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1. Statement of the Existence and Uniqueness Theorems

Boundary value problems of periodic type for n-th order ordinary differential
equations and systems have been attracting attention of specialists for a long time
‘and are being studied in many research works (see e.g. [1—7] and the references
mentioned there in). However they still remain insufficiently investigated for
essentially nonlinear differential equations, i.e. equations which can’t be interpreted
as small perturbations of linear equations. In the present paper an attempt is
made to make up this defficiency, to a certain extent, for odd order ordinary
differential equations.

Suppose that n is a natural integer, 0 < w < +00, R is the set of real
numbers, ay, by e R,k =1,...,2n + 1) and f: [0, o] x R - R is a continuous
function. Consider the problem of finding 2n + 1 times continuously differentiable
function u which satisfies the differential equation

1.1 u@D = £(t, u)

on [0, w] and the boundary conditions

2n+1

(1.2) i)jl [auu®* V0) + byu®* V()] =0 (k=1,...,2n+1).
The special cases of (1.2) are e.g. the periodic boundary conditions
(1.3) WD) = V@) (=1,...,2n+ 1)
and the Vallée — Poussin type boundary conditioﬁs
(14 i V0)=0¢@(=1,..,m), uw*Nw)=0k=1..,2n+1-m),
where me {1, ..., 2n + 1}.
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For each o e {—1; 1} let

n -
Ve(Vis ooes Vant13 Zts oovs Z2p41) = O Z ("l)k l(zz,,”_,,z,‘ - yz"”"‘y") +
k=1
+ (—1)"12’_(z3+1 ~ Yis1):

We shall prove the following theorems. _

Theorem 1.1. Let 0 € {—1; 1},

. 2n+1 | 2n+1
(1.5) Y | Y (apy+ buzd)| >0 when Wo(Vis s YVan+15 Z1s o5 Z2a41) > 0
i=1 | k=1

and let the inequality
(1.6) f(t, x) sign (ax) = h(x)

be fulfilled on the set [0, ] x R where h : R — R is a continuous function and

1D lim inf h(x) > O.

|x]|=+
Then the problem (1.1), (1.2) has at least one solution.

Theorem 1.2. Suppose that o € {—1; 1}, the condition (1.5) is satisfied and

(1.8) [ft, x) — f(t, )] sign[o(x — )] >0  for x # y.

Then the problem (1.1), (1.2) has at most one solution.

Theorem 1.3. Suppose that o € {—1;1}, the condition (1.5) is satisfied and the
inequalities (1.6) and (1.8) hold on the set [0, @] x R where h : R — R is a continuous
Sunction satisfying (1.7). Then the problem (1.1), (1.2) has exactly one solution.

Corollary 1.1. Let the inequality (1.6) hold on the set [0, w]x R where o€
e {—1;1}, h: R > Ris a continuous function satisfying the condition (1.7). Then
the problem (1.1), (1.3) has at least one solution. If, in addition, the condition (1.8)
is fulfilled, then this solution is unique.

o—1
Corallary 12. Let oe{~1;1},m=n+[1~(~1)"" 7 ], and let the

inequality (1.6) hold on the set [0, w] x R where A : R —» Ris a continuous function
satisfying (1.7). Then the problem (1.1), (1.4) has at least one solution. If, in
" addition, the condition (1.8) is fulfilled, then this solution is unique.

, As an example consider the differential equation

A
u .
(1.9) 2t o o—-l--l——' signu + c,

1+ |uj
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where 6 € {—1;1}, 4 > 0, r 2 0 and c € R. The function

f@ X)—G—lx—li—signx+c
’ 1+ ]x|

evidently, satisfies the inequality (1.6) with

|x(*
h(x) = —— —|c|,
(x) 15 2T lel
and (1.7) is valid if and only if
(1.10) either A>r,or A=rand |c| < 1.

By Theorem 1.3, if (1.5) and (1.10) hold, then the problem (1.9), (1.2) is uniquely
solvable.

In particular, the condition (1.10) is sufficient for the unique solvability of the
problem (1.9), (1.3). On the other hand, if A = r and | ¢| = 1 then the problem
(1.9), (1.3) has no solutions since an arbitrary solution of the equation (1.9)
satisfies the inequality

2
|u‘2"“)(t)|>1——ljm-l~—;>0 for 05t £ o.
L+ u(t)|

Hence, if A = r then the condition | ¢| < 1 is necessary for the unique solvability
of the problem (1.9), (1.3). This example shows that the condition (1.7) is essential
in theorems I.1 and 1.3 and cannot be omitted.

In the paper of A. V. Kibenko and A. Kipnis [6] it is stated that the problem

u = ft,u);  uwTV0) =u"Nw)  (=1,23)
is uniquely solvable if f has a continuous partial derivative with respect to the
of(t, x)
o0x

second variable satisfying the inequality @ < ¢ S bwhere 0 <a<b<

< +oo0. It is clear that this result is a consequence of Corollary 1.1.

