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THE ASYMPTOTIC BEHAVIOUR
OF SOLUTIONS OF THE DIFFERENTIAL
EQUATION OF THE THIRD ORDER

MIROSLAV BARTUSEK
(Received April 18, 1983)

Consider the differential equation

D y"=f{t, y',)’")»

where f, defined on D = {(t, x{, x;, x3) : 1€ [0, ), | x;| < oo} satisfies the local
Carathéodory-conditions and

2 f(t, x,, x5, x3) x;, £ 0.

By a solution of (1) we shall mean a function y which, along with its deri-
vatives of the first, second order, is absolutely continuous on each segment of
the interval [0, o0) and satisfies (1) for almost all ¢.

Put N = {1, 2, ...}. Let L(t,, o0 —) bé the set of all furictions that are summable
on each finite segment of [#,, o).

In the present paper the behaviour of solutions of (1), (2) will be studied. This
problem of oscillatory solutions was investigated in [1]. Many authors deal with
the problem of the existence of solutions of (1), (2), see e. g. [2].

Definition 1. The solution y of (1), defined on [to, t,) € [0, ) is called non-

contmuable if either t; = o or t; < oo and lim sup Z [y¢=1(t)| = oo holds.
=t . i=1
Deﬁnitlon 2. The solution y defined on [ty, ) is called proper if sup | y(t)| > 0
tSt<ow
for an arbitrary number 1 € [t,, ).

Definition 3. The solution y defined on [t,, b) is called oscillatory if there exists
a sequence {t;}7 of zeros of y such that lim t, = b,

k=~
Definition 4. The equation (1) has the pr0perty Ay if every proper solution y is
either oscillatory or | y(t)| | O when t 1 @, i = 0, 1, 2. The equation (1) has the
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property A,, i = 1, 2 if every proper solution y is either oscillatory or lim y®(t) = 0.

t— o0
k=i..,2. '
The sufficient conditions for (1) which should have the property A, are given
in [2].

When investigating (1) we meet solutions of the types:
I. The solution y defined on [7, t,), #; < oo is strongly oscillatory to the left:

There exist sequence {t;}, i = 0, 1, 2, k € N such that lim ti = t, and

k=
y(l)(ti) =0, ty < tlf << fieys
3) YOy >0 on  (1%4), i=0,1,2 .
YO y1) <0  on  (fhfieq) . fori=0,1,y" W) <0
on [#,t0+1), ke N holds.

II. The solution y defined on [#,, ) is different from zero on (25, ) and there
exists a number 7 € [to, ©) such that.

4) W Y@)=0, pt)y(t)=0,  y”"sgnyis nonincreasing on [1, c0).

II1. The solution y, defined on [1,, t,), f; < oo is monotone and (—1)'y(£) y(¢) >
> 0, lim y¥(t) = 0 for i = 1,2, lim y(t) = C. Moreover, if t,< co then C 2 0.

t-ty t—t2
IV. The solution y, defined on (¢, ¢, ], 0 < ¢, is strongly oscillatory to the right,
there exist sequences {fi}, i = 0,1,2, k = —1, —2, ... such that lim #; = t,, (4)
! k= -
and lim y(t) = 0, i = 0, 1, 2 hold.

| Sad {
V. y(ot) = +(c; + c3t)?, ¢, and c, are suitable constants, | ¢, | + |¢c;| # 0,
tefty, 1)), t; S .
VI. (t) = 0 on [to, 1;), t; S ©.
The following lemma can be proved directly from (2).

Lemma 1. Let y be the solution of (1), (2) defined on [to, b). Then the function
¥" sgn y is nonincreasing on [ty, b), t # t* where t* is a zero of y.
The following function is of great importance

® - F(t) = y'X(t) — 2y(0) y"(®).

Lemma 2. Let the solution y be defined on [t,, b). Then the function (5) is non-
decreasing and '

(6) F(t) =0 on [t,,1,], to St; <ty<>y is of the type V or VI on [t,,1,].
Proof. By virtue of (2)

F(t;) — F(,) = ?F'(')dt = _j 2y()y"()de 2 0, st
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holds and thus F is nondecreasing. The validity of the relation < in (6) is trivial.
Suppose that F = 0 on [t,, 7] and let y be not trivial. Let

(7) ("1)‘}’(’) > 0, (—l)jyl(t) >0onJ= (t:h t‘) < [tl’ '2]9 i).i = 1’ 2.
According to the assumption .
F(t) = y*(t) - 2y()y"(t)=0 on J

we get by integration

®) y(t) =(-1) [( 1)'*’J|y(t)|+ Ys) L8 (¢ — t)]z tsel.
s | y(2s) | i R

From this and from (7) if ¥(z,) ¥'(t,) = 0, then

(-1)'y"(ts)

]+

yt) =y () =0, y'(t) =

k=34

From this and as according to (8) y is not oscillatory we can conclude that (8)
is valid on the whole interval [t,, t,]. Thereby ¢5 € (t;, t,), ¥(ts) # O, i, j must be
taken from (7) for ¢ = t5 and if y'(t5) = 0, then j = 0. The lemma is proved.

