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1. Let u(z)9 where z = reiG, be a subharmonic function, defined in the whole 
complex plane, and harmonic in a heighbourhood of z = 0. Hayman [2] proved 
the following result: 

Lemma A. Let u(z) be subharmonic in the whole z-plane. For every R > 0, let 
K(z, Re10) be the Poisson kernel defined by 

K(z, ReiG) = Re[(Reie + z)/(Rei9 - zj\ 

and let GR(z, t) be the Green's function for the disc \z\ < R with pole at t, that is, 

GR(z91) = log \ (R2 -zi)/R(z-t)\. 

Then there exists a unique non-negative, additive set function \i(e) defined for all 
Borei sets e in the z-plane such that for any R > 0, u(z) is represented by 

(1.1) u(z) = -^ [u(Reie)K(z,Reie)d0^ J GR(z,t)A^i(et)9 ' 
Ln o .-!<-* 

for\z\<R. 
Let M(r) = max \u(z)\. He ins [4] defined the order Q of a subharmonic func-

l - l=r 
tion u(z) as' 

(1.2) lim sup l0fM(r) = Q, (O^Q^OO). 
r->co \®B r 

Kennedy [5] proved the following representation theorem for subharmonic 
functions of finite order, which is a generalization of a result of Heins [4]: 

Theorem A. Let u(z) be subharmonic in the whole z-plane and harmonic in a neigh­
bourhood ofz -= 0, and of finite order Q. Let fi be the set function defined in Lemma A 
and let 

0.3) M*(0 = MUI <i) 
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for all t > 0. Further let q be the least nonnegative integer such that 

(1.4) Jr ( € + 1 )d/i*(t)<oo . 
o 

Then for all values ofz9 

(1.5) W(z) = l?e[P(z)] + lim J log | E(z&q) \ d/<*<), 
K->oo \i\<R 

where P(z) is a polynomial of degree Q at most and E(x, q) is the Weierstrass factor 

defined by 

[ x2 xqT\ 

* + _ + . . . + — J . 
It has been shown that such an integer q exists and q ^ Q 5i q 4- 1. 

We define the type and lower type of u(z) by 
(1.6) U m ^ B r l =

T
9 f o r 0 < , < o o . 

r-oo -Of rQ * 

u(z) is said to be of maximal, minimal or normal type according as T -= oo, T =% o 
orO < T < oo. 

In this paper, we shall obtain some estimates of the subharmonic function in 
the plane. 

2. We write 

(2.1) /(2)= f log |£ (z / { ,^) |d^) , 

where /x and gr are same as defined in Theorem A. It can be easily seen that I(z) 
is also subharmonic in the whole z-plane and fi*(t) is a nonnegative, non-decreasing 
function of t. Wfc can write (2.1) as 

(2.2) 1(2)-J log | £(*/!,«) | d|i*(0. 
o 

We HOW give an estimate of I(z). We refer to the following result of Levin ([6], 
p. 11): 

Lemma B. For all q > 0 and all complex numbers z, we have 

(2.3) log\ E(z,q)\£At j + ' . 2 . , 

JV^C At = 3e(2 + log q). 
^ For q — 0, we have 

(2.4) l og |£ (a ,0 ) | g log ( l + | z | ) . 
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Now we prove 

Theorem 1. The function I(z) defined by (2.2) satisfies the following inequality 
in the entire complex plane 

where \ z | = r, kq = 3e(q + 1) (2 + log q) for q > 0 and k0 = 1. 
Proof. First we consider the case when q > 0. From (2.3), we have for | z | == r, 

l o g | £ ( z / ^ ) | < ^ ^ . 

Hence 
00 °° du*(t) 
J log | E(z/t, q) | d^*(0 < V« + 1 J - i ^ ~ • 
o o r(f + r) 

It is known that fi*(r) = 0(rq+l). Hence on integrating by parts the right hand 
side, we get 

Hence (2.5) follows for q > 0. Similarly, when q = 0, using (2.4) we get the cor­
responding inequality for I(z). 

We shall now obtain the estimate for the minimum of u(z). We assume, without 
any loss of generality, that u(0) ~ 0. Hayman [3] proved the following result 
which is an analogue, of the well known Bourtex- Carton Lemma for entire 
functions. 

Lemma C. Suppose that \i is a positive measure defined in the whole complex 
plane, vanishing outside a compact set and such that the measure V of the whole 
plane satisfies the condition 0 < n < oo. Then we have 

(2.6) Jlogrz-<J|d/i(^)^«(log^) 

outside a set of circles the sum of whose radii is at most 32r\. 
The following result was proved by M. Essen et al. [1], but not in the present 

form. We give the proof for the sake of completeness. We shall be using Lemma C 
for this purpose. ^ 
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Theorem 2. Let u(z) be subharmonic in the whole complex plane. Then for \ z \ < R, 

(2.7) u(z) > -H(rj)M(kR) 

outside a set of circles the sum of whose radii is atmost 32r\kR where r\ > 0, k > 1 
and H(r\) denotes some function not depending on R. 

