions of the theorem (19) is valid. The rest of the
assertion follows from the estimate obtained by use of the fact that | y'(f) | is
concave on J; (see (3)):

Iy L Z 1) ] = 1y ] = Ily(t)ldt.—>= Iy(tz)l-'-1 - .

3=

The lemma is proved.

Theorem 3. Let constants o = 0, B =2 0, K = 0 and K, > 0 exist such that

(20) | f(t, X1, X2, X3, X5) | 2 a(®) | %, |*| x5 | holds in D(K, K, K,)

s+1 a+p/2
where a € L(R,), liminf | a(f) ¢ dt = K, > 0. Then
(21) limsup | y(1)| = 0, i=0,1,2.
t—

Moreover, if K; = oo, then

lim sup | y"(t)| = o0

t—+ o0

holds.

Proof. According to Theorem 2 the relation (21) is valid for i = 0, 1. We prove
it for i = 2 by the indirect proof. Thus suppose that there exists a constant M
such that

(22 1y’ =M, te]0, )

Then it follows from Lemma 3 and Lemma 1 that

(23) hmhwwl~mMy0)thﬂﬂwl~w,
(24) lim (tk — tk) = 00, kEN
| X

holds. Further, by use of (23), (22) and (3)
"

1Y) = J1y'(O)1dt £ M1 - 1),
" :

(25 lim(f) — ) =

k=0

holds.
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By virtue of (24) there exists a sequence {t;}2, ty € (¢, 1)), ty — ti = 1. Put

Ji = [, t¢]. According to (25), (22) and the fact that | y” | is non-decreasing
on [#, £] (see (3)) we have

Mz [ 1y 0ldez [y ()1 — 1)

It 11
and thus by virtue of (25)
(26) _ :im 1y ()| =0, 3im [y (1) =0

holds. Further according to (3)

27 1Y) = JI Y"1t S 1y )1 [ — @1 =1y"() 1
A ;
holds and from the relation

(28) YD =1y = JI LY@ 1de < 1y,

(26), (27) and (23)

lim | y'(tx) | = 0
k~* o0

17,0
is valid. Let ¢ > 0 be an arbitrary number such that ¢ £ min (Kl , F I((tl) ) holds

and let k, = 2 be integer with the properties:
(29) 2K |y 2K 1y <e k2 k.
Then it follows from (29), (3), (26), (27) and from the fact
F() SF ) = —y"(t0) y(t) S el () |, k = ko,
that the following relation is valid:
(30) (t’ y(t)’ y,(t)’ y,(t)’ y"(t)) € DI(K, Ks Kl)) te Jk9 k g kO'
There exists k; = ko and C; > 0 such that (see Lemma 1, (6), Theorem 2)
' .
Y1 =1yCD1 = [1y®1dez 1Y) - 1y(0] 2
, tic .

2CViZ—e2Cfi—T—-e2CiJt, ted,kZky,.
60 122220 5 Leg e Zrw + FOe-d)zcn  tel,
is valid. From this and from (30) we can conclude that for suitable k, = k;
102
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ez |yt = 1y"t)| = JI |y de =

= JI L £(t y(0, y'(8), y'(8), Y" (1) | dt 2

th+1
2 [a@®|y®I*1y®OPdt 2 CI™* | a() ™2 dt, k 2 ky,
Jie . t

s+1
&= %C‘{“’lim inf | a() P2 dt = —;'-c;""’K2 >0,k2k,.
As & may be chosen arbitrarily small, this relation, in virtue of the assumptions
of the theorem, gives the contradiction. Thus (21) is valid.
Now we prove that limsup|y”(f)| = oo by the indirect proof. Therefore

t—

suppose that
) ly"(t)l é Ml_, te[oa w)'

According to Lemma 3 the relations (23) and (24) are valid and
BACIEIPA(9] =JIl,v”'(t)|dt =M, tel.
From this and from (28) and (23)

lim | y'(ty) | = oo

k-

is valid. As for ¢ = M, and suitable k,, C, the relation (31) is valid, we conclude
that there exists an integer k, such that

(ta y(t), }"(1), y”(t)9 y”(t)) € DI(K’ K’ M1)9 te Jk’ k g kO

holds. We get the contradiction in the same way as in the first part of tle proof
after the relation (31). The theorem is proved.

Theorem 4. Let constants o = 0, K, = 0 and K, > 0 exist such that for an
arbitrary K, 0 < K < o the relation

[f(t %y, X2, X3, X4) | 2 a(t) | x4 |* on Dy(K,, K, K))

holds where a, € L(R*) and lim inf’}1 a () t*dt > 0.

Then e )
(32) limsup | y(t)| =0, i=0,1,2
holds. T

Proof. The assertion (32) follows from Theorem 2 for i = 0, 1. For i = 2 (32)
may be proved by the indirect proof. Thus suppose that

(33) 1y'®1 =M, te[0, o).
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According to Lemma 3 lim (f} — #2) = oo holds and similarly as in the proof
k= oo

of Lemma 3
(34) lim | y"(t})| = 0

t=* 0
is valid. Define the sequence {f;}, ty € (17, 1), ti — t; =1 and let J, = [#, 1]
Further, according to (3), (5), (6) and Lemma 1 numbers C > 0, C; > C, ko = 2
exist such that

(35) YOI 1y D] =JI [y'@®)|dt £ M, tel,,
Cty S F(ty) = y'2(t) — y(t) y(15) < M? + M| y(tD 1,
(36) [YOIZ Iy ZCit,  tedy, k= kg

hold. Let ¢, 0 < ¢ £ K, be an arbitrary number. Then it follows from (33), (34),

(35) and (36) that for a suitable k, > k, we have (¢, y(t), y'(t), y"(®), y"(t)) €

€ Dy(Ky, M, K;), te i, e 2 1 y" ) | — | y"(t) | =Jf [ ¥9e) | de = [ | £t ¥0),
i Jk

s+1

Y@,y ®,y"(0) 1dr 2 JI a1y " dt = Cf JI a(n)"dt 2 —; Ci lim sup | a,() *.

8§ s
.dt = const > 0, k = k,. As ¢ may be chosen arbitrarily small, we can conclude,
that this relation gives us the contradiction. The theorem is proved.

Remark 2. The results of Theorems 2, 3 and 4 generalize the ones of [1] for the
differential equation (1).
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