Lemma 3. Let y be a non-continyable solution of (1), (2), defined on [t,, b) and
let F(ty) > 0. Then y is of the type I on [ty, b) or there exists only a finite number
of zeros ty, k = 1, ..., N of y such that y is of the type II on [ty, ©).

Proof. Let y be the solution, defined by the Cauchy initial conditions
[to0» Yos Yo, Y5> We shall investigate all possibilities which may occur, whereby
we shall consider in each case the first possibility, the second one can be proved
similarly.

1° ¥%020,y20,56>0 or y,50,y,=0,y5<0.
If y is"such that
wW)> 0, y@)>0,y(t) 20, »' noninéreasing, te(ty, b) '

then with respect to the y being non-continuable b = oo must be valid and y is of
the type II on [¢,, ).
Suppose that y is not of the type II. Then there exists number #? such that
y"(t?) = 0, y"(t) > 0 on [t,, t?). Moreover, ‘according to 1° y(t) > 0, ¥'(t) > 0
on (¢, 12].
Suppose the zero of 3’ does not exist on (t’ b). In this case according to y being
non-continuable & = oo and (s¢e Lemma 1)

9 y)y@) >0, y(t) £0, y” nonincreasing, ¢ € (£2, ).
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As y is not of the type II it follows from (9) that there exist numbers ¢, € (t2, )
and K > 0 such that :

' y'(@) < =K, te[t,, o).
‘Then the relation

=Y@)SY@e) = y@a) =y —-t) < —K(t—1), ne(,t)

gives us the contradiction for ¢+ — co. Thus our assumption is not true and there
exists a zero t' e (t2, b) of the function y and y(t) > 0, y'(t) > 0, y"(t') < 0.
t e (12, t') and the zero ¢! is simple. The existence of zero 12, 0 e (¢, b) of y can be
proved similarly as for ¢!. We can see that in 1° y(t,) = 0, ¥'(t,) < O, Y'(ty) <0
holds and we have the same situation as at ¢,. By repetition of this way we can
conclude that y is of the type I. on some interval [1,,.8;), b; < b. We prove by the
indirect proof that b, = b. Let b, < b. As y is strongly oscillatory the solution
can exist in b, only if

(10) lim y'(t) = 0.

t—=by -
But by virtue of (5) and of Lemma 2
F(%) = y™*(&) 2 F(t,) > 0,

where {7}, lim¢t] = b, is the sequence of zeros of y that contradicts (10). The
K=o
emma is proved in this case.

2° ¥020,56>0,y60 or y;50,y0<0,y520.

According to the fact, that in some right neighbourhood of ¢, the same conditions
as in 1° for t e (¢2, t') are fulfilled, the behaviour of y is similar.

3° Y%020,5020,y50<0 or y,=20,y520,y5>0.

The conditions y'(t) < 0, »"(t) < 0 hold in some right neighbourhoed of 7, and
this situation was investigated in 1°, t € (¢!, 1°) or t € (to, t2).
According to the assumption of lemma F(z,) > 0, the last possible case is
4° ¥%9>0,90<0,y520 or y;=0,y0>0,y5=0.
First suppose that
(11) y(@) <0  on [to, b).
Then it is clear that lim y'(t) = lim y"(t) = 0, b = oo (as y is non-continuable),
=0 t- 0
But the relation
0 < F(t,) < lim F(t) = lim [y'%() — 2y(£) y'()] = 0
- .

o0
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gives us the contradiction. Thus (11) is not correct and there exists a number 1,
such that y'(t,) = 0. According to the assumption F(t,) > 0 and Lemma 2
¥(t,) y"(t;) < 0 holds. Thus we have

Wty) >0, y'(t) =0, y"(t;)) <0, or y(t) <0, y(t,) =0, y(¢,) >0

and there are given the same conditions at ¢, as in 3° for ¢ = ¢°.
The lemma is proved.