2. Some Auxiliary Results

Consider the differential equation
2.0 U = p(u + q(t, u, 0, ..., u?"),
where p : [0, w] = R and ¢ : [0, ®] x R*" — R are continuous functions.
Lemma 2.1. Suppose that ¢ € { —1; 1}, the condition (1.5) is satisfied,
2.2) op) 20 for0 St pt)£0
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and .
23) sup {| g(t, xy, s X2ps ) | 10 St S @, (Xg5 -5 X3p41) ERPH} < 400,

Then the problem (2.1), (1.2) has at least one solution.
Proof. By one of the theorems of Conti [2] for the proof of Lemma 2.1 it is
sufficient to show that the linear differential equation

2.9 u®* Y = p(Hu

under the boundary conditions (1.2) has only zero solution.
Let u be an arbitrary solution of the problem (2.4), (1.2). Then

¥, (u(0), ..., u?(0); u(w), ..., u*"(w)) = ¢ })u(z” D) u(t)dt =
. (V]

= o [ p(t) u’(t)de.
(1]
On the other hand, by (1.2) and (1.5) we have

v, @), ..., u?(0); u(w), ..., u*(w)) < 0.
Thus

o | p()u*(t)dt 0.
0
Consequently, in view of (2.2), u(t) = 0. This completes the proof.

In the sequel we have to consider boundary value problems of periodic type
for differential inequalities

(2.5) gu®) s u* V() sign (ou(r)) < gw(t)) for0st=<o

where g : R —» Rand g : R - R are continuous functions. Under a solution of (2.5)
we understand a 2n + 1 times continuously differentiable function u : [0, ] - R
satisfying this inequality in all points of the segment [0, w].

Lemma 2.2. Suppose that ¢ € {—1; 1}, the condition (1.5) is satisfied and there
exist numbers 6 > 0 and r, > 0 such that

2.6) gx)>6  for l.xl > 1.

Then any solution u of the problem (2.5), (1.2) satisfies the inequality
@n |u(t)| £ r* for0<t=sw

with

(2.8) r* =2r; 0"t 4 ro(dn + 2)2+2 (1 + 15‘-)
and | '

r, = max {| g(x) | + |§(x)|‘=lx|=_<-’o}'
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Proof. By (1.2) and (1.5)
o },u(z"“)(t) u(t) dt = Y, (u(0), ..., u®”(0); u(w), ..., u?*(w)) £ 0.
0

Hence by multiplying the inequality (2.5) by | (¢) | and integrating it on [0, ¢
obtain
.9) § @) u(t)|dt < o {u®*)u()dt < 0.

(V] 0o

Set
I={te[0,w]:|u(t)| < ro}

then in view of (2.5), (2.6) and (2.9) we get

(2.10) |u®* D) | S | g®) | + | gu@)| =r, for tel,
.11 ou®* V() u(t) >0 for te[0, ]\ 1,
(2.12) lu(t)| < % gu(®) |u(t)|  for te[0, 0]\ 1,
(2.13) §gu@®)|u@)|dt < | g®)|u)|dt < rirew

[0, 0]\I I
and
(2.14) o [ u®*(Du(t)dt <o [u®Ut)u)dt.

[0, 0o\I I

It follows from (2.10), (2.11) and (2.14) that

(2.15) flu®* Dy de= [ |u®* ) |dt + [|u®*Ye)|dt <
0 \T I

0, w]

1
<—o | u®™*VDu(t)dt + ro <
o [0,0\I

= 71“ Ju® VO u)dt + rio £ [1u®(@) | dt + 1o S 2r0
o I I

and from (2.12), (2.13) we have

(2.16) flu@|de < flu@)|dt+ | |u@®|dt<
0 i 10,0\ I
Sro+3 | gue)lu®)dt s Co,
10, o]\I
where
Cl = ro (1 + rTl) .
Let '
w

a; =

el (i=1,..,4n + 2),



and let the numbers ¢, € [@2;-1, a5;] (( = 1, ..., 2n + 1) be chosen so that
|u(t‘)| = min {I u(t)' Y/ Py é t é azl} (i = 1, ceey 2n + l).

Obviously

(/)]

2.17) by =62 021 — = s

Gi=1,..,2n+1).

On the other hand, in view of (2.16) we have

2.2(
it 2 NV uldis@n+2C, =1, ...,n).

ai-1

(2.13) lu)| =

Let u, be the Lagrange interpolating polynomial which is equal to u(t;)
(i=1,...,2n+ 1) in the points of interpolation ¢; (i=1, ..., 2n + 1), i. e.

