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ON THE TERMINAL VALUE PROBLEM
FOR DIFFERENTIAL EQUATIONS
WITH DEVIATING ARGUMENTS

V. A.STAIKOS and P. CH. TSAMATOS, Ioannina
(Received November 5, 1981)

Abstract. The problem of the existence and uniqueness of solutions x of the equation

(B o x'(t) = fe; x[o1(1)], ..., x[ox(£)D)
under the “terminal” condition lim x(t) = &, where £ is a vector in R" or C", is studied.
t—> o0
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1. Introduction : ~

This paper is concerned.with the existence and uniqueness of solutions x of the
differential equation with deviating arguments

(E) x'(t) = f(t; x[o,(®)], ..., x[a:()])

which satisfy the “terminal” condition

(©) lim x(t) = £,
t-> o . .
where ¢ € K" and K stands for the real line R or for the complex plane C. The
function f : [#,, 0) x (K"* - K" is a locally Caratheodory one and moreover the
real-valued functions g,, i = 1,2, ..., k are supposed to be continuous on [#,, o)
and, as usually, such that
limo(t) =0 (i=1,2,...,k).
) t= o

The existence of solutions for the above ‘‘terminal-value” problem (E)—(C) is
closely related to that of asymptotic equilibrium for the equation (E). Among .
numerous studies on the asymptotic equilibrium we choose to refer the recent
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ones due to Ladas and Lakshmikantham [5, 6] and Mitchell [8] for ordinary
differential equations as well as Hallam, Ladas and Lakshmikantham [3] for
functional differential equations. For the case of ordinary differential equations
we mention the paper of Hallam [2] where the existence of solutions of the terminal
value problem is treated by-a comparison principle. Finally, for general interest
and with respect to the differential equations with deviating arguments we refer
also Kurzweil [4], Lini [7] and Pandolfi [9] for asymptotic properties of
exponential type. '

2. Existence

The technique used for the existence of solutions of the terminal value problem
(E)—(C) is based on the well-known Schauder fixed point theorem.

The Schauder theorem. Let E be a Banach space and X any nonempty convex and
closed subset of E. If S is a continuous mapping of X into itself and SX is relatively
_compact, then the mapping S has at least one fixed point (i.e. there exists an x € X
with x = Sx.)

The concrete Banach space which appears in the following is the space
B([Ty, ), K"), T = T,, of all continuous and bounded K"-valued functions on
the interval [7,, c0) which are constant on [T,, T], endowed with the usual
sup-norm | ||. For subsets of the space By([T,, o), K") we need also the compact-
ness criterion below (cf. Avramescu [l]‘and Staikos [10, 11]), which is a con-
sequence of the well-known Arzela — Ascoli theorem and it is based on the concept
of “equiconvergence’’. ‘

A set F of K"-valued functions defined on the interval [T,, o) is said to be
equiconvergent at oo if all functions in & are convergent in K" at the point co and,
moreover, for every ¢ > 0 there exists an 4 > T, such that, for all functions fe #

t2A=|f(t) —lim f(s)| <e.

§—* 00
Compactness criterion. Let & be an equicontinuous and uniformly bounded subset
of the Banach space By([T,, ), K"). If ¥ is equiconvergent at oo, it is also relatively

compact. . :
' Now, for every r > 0 we introduce the function a, defined by the formula

a,.(t) = max ,f(t; 21, "'9zk) ls tg tO
lzi|sr
i=1,2, ...k

Theorem 1. If for every r > 0,
(Cp

fa t)dt < oo,
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then for every & € K" the terminal value problem (E)—(C) has at least one solution x
on an interval of the form [T, o).
Proof. Let

K= x BEn, B =(weKilw =&l S7),

where & =(&4,...,¢)e K" and r > 0. We set

T, = min {ty, min ,(t), ..., min g,(t)}
. t3to t=to

and, By condition (C,), we choose a T = T, so that

e}

(1) Ja(nde s .

Now, let the Banach space E = By([T,, ®), K") and the subset X of E,
v r
X={er:||x—-§|| g-f}.

The set X is obviously nonempty and, as it is easy to see, it is convex and closed.

In order to define a mapping S, which satisfies the assumptions of the Schauder
theorem, we remark that for any function x = (x,, ..., x,) € X and for every
t g TO’

[ x8) = &l < | x(1) — €| §
Hence, because of the choice of T, we have
x[ao(t)] € K, t2T (i=12,...,k)
and therefore for every t 2 T

Lf(t; x[a1(®)], ..., x[0x(1)]) | = a,(t).

Thus, because of (C,), we have that for every t 2 T the improper integral

}j f(s; x[0,4(5)], ..., x[ox(s)]) ds
exists in K" and hence the formula |
YO = &= S5 o0, o @] ds, 12T
defines a mapping S : X — E. This mapping is the required-one. Namely, it satisfies.
the following.

a) SX c X.
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In fact, taklng into account (1), for every function x€ X and for any t 2 T
we have

I(Sx) M-<¢l=1 I f(s; x[o4()] - X[Gx(S)]) ds| = I a,(s)ds <

N| 5

b) The set SX is relatively compact.
Let any x € X. As in a), it follows.that -

IS S1¢1+5 foreveryt2 T,
namely ‘
B
Isxl < 1&1+—
Therefore, the set SX is a uniformly bounded subset of the space E. Moreover,
it is equiconvergent at oo, since

jSx)()-¢| = }oa,(s) ds for every t = T.