Proof: For 1 < kt < k, we have 

where 

Now 

u(z) = ut(z) + u2(z), 

R/kx 

u2(z) = J log I 1 - ~ 
o I * 

åџ*(t). 

R/ki R/kx 

u2(z) = J log I z - 11 dfi*(t) - J (log t) dfl*(t). 
0 0 

Using Lemma C and the fact that (log t) is an increasing function of t, we get 

u2(z) > n*(R/kt) log (r,R) - n*(R/kt) log (R/kt) 

outside a set of circles the sum of whose radii is at most Z2r\R. Now from (1.1), we 
get on putting z = 0, 

-±-2$u(Rei°)d9 = u(0)+ J i-MdcJ, 
Z 7 C 0 \i\<R C 

or 
1 2* R n*(t\ 

(2.8) -J- H R e ' V o ^ ^ - d f . 

Let us write 

Mr,-j-*3>*. 
0 r 

Then N(r) ^ M(r). Since jx*(r) is non-decreasing, we have 

fi^R/k,) log k^n^R/k,) J i L ^ 
-g { - ^ - d ř á ! V ( R ) g Л f (Ä) . 

J?/(c, ' 

(2.9) иa(2) > -M(Ä)-

Hence 
log (l/r\k%) 

log /cx 

outside the set of excluded circles. For sufficiently small values of r\, we can 
choose k2, 1 < kt < k2 < k, such that the circle | z | = R/k2 avoids all the 
excluded circles. Hence (2.9) holds for | z | = R/k2. We can choose the argument 
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of z/k2 = Rei9/k2 so that 
«.(2/fc2) = MAR/ki), 

where 
M^r) = max [tj.(z)]. 

Now 

M.(K/*2) < M(R/fc2) - «2(Keiť7*2) < M(K) - - M W k*™**-* 
logfc 

since fc2 > 1. By definition of ux(z) we have 

11,(2) = Re [P(z)] + J log | £(z/r, «) I d/AO + 

*/fcl Yz z2 zql 

• oo 

+ J lOg|£(z/r,rj)|d/l*(0. 
R/kt 

Hence ux(z) has no mass inside the circle | z | = R/kx. and is therefore harmonic 
there. Applying the Caratheodory's inequality ([8], pp. 174—175), we have 

(2.10) ux(z) > -{Rlk2)~rMl{R,k2)> J z I = r < Rlk2 < */fc- • 

Combining (2.9) and (2.10), we get 

> _ . 2 r Y r / m f i l o g ( ^ f c l ) l , ^ / n N I o g ( ^ f c l ) _„(«[, _Ж] + MW: (-R/fc2) - r |_ log kx J log fc 

The coefficient of — M(R) does not exceed 

2fc2 | (fc + fc^logq/iffc,) 
fc — fc2 (fc — fc2) log fc 

which is a suitable value of H(rj). Thus we have 

(2.11) ' u(z) > -H(r\)M(R) 

outside the set of excluded circles, or 

(2.12) u(z) > -H(r\)M(kR) 
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outside a set of circles the sum of whose radii is atmost 32tjkR. Thus Theorem 2 
is proved. 

3. We now define the proximate order for a subharmonic function. 

Definition. A real valued function Q(r) satisfying the following conditions is said 
to be a proximate order: 

(3.1) Q(r) is continuous, piecewise differentiable for r > r0 > 0 except at isolated 
points where Q'(r - 0) and Q'(r + 0) exist. 

(3.2) lim rQ'(r) log r = 0. 
v r-*oo 

(3.3) lime(r) = Q, 0 < Q < co. 
r-+oo 

Further, if 

(3.4) lim sup —77- = <ru, 0 < ou < oo, 
r*(r) 

then Q(r) is said to be a proximate order of the function v(z). We call au to be the 
type of u(z) with respect to the proximate order Q(r). The existence of proximate 
order for a subharmonic function u(z) has been established in [7]. 

It is evident that every subharmonic function of finite order is of normal type 
with respect to its own proximate order. However, we can compare the growth 
of M(r) with that of rQir) for any proximate order with the help of density function A 
of the mass distribution p.. 