Theorem 1. Let y be a non-continuable solution of (1) and (2), defined on [t,, b),
b < oo. Then y is successively of the types IIl, VI, IV on the intervals [to, t,).
[, 12), (t2, t;] and either of the type 1 on [t;, b) or of the type 1I on [t3, ).
respectively. Here t, < t; < t, S t; are syitable numbers. Some parts of y may be
missing, the numbers t € [t,, t3], ts€[t;,t,] may exists such that t, =ty or
ts =b = oo. ’

Proof. Let y be given by Cauchy initial conditions [to, Yo, Yo, Yo]- The
structure of y for F(t,) > 0 was investigated in Lemma 3. Let

12) F(t,) = 0.

If F(t) = 0, te[ty, b), then according to Lemma 2 y is of the type VI or II on
[, b). In the opposite case the number ¢, € [#,, b) exists such that F(t;) = 0,
F(t) > 0 on (t,, b). The properties of y on (¢,, b) were investigated in Lemma 3.

If there exists a seequence {t,‘,’} of zerosof y, k = —1, ~2, ... such thatlim ¢0 = ¢t,,
T+~

then (4) must be valid and with respect to the fact, that y(” is continuous at ¢, for
i =0,1,2 we can conclude that y is of the type IV on some interval (,, 7;) <
< (14, b). In the opposite case y*(t) # 0 in some right neighbourhood of #;,

2
te(ty, 1), i=0,1,2, Y|yt | # 0. Let

i=0
(13) F(t,) < O.
First, consider the case
1° yo>0,y6§0,yg>0 or y0<09y'0§0’y$<0’

Put y, > 0 without the loss of generality. If there exists a number ¢ € (¢, 8) such
that F(£) = 0 holds, then the behaviour of y was studied above. Thereby y® > 0
on (¢, &), i = 0, 1, 2. In the opposite case y is of the type II.

In virtue of (13) we must still see the case

2° ¥0>0,y,<0,56>0 or y,<0,y5>0,y5<0.

The situation F(t,) = O for a number ¢, € (t,, b) was studied previously. Thus
suppose that F(r) < 0, #€[to, 5). Then according to (5)

HOY() >0, et b).
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If y is not of the type III, then exists a number ¢, € (#,, b) such that y'(t;) = 0,
But this situation was met in 1°.
The theorem is proved.

Remark 1. Let y be given on [t,,5) and y(t,) ¥'(to) > 0, ¥(to) y"(2o) > O,
¥'4(to) > 2y(to) ¥"(to). Then, according to the proof of Lemma 3 there exists
a number ¢, € [#,, b) such that y is of the type I on [t;, b) or of the type II on

[‘l’ CD)

Remark 2. According to the Definition 4 and the Remark 1 if (1) has the
property A,, then it has the strongly oscillatory solution of the type I.

. 2
Definition 5. Denote: D(K, K,) = {(t, Xy, X3, X3)! —It(—— S|x | SKBKsS
1

e
S |xl|)—K_1§ IxZI é Klt9K§ |x2|,|x3| é Kl}a DI(K)K1)={(”x1)x2’x3):

1% | 2K ——t S x| S Kit?, —— < | %, S Kot | %5 | S VKS.
K, K,

Theorem 2. Let the constants K > 0, a, B exist such that for an arbitrary C > 0

(14) [f(t, x1%3, x3) | 2 a(6) | xq |°| x5 |# on D(K, C),

@s) T a2 dt =
0

holds where a, € L(0, oo —).
Then for the solution y of the type 11

(16) " lim y"(t) = 0
t—
holds and differential equation has the property A,.
Proof. The property (16) will be proved by the indirect proof. Thus suppose
thatlim | y"(¢) | = K; > 0. As y is of the type II there exists a number t € [, o)

t=

such that ¥ > 0 on [t, ©), i = 1, 2" holds. As the function y”sgny is non-
increasing the following estimations hold for a suitable ¢, 2 T

D CesK(-DSIYOISIY@+1YO1¢ -9 s G,
s B -0'sHOISHE+IY@IE -9+
+—'—3’”2(t—)'(1 - 1?5 G,
te[t,, ), C1='I§'2-» ‘ C, =2]|y"(®)].
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Let t3€[t,, ) be such that | p(r)| 2 K,|)'(t)| 2 K, te[t;, ) hold and
let C = max (C2 , zl—) Then according to (14), (15) and (17) we have the follow-
1
ing estimations

1y ()12 [1y"®1dt = [a D1y *1y(®)Pdt 2
t3 t3
2K, [a () dt = oo,
t3

where K3 > 0 is a constant. The obtained contradiction proves the theorem.

