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LINEAR POSITIVE OPERATORS AND THEIR 
APPLICATIONS TO DIFFERENTIAL EQUATIONS 

IVANA HOROVA, Brno 
(Received September 30,1982) 

In the present paper we shall deal with linear positive operators constructed 
in [2]. 

Let us consider two real functions a and g which are holomorphic functions 
defined in the disks | x \ < Rx and | x \ < R2. It is supposed that coefficients of 
the coi responding developments in power series are non-negative and that a(0) ^ 0. 
We define the sequence a„, n = 1, 2 , . . . , by the relation 

X 

(1) <xH(x) = exp n J <x'(s) g(s) ds, x e [0, R), R -» min (RtR2). 
o 

In this case the function <xn admits a development in power series with the con­
vergence radius equal to _R, thus 

and the coefficients c„v are non-negative, cn0 » 1. 

Now we establish some formulas which will be usefull in what follows. 

Let 

(2) f <x'(s) g(s) ds - £ a*\ x 6 [0, R) 
0 v«0 

where the coefficients ak are non-negative. 
By differentiating a, we obtain 

K(x) - na'(x) g(x) . <xn(x) 
thus 

£ vc„x"-1 * n( f v«vxvM)( £ cwO, xe[0, *)• 
? - l ? • ! ?«-0 



This formula implies 

nax = cni 

2na2 + naxcnX = 2cn2 

3«a3 + 2na2cni + naxcn2 = 3cn3 

. • • / • • • • • • • . 

hence 
: . * . ' • . : . ""' ' V - l f 7 " . 

vcBV = n X cnkav^k(v - fc), v = 1, 2, 3, . . . 
*=o 

(3) . . c t t 0= t l 

Further from the definition of the function an it follows 

*n+i(*) = « i W . a » W 
which means that 

00 00 90 

£ c„+1§ vx* = ( £ cwvx
v) ( £ < v̂x

v). \ { 

v=0 v=0 v=0 

Thus we may conclude for coefficient. cny: 

Cn + 1>0 = CnrOcUO 

cn + l» l = cnOcll + c n l c 1 0 

w cn + l,v ~ Z J Cnkcl,v-ki V— I j 2 , . . . 
* = 0 

Let Q[a, b~\ be the set of all real functions defined and bounded on the interval 
[0,oo) and continuous on the interval [a, b], continuous to the left in x = a 
and continuous to the right in x = b. For n = 1, 2, 3, ... we define operators Ln 

by the relations: 

W;* )=4Í.I^ /(^)-
These operators are defined for each function which is bounded for x - 0. 

Further we consider the function 

*(*) f= :**f(*) £(*)• 

From our conditions for a and g it follows that T is an absolutely monotone 
function on the interval [0, R). 

In [2] it is shown that operators Ln(f; x) satisfy the following conditions: 

z,n(/;x) = i, 

Ln(t; x) = T(X), 

Ln(t
2; x) = T2(X) + 1 [xV(x) g'(x) + xV(x) g(x) + t(x)]. 



In the same paper there is proved the following theorerti: ^ 

Theorem. Let as(09R) and let a* -x(a).IffeQ[Ora*\then the sequence 
{Ln(f; x)}9 n = 1,2,..., converges uniformly towards the function f(x(x)) on the 
interval [0, a\. 

It is known that 

Ln(t; x) = x(x) for all n = 1, 2, ..., 

consequently 

1 y v v _"-r f vJL 
«n+i(x) v ^ 6

C w + 1 ' v X n + 1 " ^ ( x ) . ^ ' * * n,-
and 

hence 

(5) 

.v V I CB+1,VXV——p = «!(*) J] CnvX
V — 

v = 0 • П + 1 • . v = 0 П 

n + 1 fctb n 

We recall the following definitions: 

Definition 1. A real function f is called convex, non-concave9 polynomial, non* 
convex, concave of the k-th order on the interval [a, b\9 if -.. . . ' . , . . .-•. 

