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LINEAR POSITIVE OPERATORS AND THEIR
APPLICATIONS TO DIFFERENTIAL EQUATIONS

IVANA HOROVA, Brno
(Received September 30, 1982)

In the present paper we shall deal with linear positive operators constructed
in [2]. )

Let us consider two real functions « and g which are holomorphic functions
defined in the disks | x| < R, and | x| < R,. It is supposed that coefficients of
the coiresponding developments in power series are non-negative and that «(0) # 0.
We define the sequence a,, n = 1,2, ..., by the relation

) a(x)=expn }a’(s) g(s)ds, xe€[0,R), R = min(RR,).
(4]

In this case the function a, admits’a development in power series with the con-
vergence radius equal to R, thus

@ .
oa(x) = Y cpx’
v=0

and the coefficients c,, are non-negative, c,o = 1.
Now we establish some formulas which will be usefull in what follows.
Let :

?) fo'(s) g(s)ds = Zoa,x", xe[0,R)
. 1] v=
where the coefficients g, are non-negative.
By differentiating «, we obtain
- , ~0(x) = na'(x) g(x) . a,(x)
thus ‘

y=]

i Ve, X"t = n( gl vax""Y) ('ioc,,,x"), x€[0, R).



This formula implies -
na, = Cpy
2na, + na,c,, = 2¢,
3nay + 2nac, + na,c,; = 3c,;

hence - »
‘ Ve =ny «":,,,‘av_l,‘(v -k), v=123,.

®» R

Further from the definition of the function o, it follows

U1 (%) = 03 (x) . ()
‘which means that

o 0 e o)
1 ' ol PV
Z cn+'l,vx' = ( 2. cnvxv)( Z C1yX )
. v=0 v=0 v=0
Thus we may conclude for coefficient.. ¢, e

Cat+150 = CproC150

Cat1s1 = ChoC1y + CuiCyo
v
(4) C,,+1‘v = Z ancl,v_k, V = 1;’ 2, .:..
k=0
Let Q[a, b] be the set of all real functions defined and bounded on the interval
[0 o) and continuous on the interval [a, b] contmuous to the left in x = a

and continuous to the right in x = b. For n =1,2,3, ... we define operators L,
by the relations: ' :

n ’ X n\'x

Lfi %) = ,()VZ, f( )

These operators are defined for each function which is bounded for x 2 0.
Further we consider the function-

o (%) = xei(x) g(x). |

From our conditions for « and g it follows that 7 is an absolutely monotone
function on the interval {0, R). o -
In [2] it is shown that operators L,(f; x) satlsfy the followmg condmons

Ln(f; x) =1,
L,(t; x) = ©(x),

L% 9 = 7) + — [¥2'() §) + X 8 + 100



In the same paper there is proved the following théorem: =~ - ~°

Theorem. Let ae (0, R) and let a* = t(a). If fe.Q[0, a*] then the. sequence
{Lf; X)}ym= 1,2, ..., converges uniformly towards the function f(t(x)) on the
interval [0, a].

It is known that
L{;x)=1x) foralln=1,2,...,

consequently v
' v 102 vV
‘ n+1(") Z Cnfl v T+ T+ 1 _.———_a,,(x),,;e_c"'"x --r-.-
and
el v hed v
v _ v
V§OC"+1" v [ESE a1(x)yz=:of’av" e
hence ’
v Y k ‘
(5) : = Cnt1,y Z CnkC1, v-—k v=1, 2r

n+1 &
We recall the following definitions:
"Definition 1. A4 real function f is called convex, non-concave, polynomlal non--
convex, concave of the k-th order on the interval [a, b), if
[x15 X2, ... ,x,‘”,f] >0,20,=0, <0 <0,

respectively, for any system of k + 2 knots from [a, b] [x1svees Xix2s f] is the~
(k + 1)st-order divided difference of the function f on the kRots X,; ..., Xy42+ -

. Definition 2. A linear functional T defined on C[a, b] is of the exactness degree k
or T is said to be in &, if R
T[x’] =0, j=01,.., and  T[x**1] ;e 0.
Definition 3. A linear funcnonal T deﬁned on C[a, b] has the s:mple form of the
k-th-order and in this case we say that T e oy. if for all f € C[a, b] it is
T[f] B[xls e ,xk+2’f] ‘

where B # 0 is mdependent of f(x) and the distinet knots x,, . , x,“+2,‘depehd—
generally on the choice of f(x).. . ‘
In the rest we shall use the followmg theorem [3]

Theorem. (T. Popoviciu). Let T be a linear functional deﬁned on C[a, b]. Then
Test, if and only if Te &, and T[f] # O for any function convex of the k-th-order
on [a, b].

Remark. For x = 0 it is

SO =L n=1,23, ..



%

Now, we shall prove the following theorem: -

Theorem 1. Let f be convex of the first order on the interval [0, ).
Then the sequence {L,(f; x)}, n = 1,2, ..., is decreasing on the interval (0, a}, i.e.

L{f;x) > Ly(f;x), x€(0,a],n=1,23,..
Proof

L{f; x) = Lys,(fi x) = l(x) {a,(x) Y emx'f (— Z Cat1, vxf(n F1 )}

Usirig the Taylor’s series for «, and carrying out the multiplication by Cauchy’s
rule, we obtain for the expression in brackets:

£ L ‘.f< ) - vt (57 ]

Then it suffices to establish

- k
kgocutcl,v-kf ('n—) Cn+1, vf(n T 1)

This is, however, a direct consequence of convexity since fis convex and relations
(3) and (4) are valid.