Also, it is easy to see that for every ¢,, ¢, with Ty £ t; £ ¢,,

[(Sx) (1) — (Sx) ()| = f a,(s) ds,
1
which means that the set SX is equicontinuous. Thus, by the compactness criterion
we conclude that SX is relatively compact.

c) The mapping S is continuous.

.Let xe X and (x,) be an arbxtrary sequence in X with || | —lim x, = x. Then
we have
lim x,[e,(®)] = x[o(1)], t2T (=12,..,k).

Thus, by applying the Lebesgue dominated convergence theorem, we obtain

0 © ’
lim | f(s; x,[64()], ..., x,[ox()]) ds = [f(s; x[04(5)], ..., x[ox(s)]) ds.
v t t
So, for every t = T we have the pointwise convergenee

lim (Sx,) (t) = (Sx) (2).
It remains to prove that
‘ | | —lim Sx, = Sx.

To this end, we consider any subsequence (u,) of (Sx,). Because of relative com-
pactness of SX, there exists a subsequence (v,) of (u,) and a function y € E, so that

(Wl —.lim v, = ).

46



ON THE TERMINAL VALUE PROBLEM FOR DIFFERENTIAL EQUATIONS

Since the uniform convergence implies the pointwise one to the same limit function,
we must always have
y = SXx.
"We have thus proved that the mapping S satisfies the assumptions of the
Schauder theorem and hence there exists a function x € X with Sx = x, namely

x(t) = € —iff(s; x[64(5)], ..., x[ox(s)]) ds, t=T

Obviously, x is a solution of the terminal value problem (E)—(C).

3. Uniqueness

The uniqueness of solutions of the terminal value problem (E)—(C) is established
under a generalized Lipschitz condition on f, but only for differential equations
of advanced type. ' ’

Theorem 2. If the equation (E) is of advanced type and for every compact subset B
of the space (K™ the function f satisfies

) k
(Cy) [f(t5 %05 s X)) = f(85 Y15 s YOI S Ls(t)iz‘,l’ Xy — yil
foreveryt 2 tyand (xy, ..., %), (V15 ..., Y1) in B, where Ly is a real valued function .
with
(Cy ~ _ [ Ly(t)dt < oo,

then the terminal value problem (E)—(C) has at most one solution on an interval
of the form [T, ). ‘

Proof. We assume that x and y are solutions of the terminal value problem
(E)—(C). Then, Jim x(t) = lim y(tf) = ¢ and hence for any ¢ >0 and some

t= o0 t— o

Ty = t, we have
Ixt)| S 1&l+¢ and  |p0)|S|E|+e foreveryt T,.
Thus, if '
B={(z, -,z)e(KY :|z;| S| ¢] + ¢}

fori =1,2,...,k and every t 2 t, we have
x(t)e B,y(t)e B, x[o(t)]e B and y[o(t)] e B.

We consider now the function Ly and because of (C,), we choose a T 2T, so
that : ' ' " ‘

°° 1
'T[LB(s).ds < %
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Thus, taking also into account condition (C,), for every t 2 T

[x(t) - y()| < Ofol S(s5 x[03(9)], -, x[0u(8)] = f(s5 y[0:1()], -, y[au(s)] I ds =

< TLB(s)z | x{os)] — ylods)] | ds < kp(T)j Ly(syds s BT,

where p(T) = sup {| x(s) — y(s) | : s€ [T, 0)}. Therefore p(T) < —2— p(T), that

is p(T) = 0 and hence
x(t) = y(¥) forevery t = T.

Remarks 1. Contrary to the initial value problem, the Lipschitz condition (C,)
is not sufficient for the uniqueness of solutions of the terminal value problem
(E)—(C). In fact, the “smallness” condition (C;) fails for the scalar differential
equation

X))+ x(t*» =0, =1

and though it is of advanced type, it has two solutions x,(t) = —1- and x,(t) =0

both of which satisfy the terminal condition lim x(¢) = 0.

t— o
2. The uniqueness fails also in the case where the equation is not of advanced
type. Counterexamples can be constructed in the cases of retarded or mixed type
differential equations. For each of these cases we choose respectively to give the
scalar equations

x(t)+ .X(\/t)— t>1

and
1/2¢

x'(t) + —— ¢ x(\/t)e @0l — 0, ¢>1,

both of which satisfy conditions (C,) and (C;) dand have the solutions x,(¢) = —lt_

[
and x,(t) = 0 which satisfy the terminal condition lim x(¢) = 0

t= o0

3. In the case where Dom f=(—00,14] X (K™* it makes sense the (left) terminal
problem (E)—(C’), where

(o) ‘ lim x(t) = ¢&.

. t— — o0
The transformation t — 2t — t leads to a (right) terminal problem of the form
(E)—(C). Thus the existence theorem remains valid for the (left) terminal problem
(E)—(C’), while the uniqueness one is valid for the retarded case.
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