We define the Upper Density of the mass distribution \i as: 

(3.5) l i m s u p ^ ^ - = J, 

where Q(r) is any proximate order satisfying the conditions (3.1) to (3.3). 
Now for any e > 0, we have for all r > r0(e), 

M(r) < (aM + e) r*('>. 
From (2.8) we have 

H*(r) ^i^dt^]^dt% M(er). 
, l 0 » 

Hence we have pi*(r) < (au + e) (er)e(er\ r > r0(e). Using inequality (2) of Levin 
([6], p. 33), we have for t\ > 0, 

H*(r) < (au + e) e»r«w(l + tj), for r > r.(e, if), 
or, 

(3-6) l i m s u p ^ < ; * V 
»•->« r* l r , 
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For a subharmonic function of non-integral order, we can get a reverse estimate 
also. From Theorem A and (2.5), we have 

M(r) < Off) + fc/[j *5rdl + r] -p> d.]. 
By (3.5) we have 

[> MO • #«(0 1 

J-^d' + rJ~77d' * 
Using (1.53) and (1.53') of Levin [6], we have 

[ rQ{r)-q rQ(r)-q Tl 

T~T + „ l i n + °(^r)" f) > £ - 2 « + 1 -<? J 
since # < g < # + 1. Hence we have 

(3.7) ^ = lim sup ——- ^ AAy 
r->ao rQ{r) 

where A depends on Q and # only. 
Combining (3.6) and (3.7), we get the following 

Theorem 3. Let u(z) be subharmonic in the whole complex plane and of non-
integral order Q. Let Q(r) be a proximate order such that lim Q(r) = Q. Then u(z) 

r-*oo 

is of maximal, minimal or normal type with respect to Q(r) according as A is infinite, 
zero or 0 < A < oo. 

The corresponding result for functions of integral orders is not so straight 
forward. In this case, the knowledge of A alone is not sufficient to determine the 
growth of M(r) with respect to Q(r). We define a new constant Su for the subharmonic 
function u(z) as follows. We represent u(z) as 

(3.8) u(z)=Re[P(z)]+ J log | £(z/£, q) \ d/<ec), 
KJ<oo 

where q ^ Q and P(z) == a0 i+ (xtz + a2z
2 + ... + atfz*. 

We put 

аnd 

where 

and we define 
L(r) = г«(r)-« 

vи — max (Л, ðu). 
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Now we prove 

Theorem 4. Let u(z) be a subharmonic function of integral order Q and let Q(r) be 
a proximate order with lim Q(r) = 0. 

r-+oo 

Then u(z) is of maximal, minimal or normal type with respect }o Q(r) according 
as vu = oo, vu = 0 or 0 < vu < co. 

Proof: We define the subharmonic function 

(3.9) uR(z) = J log | E(zjt, Q-\)\ dp*(t) + flog | E(z\t, Q) \ d^t). 
0 R 

Then we can write 

u(z) = Re [P(z)] + uR(z) + J Re (f/gt) d»*(t), 
0 

or, 
(3A0) u(Z) = Re [ P , - ^ ) ] + uR(z) + Re [SU(R) Z'], 

where PQ_i(z) is a polynomial of degree atmost Q — 1. Let 

. MRW = m a x [«*(*)]• 

and suppose that £ > 1. Then using (2.3) we get 

MR(R) < AjR'l d** ( t ) + R - f ^ U . 
1 o (t + R)te R (t + R)tc] 

As in Theorem 1, integration by parts on the right hand side yields 

(3.11) MR(R)<kJR^]j^dt + Re^]^f\. 
L o te R tQ+2 J 

From (3.5) we have for any e > 0 and r > r0(e), 

H*(r) < (A + e)rc(r). 
Hence 

R 

MR(R) < 0(RQ'X) + k.R9"1 j (zl + e) rm~edt + 
ro 

+ RQ+l](A +E)te(,)-e-2dt. 
-R 

Using again the relations (1.53) and (1.53') of Levin, we have 

(3.12) MR(R) < 2ke(A + e) Rs(R) + 0(R<*R)) + 0(R(Q-1)). 

From (3.10) we have • 

M(R) < 0(Re-1) + 2ke(A + e) ReW + \ 8U(R) \ Re, 
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or, 

M ( * > <o(l) + 2 ^ + . ) +

| a - ( J l > 1 

or, 

(3.13) *tt = (l +2k , )v a . 

For the reverse inequality, we have from (3.6), 

(3.14) A = e«crw. 

Let ^ = (1/64) k, k > 1. Then from Theorem 2, we have for | z | ^ r, 

u*(Z)> -HWM^RJ 

outside a set of circles the sum of whose radii is atmost r/2, Rt = kr. We can find 
a number rt such that r/2 < rt < r and the circle \z\ = rx avoids all the excluded 
circles. Hence from the representation (3.10), we get 

Re \bu(R)z*-\ < M(r,) + H(n) MR(Rt) + 0(RQ~i) 

on the circumference of the circle \z\ = rt. We can choose the argument of z 
so that zQ and 5U(R) have arguments that cancel each other. Then we have 

(3.15) | SJLR) | < * ^ + H<*>M«(*i> + O(R-). 

r\ r[ 

Dividing by L(R) and proceeding to limits, we get 

Su <; c<xM, 

where c is some constant. Combining the above inequality with (3A4), we get 

(3.16) au = ctvu. 

Theorem 4 now follows in view of (3.13) and (3A6). 
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