Remark 3. Kiguradze [2] proved the following result: The diﬂ'efential equation (1)
has the property 4,, k = 1, 2 if
k+1
f(t, %y, %2, x3)sgnxy £ —a(®)xy° [T +1x;)Y on D,
i=1

k+1 ‘
4>0, AeR j=1,2  YA>1, aeLdw-) a0,
Jj=0

© k

fa)t dt = oo, yk=2+k(lo—l)+2(k+l—j)lj.

0 . j=1
For k = 2 the Theorem 2. generalizes this result.
Theorem 3. Let exist constants K > 0, a, B such that for an arbitrary C > 0
|f(t, X1, X2, X3 | g ac(t) | Xy |a (1 + l X2 D’ on D’_(K, C)’
fa()t'dt =0
0
holds where y is defined by one of the following possibilities
1 A
1° y = 7{[3 —sgn(x + &)](a +e) + [1 —sgn(B — 26)] (B — 2¢)},
2° y=—;—[l—sgn(2a+ﬁ)](2a+ﬂ) for a> —1,
3% = —;—[3 —sgn(a + B/2)(a + B/2) for B <2.
Here £¢€[0,1), a,€ L(0, co~) is a non-negative function. Then the differential -
equation (1) has the property A, .
Proof. By virtue of Theorem 1 we must prove that the solution y of (1), (2)
of the type II does not exist, its derivative is not equal to zero identically in some

neighbourhood of co. Thus suppose on the contrary that such a solution, defined .
on [t,, o) exists and let y > 0 on [t,, o) for simplicity.
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It follows from the definition of y and Theorem 2 and its proof that

(18) y'(t) > 0, y' non-decreasing on [7,, o), lim y"(t) = 0

| Sadl- ]

and
0 <y(t) S Y@ SY(te) + y(te) (t — t5) = 2)"(1p) 1,

(19) ?-'I%Qt S V() (t = 1)) S )(1) S y(to) + Y1) P S (W) 1* te[ty, o),

where t; € (o, ) is a suitable constant with the property y(t) = K for r e [t,, o),
y'(t) S 1/K.
First we prove that there exists a constant ¢, = ¢, such that

(20) F(t) = y*(t) — 29()y"(t) >0  on [1,, ).
Suppose on the contrary that F(t) S 0 on [¢,, ). As

- (20)-F0,

@b SOV

then

W) < My>*(r), M = y(t,) [y'*(t,)]7!
and
02 F(t) = y'%(t) = 20() y"(t) 2 y*(1) [1 — 2My"] 2
2y [1 -2My" ()]
and we get the contradiction to (18) for # -+ co. Thus (20) is valid and according
to (21)
(22) W)z My ), telt, ), M =y)D)]

Put C = 2 max (3"(t,), ('(t,)) "!). Then according to the assumptions of the
theorem

@® _m LIS a ../
(23) yrr(tz)l—c = _"‘ y (‘) dt g ac(') Y(t) y (t)p dt g
a YO 2 Yy

22 [a )y "y *dt=1J.
7]
If y is defined according to 1°, then by use of (19) and (23) we gét the contradiction:
V() T 2T 22 [a )1 = oo
t2

If 2° is valid, then put e = O fora 2 0, ¢ = |a| for 0 > & > — landaccording
to (22), (19) and (23)

Y T2 T 2 2MT [ a () Yy dt = M, [a () dt = 0.
t2 2

M; is a constant. This contradiction proves the theorem in this case.
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Let 3° be valid. Put e = 0 for § £ 0 and ¢ = /2 for 0 < B < 2. If follows
from (23), (22) and (19) that

-] o}
V('™ 2 T 2 MY [ a0yt = M, a7 dt =
t2 t2

M, is a constant. This contradiction proves the theorem.

Remark 4. The theorem 3 generalizes the results obtained by Kiguradze [2], see
Remark 3. For some special « and f the results by Kiguradze are more suitable.

Theorem 4. Let the differential equation (1) have the property A, and let
the constants M, .t, and functions a € L(t,, 0 —), ge Cyo(D,;) exist such that
g(xl1 X2, xS) > Ofor X, > 0, a g 0’ lf(tl) X1, X2, x3)' g a(t)g(l Xy l’ l X2 |9 I X3 l)
on DZ’ D2 = {(t’xlst’xS):tl §1s0§x1y0éxi.5_M’i=2,3} and

Q @ @

| J Ja(®)dtdxdr =
ty t X
hold. Then (1) has the property A,.