Remark. If f is non-concave, polynomial, non-convex. concave of the first order
on [0, o), then the sequence {L,(f; x)} is non-increasing, stationary, non-decreasing,
increasing on the interval (0, a], respectively.

Corollary. Let f be convex, non-concave, polynomial, non-convex, concave of the
1-st-order on [0, ).
Then

L{f; ) > fa(), L9 2fG0),  Lf; ) = f(x(%),
 L(i® Se®), Lfix) <fG(x), x€(0,4],

respectively.

Let x be a fixed pomt in (0, a] Let T,,, be a functional defined on C[O o).
by the relation:

ux[f] L:H- l(f; x) - Ln(f; x)'

Thm functionals are in l, smoe

T.[1] =0,

ux[‘] =0,
1L _ xt'(x)
L= -y



These functionals take negative values for any function convex of the first order
on [0, ). We sce that T,, satisfies the conditions of the Popoyviciu’s theorem and
these functionals have simple forms of the first order, namely,

_ (6) Tux[f] = C,,(X) [:lm $2ms fsu;f]-

The value c,(x) can be determined by

Tul] = 2228 = ) i o i )
From this
xt'(x) .
(7) C,'(x) = —’"—(n—-;—ﬁ .

Now, we define functionals R,,, x€(0,4], n = 1,2, ..., according to relations

R [f] = L(f; ) = f((x)).

These functionals are in & since
R, [1] = R,,,[x] =0,
R[] =+ — x7'(x).
According to the corollary we can see that

R,[f] <O

for any function convex of the first order on [0, ). Functionals R,, satisfy the
Popoviciu’s theorem and have the following simple forms:

®) Rnx[f] = A,,(x) ["lm Nans "Sn;f]9
where
® A (x) -szt'(x).

Remark. If f” is -continuous on the interval [0, ) and |f'(x)| S M for al
- x € [0, c0) then

(10) | Rl f11 S 73260,
. M ,
(11 I Tlf]1 S T (x).

Next we shall study the sequence formed by the first order derivatives of the
operators L,(f; x).



-We know .

o= (X) Y 1 v AN
= (7> TSR (7) -
_ 1 had vl V ,,(x) v
" %® {E et (7) a0 2 (7>}
It is obvious that
g afoe
Then g

ot ®© y—1 . !
1t = g { Eon s (7) =n 8 [ S - s (B

For the expression in brackets we use the relation (3):
v—-1 v v—1 k \
( Z ay - Cu(v — k))f(;) - Z Coxy—i(V — k)f(—) =
k=0 k=0 n

v—-1
- Taest =01 () -1 (%)) -
e IR L 1l
Consequerntly, for L/(f; x) we have:

1 @ fv=1 . . .
L{f;x) = a:x) ) ( a,- kc,,,(v—k) [5 ._—"—;f])x"‘l.

v=1 \k=0

Next, let us suppose that f satisfies the Lipschitz’ condition on the interval [0, o)
with a constant K i.e.

az _ If(xl) )| = lex - le’x.leE[O ).

Then the absolute value of the divided difference [-—E—, 7; f] is bounded by

- number K. S )
Then - )
w v—1
| Lo (f; x)l n(x) 92 (- Z ay= ik Cu(V. — k)z) 7=
n(x) —( Z kza,‘x" DY Z ) =K.1 "(x).



Thus the following lemma is proved:
Lemma. Let a function f satisfy the condition (12). Then
(13) |Li(f;x)| £ K2'(x)  for all x € [0, a].

Remark. If f'(x) is continuous and bounded on the Interval [0, ), then (13)

is valid.
Now, we can prove the following theorem concerning application to differential

equations.

Theorem 2. Let an initial value problem be given
(14 Y =f(%9),50) =y, xe[0,a),a51l
Let f(x, y) satisfy the Lipschitz’ condition in the strip0 £ x < a, —0 <y < +00
| fGoys) = fCey) | S Alps = y2l with 2e[0,1).

Let f(x,y) and its first two partial derivatives be continuous and bounded in the

domain 0 £ x < 0, —0 <y < 0. _
Then the functions y,(x) defined recursively by

(15) Yo(x) = yo, Yu(X) = yo + gLn{f(t, Vn-1,(1); s} ds

converge uniformly towards the solution y(x) of the initial value problem (14)..
Proof. As mentioned in [1] we shall show that the series

Yot T (as1(%) = ()
converges uniformly for x € [0, a).

Let us put
8n(-x) = Vn+ 1(x) - yn(x)’ yr:(x) = f(x’ y,,(X))-

Then ) .
&) | = 17a010) = 1) | = | [ LuvsQis $)ds = [ L(y}-1, 9) ds|

é IILn+1(yr’:; S) - Ln(yr’u s) I ds + gan(yr,n S) - Ln(yf'l“].’ s)'ds = El + E2’
0

where
E = ,g [ Lyt (s 8) = Ly(ys, 5) | ds,

E2 = 6‘ ILn(y:n S) - L..(y,'._l, S) l ds.



By using (11) it follows

E kazt'(a)
1 = 2n(n + 1)’

where

k = sup Q={0Sx<®, -0 <y< w0}
n

d’f(x, y) ’
dx? ’

In the same way as in [1] it is shown

d f(x,

2 l Sk< .
To estimate E; we use the Lipschitz’ condition:

E2 = I |Ln(y:n S) - Ll(y:l"l! S)Ids .S_

SAxsup |g,-4(t)]| S Aa sup ls,, 1M1

0st<a

The conclusion of this proof is the same as in [1].
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