[xl9x29 ...9xk+2;f\ > 0, ^ 0, = 0, ^ 0, < 0 , 

respectively, for any system of k + 2 knots from [a9 b\; [xi9 ..., xk+2;f\ is the 
(k + \)st-order divided difference of the function f on the knots xt, ..., xk+2 , 

Definition 2. A linear functional T defined on C[a9 b\ is of the exactness degree k 
or T is said to be in Skif 

T[xj\ = 0, / = Q, 1, ..., k and T[x*+l\ + 0. 

Definition 3. A linear functional T defined on C[a9 b\ has the simple form of the 
k-th-order and in this case we say that Tes/k\ ifforalffe€[a9 b] it is 

T[f\ = B[xl9...9xk+2;f\9 v -« . 

where B # 0 is independent of f(x) and the distinct knots xi9 ...9xk+2 depend 
generally on the choice off(x). 

In the rest we shall use the following theorem [3]: 

Theorem. (T. Popoviciu). Let T be a linear functional defined on C[a9 &]. Then 
Tes/k if and only ifTe Sk and T[f\ # Of or any function convex of the k-th-order 
on [a9 b\. 

Remark. For x = 0 it is 

f(0) = Ln(f;Oy 71 = 1,2,3,... 



Now, we shall prove the following theorem: 

Theorem 1. Let f be convex of the first order on the interval [0, oo). 
Then the sequence {Ln(f; x)}9 n * 1, 2,..., is decreasing on the interval (0, a], i.e. 

IJLfl x) > Ln+1(f; x)9 x e (0, a], n -= 1, 2, 3, ... 

Proof 

Using the Taylor's series for <xx and carrying out the multiplication by Cauchy's 
rule, we obtain for the expression in brackets: 

Then it suffices to establish 

І o C r t c 1 > v . j(A^ C в + l J (_l_) 

This is, however, a direct consequence of convexity since/is convex and relations 
(3) and (4) are valid. 

Remark. If f is non-concave9 polynomial, non-convex, concave of the first order 
on [0, oo), then the sequence {Ln(f; x)} is non-increasing9 stationary, non-decreasingy 

increasing on the interval (0, a], respectively. 

Corollary. Let f be convex, non-concave9 polynomial, non-convex, concave of the 
l-st-order on [0, oo). 

Then 

LJJ; x) > f(x(x))9 Ln(f; x) ]> f(x(x))9 Ln(f; x) - f(x(x))9 

W ; *)£/(*(*))> Ln(f;x)<f(x(x))9 X€(0,a], 

respectively. 
Let x be a fixed point in (0, a]. Let Tnx be a functional defined on C[0, oo). 

by the relation: 
TJLf]~L*+x(f>x)~Ln(f;x). 

These functional are in ^-. since 

r„[i]-a 
T^t] m o, 

T rr*1 -r xt'ix) 



These functional take negative values for any function convex of the first order 
on [09 oo). We see that Tnx satisfies the conditions of the Popqviciu's theorem and 
these functionals have simple forms of the first order, namely, 

(6) TJif\^cJix)[iU9iu^uif\^ 

The value cn(x) can be determined by 

T ~ [ / 2 ] - ^ + T ) " c - ( x ) C * " ' *>">* 3 * ' ' , , ] -
From this 

xt'(x) 
(7) *»--J5f+U-
Now, we define functionals RHX, xe(0, a], n = 1,2 according to relations 

Xj[f\-LJLflx)-Mx)). 

These functionals are in Sx since 

4«M - -U>] - o. 

-U«a]-•£-**'(*)• 
According to the corollary we can see that 

-W] < ° 
for any function convex of the first order on [0, oo). Functionals Rnx satisfy the 
Popoviciu's theorem and have the following simple forms: 

(8) Rnx[f] = *n(x) [tlu, rju, f?3„,/], 

where 

(9) A,(x)«lxt'(x). 
n 

Remark. If f" is continuous on the interval [0, oo) and \f(x)\ £ M for al 
x e [0, oo) then 

(10) \RM]\£j~xA*)> 

(ii) 1-̂ J/Tl ag a^^-i) 

Next we shall study the sequence formed by the first order derivatives of the 
operators hJJ\ x). 