Proof. According to the Theorem 1 and the definition of the properties A,
and 4, we must prove that for the solution y with properties: y) monotone,
j=0,1,2and

limy®1t) =0, i=12, lim|y(t)| = C

[ 2ad ] t—> o
the relation C = 0 holds. Suppose on the contrary that C # 0. Let ¢, € [#;, )
be a number with the property

Iy =M, C2=5yt)s2C, i=12
Then

19(t)| = C = II (Hlde=] [1yG)ldede=] | [1y"(0)|drdndr2

2 2

~

z ? J 1a 80501, 1YO 1, 1Y@ Ddrdxdr 2

@ o ©

2K | fa(r)dtdxdr =

2 t x

K = min g(x,, x;, x3) > 0,

where the minimum is taken for C/2 < x; < C, | x;| S M, i = 2,3.
The gained contradiction proves the theorem.

Theorem 5. Let y be an oscillatory solution of the I type on [to, b) and let constant
M > 0 exist such that for te[ty,b), | x,| S M, x,€R

gl x 1 x: L1 %) S 1S x4, %2, %3)|,  *3€R
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and
[ f( x1, %2, %3) | S &I %0 [, X2 [, x5 D, [ x5 [ S M

hold where g, are continuous, g,(sy, ;, S3) > 0fors, > 0. Thenlim sup | Y'(¢) |  co.
t=b-

Proof. We shall prove the statement of the theorem by the indirect proog,
Suppose that

24) 1Y S K<ow, telt,bd)
According to (5), (24) and Lemma 2 F is non-decreasing and
(25 0<F(t)=y*)<K?) limFt)=K,<K? i=0,2
t—=b—

First we investigate the case when

(26) , lim y(1) = 0

t=b—

is valid. Let k > k,, where k, is an integer with the property | »(t)| £ M on

(12, b). ‘
Put &, € (¢, t})) such number that
" M
27 l.v(fk)|=—K—l)’(fk)|-

According to (3) such a number exists, by use of (25)
(28) IYMISM  on [f,&4]

holds and with respect to the fact that »’ sgn y is concave on [tf » &x] we have

&k (V]
@1 = Iy = fIyoiarz X0 ¢ .
- From this and from (26), (25) .
(29) lim (&, — 12) = 0.

K=o

Further,
1YED| - 1YE) | = {II YOS 1Y@ G- S
S M@ - 1) = 0
and by virtue of (25) and (27)
lim | y @01 = lim | (@) | = Ky,

G my@) =K

-
k= e
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Finally, .
e _ds % 1yl _% | (1) | dt
o &) &gy ‘:{ g0 yOL1IY®L1Y®D)
83(s) = max {82(31’ 52,8):055, SMO0OSs, £ K},

that contradicts (29) and (30). Thus (26) is not correct and there exists an infinite
set N; = N and K; > O such that

é:k"'tzi

-

@31) : Iyt |2 K,, keN,

holds. Let ¢ > 0 be such that ¢ £ K;, ¢ £ M. Then according to (4) the sequence
{a,}, k € N, exists such that

I y(ak)l =g, ake(tg’ ‘kl] ‘
and by use of (31), (25) and (3)

(32) [y)I<e on [t %]
1
(33) @1 <1y = 8 < Ko e i

21y T Ko’
hold. Define the sequence {f,}, k € N, in the following way

ﬂk € [tfa t:),
(34) [YBI =1»"(Bo) |

and B, = 1 if (34) has no solution ,. As by virtue of (25) and (4)

k— o0

' Bx
0 = 1y = YD1 2 1B = Y61 = [ 1y @)1 dr2
Bk
2 VB Ge - D2 Y B- D2 [Iy®1dt = 1B,
(35) lim|¥6) =0,  keN,.

From this and from (3), (34), (33), (32) and (24) there exists on infinite set N; = N,
such that

|y(ﬂk)l .S_ |,V(')| .S_ g, ly"(t)l é K3 on [Bks at]’ kENg,
where K; = max (—KJ—, M). H
K,
From this, finally,

ak ak
F(a) — F(B,) = ‘_,{ 2y"(1) y(t)dt = 2 ,{ g yOL 1Y ®OL 1Y ®))x

111



2 ak , 2 3
x[y®)[dt2 — [y DIY(®OIdt 2 = [ gus)sds,
K Bk K 18|
g4(s) = min g,(s, x,, X3),

where the minimum is taken for 0 < x, £ M, 0 < x; £ K, holds that contradicts
(25) and (35). The theorem is proved.

Remarks 5. The Theorem 5 generalizes the similar result of [1].

¥
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