L =ty) e (=) (= tisg) o (= thpay)

olt) = i}=:1 (G —t) o (= o) (i — tig) - (6 = t2nsy) u(t)-
Let
o(t) = u(t) — u(t).
Then
(2.19) o(t)=0 (=1,..2n+1) .
and
(2.20) P01 = 43 (1),

By (2.19) and the Roll theorem there exist points s, € [0, 0] (k = 1, ...,2n+ 1)
such that

(2.21) v* V() =0 k=1,..,2n+1).
Because of (2.15), (2.20) and (2.21) we have

10970 | < [lu@ D) |dt < 20
o

and
| v(k-l)(t)l < 2rlw2n+2—k (k =1, cesy 2n + 1)-
Hence

[u()] = |ov(t) + up(t) | £ 2r,02"*1 4 |uy(t)] for 0 St < o
On the other hand, in view of (2.17) and (2.18)

2n
[uo(®) 1 =(2n + 1) Z (4n +2)Cy < (4n + 2)2n+2C1-
4n +2

Consequently, the estimate (2.7) is true. This completes the proof.
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3. Proof of the Existence and Uniqueness Theorems

Consider the differential equation
@3.1) Uty = £t u ), ..., )

with the continuous right-hand side f : [0, ] x R*"*! — R. Instead of Theorem 1.1
we shall prove the following more general one.

Theorem 3.1. Suppose that ¢ € { —1; 1} the condition (1.5) holds and the inequality
3.2 h(xy) < f(t, x,, ..., X3n4 1) sign (ox,) < h(x,)

is fulfilled on the set [0, w]x R*"*! where the functions h:R — R and h: R— R
are continuous and satisfy the condition (1.7). Then the problem (3.1), (1.2) has at
least one solution.

Proof. Due to the condition (1.7) we can choose § > 0 and ro, > 1 such that

3.3) h(x) > 6 for | x| = ry.
Let
' ry=max{|hx)| + | h(x)|:0 £ x £ w}

and let the number r* be defined by the equality (2.8).

Put
for | x| < r*
X = x - ’
=) {r* sign x for | x| > r¥,
(34) qu9 X1y eees x2n+l) = f(ts X(x1)9 X25 ey x2n+l) - UX(xl)

and consider the differential equation
(3.5) . D = gy + q(t,u, ), ..., u™).
By the conditions (3.2), (3.3) and (3.4),

(3.6) oxy + qlt, Xg, ooy Xapa 1) = 8, X1, ooy Xapt 1) for | x| S r*

and :

[q(t, Xg5 ooy Xapan) | = | 2(xg) + ST 2(x0)s X215 ooy X2pan) | S
S+ | hQx)) | + [ A((xy)) | < Co

where ’

Co=r*+max {|h(x)| + | A(x) | : | x| S r*}.

Consequently the condition (2.3) is satisfied.
According to Lemma 2.1, the problem (3.5), (1.2) is solvable. Let u be its arbitrary
solution. - , :
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Then
u+1(t) sign (ou(t)) = [ou(t) — ox(u(t)) +
+ f(t, x(u(®)), ' (t), ..., u3™(t)) sign (ou(t)) = | u(t) — x(u®)| +
+ f(t, 2(u(D), w'(2), ..., u®P(1)) sign (ox(u(1)).

This by the condition (3.2) implies the inequality (2.5) where
gx) = |x = x| + h(x(x)), &) =1x — x(x) | + h(x(x)).
Since ry < r* we have '
-max {| gx) | + 18() | :1x]| S ro} = max{|h(x) | + | A(x)|: ]| x| £ ro} =ry.

On the other hand, in view of (3.3) it is clear that the condition (2.6) holds.

By Lemma 2.2 the function i satisfies (2.7). But it follows from (2.7) and (3.6)
that u is a solution of the equation (3.1). This completes the proof.

If f(t, x4, ..., X354 1) = f(¢, x) then (1.6) implies (3.2), where

h(x) =max {|f(t,x)|:0 = 1 < »}.

Thus theorem 1.1 is a consequence of Theorem 3.1.
Proof of Theorem 1.2. Let u; and u, be arbitrary solutions of the problem
(1.1), (1.2). Set
o) = u,(t) — uy(t).
Then
v(2n+l)(t) = f(t’ ul) - f(t’ uz)-

According to (1.2) and (1.5), by multiplying both sides of this equahty by au(t)
and integrating on [0, @] we obtain
: ? LA, uy () — f(t, u(t))] v(t)dt = o ljnv“"“)(t) v(t)dt =
G.1 T ¥, (O), ..., 43™0); u(w), ...,ou(z")(w)) <0.
In view of the condition (1.8)
a[f(t, u, (1)) — f(t, u,(1)J ()20 for 0 £t £ .

Besides, the left-hand side of this inequality is equal to zero only at those points,
where v(t) = 0. Hence (3._7) implies

v(t) =0, 0st=2 o

Therefore the problem (1.1), (1.2) can’t have two different solutions. This
completes the proof. Theorem 1.3 immediately follows from Theorems 1.1 and 1.2.
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In order to verify the validity of Corollaries 1.1 and 1.2 it is sufficient to

note that
2n+1
Z | yi—2zi| >0 for Yo(¥1s -oes YVant15 215 --os Z2s41) > 0,
i=1

oc—1

and,if m=n + %— [1 - (—1)"+T] then

m n
Z [yl + Z lz;|>0 for Yo(¥is s Yant13 215 oo Z2n41) > 0.
i=1 i=1
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