' " • * 



We know 

It is obvious that 
/ , ' t v . °° 

<*«(*) * = 1 

Then 

«**> - ш{ï:e"*'-lf(ï) - "I, [£"-"*<" - k)J(Щ*-'-
For the expression in brackets we use the relation (3) 

v - l 

c 
*= 
£ av-.ftcnk(v - fc))f(~-J - £ cwfcav_fc(v - fe)f(— J = 
=-0 \ n / * = 0 \ r t / 

-;ii^-*)(/(f)-/(4))-
= — Z v̂-*cw*(v - fc)2 —, ^-; f L 

«*=o Ln n J 

Consequently, for L̂ (f; x) we have: 

Next, let us suppose that f satisfies the Lipschitz' condition on the interval [0, co) 
with a constant K, i.e. 

(12) \f(xt) - f(X2) l£K\xt-x2\9 XiX2 e [0, oo). 

Then the absolute value of the divided difference —, —; f is bounded by 

number K 
Then 

a « W v = l «=10 

K 
(Ъ^V^H^c^^K.xXx). 

a n ( x ) * = 1 *-=0 



Thus the following lemma is proved: 

Lemma. Let a function f satisfy the condition (12). Then 

(13) I Vn(f; x) | ^ Kx'(x) ' for all x e [0, a]. 

Remark. If f'(x) is continuous and bounded on the interval [0, oo), then (13) 
15 valid. 

Now, we can prove the following theorem concerning application to differential 
equations. 

Theorem 2. Let an initial value problem be given 

(14) y = f(x9 y)9 y(0) = y0, x e [0, a)9 a <, 1. 

Let f(x9 y) satisfy the Lipschitz' condition in the strip 0 ^ x < a9 — oo < y < +oo 

I / (*, yi) - f(x, y2)\£i\yi-y2\ with Xe [o, l). 

Let f(x9 y) and its first two partial derivatives be continuous and bounded in the 
domain 0 g x < oo, — oo < y < oo. 

Then the functions yn(x) defined recursively by 
X 

(15) y0(x) = y09 yn(x) = y0 + JLn{f(t9 yn-i9 (t)); s) ds 
o 

converge uniformly towards the solution y(x) of the initial value problem (14)., 
Proof. As mentioned in [1] we shall show that the series 

GO 

yo + I (y«+iW-y„W) 
«=o 

converges uniformly for x e [0, a). 
Let us put 

en(x) =y„+i(*) - yn(x), y'n(x) = f(x9 yn(x)). ^ 

Then 

I sJtx) I = I *+.(*) - yJM | = | J Ln+l(y'n, s)ds - JLJLyí-i, s)ds | š 
o o 

á í I Ln+1(y'«; s) - La(y'n, s) | ds + J | Ln(y'n, s) - L ^ - i , s) | ás = £, + E2, 
0 

where 

E1 = í\Ln+l(y'n,s)-~Ln(y'„,s)\dst 

E2 = í\Ln(y'n,s)-LH(y'H_itS)\ds. 
O 



By using (11) it follows 

Et< kaW(á) 
2n(n + 1) ' 

where 

fc « sup 
n 

d2f(x,У) 
dx2 Q**{0śx<co9-(X)<y< oo}. 

In the same way as in [1] it is shown 

d2f(x,y) 
dx2 й k < oo. 

To estimate E2 we use the Lipschitz' condition: 

E2=*S\LH(y'n,s)-L,,(y'l,-l,s)\ds< 
0 

£ Xx sup | en-t(t) | £ ka sup | e^^t) |. 
0<,f<« 0<,f<« 

The conclusion of this proof is the same as in [1], 
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