Archivum Mathematicum

Josef Niederle
Conditions for trivial principal tolerances

Archivum Mathematicum, Vol. 19 (1983), No. 3, 145--152

Persistent URL: http://dml.cz/dmlcz/107168

Terms of use:
© Masaryk University, 1983
Institute of Mathematics of the Academy of Sciences of the Czech Republic provides access to

digitized documents strictly for personal use. Each copy of any part of this document must contain
these Terms of use.

This paper has been digitized, optimized for electronic delivery and stamped
O with digital signature within the project DML-CZ: The Czech Digital Mathematics
Library http://project.dml.cz



http://dml.cz/dmlcz/107168
http://project.dml.cz

ARCH. MATH. 3, SCRIPTA FAC. SCI. NAT. UJEP BRUNENSIS
XIX: 145—152, 1983
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Definitions. By a tolerance on an algebra o is meant a compatible reflexive and
symmetric relation on 2, i.e. a subalgebra of A x A with a reflexive and symmetric
relation on | A | as its support.

By a principal tolerance T(a, b) on an algebra U is meant the least tolerance
on U containing [a,b]e| A x| A|.

An algebra U is said to have trivial principal tolerances if every principal tolerance
on U is a congruence.

A class of algebras ¥ is said to have trivial principal tolerances if every algebra
from ¥~ has trivial principal tolerances.

Lemma 1. Let A be an algebra, a, b, x, y € | W|. There holds [x, y] € T(a, b) iff
there exist a natural number n, an (n + 2)—ary polynomial f on W and elements
Ciyeeey Co €| W/ such that

x = f(a,b,cq, ..., Cp)
y = f(b,a,cy, ..., c,).
Proof will be omitted, cf. [1].

Lemma 2. Let ¢ be a homomorphism of an algebra N onto an algebra B. Then
T(¢a, ¢b) = (¢ x ¢) T(a, b).

Proof. Let [x, y] € (¢ x @) T(a, b). Then there exist elements v, we | A | such
that [v, w] € T(a, b)and x = @v,y = @w. By thelemma 1, there exist an (n + 2)-ary
polynomial f and elements cy,...,c,€| A | such that v = f(a, b, ¢y, ..., Cp),
w = f(b,a, cy, ..., ¢,). Then

x = ¢@v = ¢of(a, b, ¢y, ..., ¢,) = f(pa, @b, pc,, ..., @c,),
y = oow = (Pf(b’ Ay Cys ey C,,)_ =f(¢b9 pa, pcy, ..., (PC,,),

so that it holds [x, y] € T(pa, ¢b). We have obtained (¢ x ¢) T(a, b) = T(pa, pb).
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Clearly [¢a, ¢b] € (¢ x @) T(a, b). Since (¢ x @) T(a, b) is reflexive, as ¢ is onto,
and symmetric, and as a homomorphic image of a subalgebra of U x A a sub-
algebra of B x B, so a tolerance on B, it follows T(ga, pb) < (¢ x @) T(a, b).
Consequently T(¢a, ¢b) = (¢ x ¢) T(a, b). Q.E.D.

Proposition. An algebra N satisfies (i) and (ii) iff it satisfies (iii).

(i) A has trivial principal tolerances '

(ii) every principal congruences S, T on W satisfy STS = TST

(iii) every principal tolerances S, T on W satisfy STS = TST

Proof. Obviously (i) and (ii) implies (iii). Let (iii) hold, let T be a principal
tolerance on A. Since 4 is a principal tolerance on U, it follows T = ATA=
= TAT = TT. Thus T is a congruence. There holds (i). But (i) and (iif) implies (i)
immediately. Q.E.D.

This proposition describes completely relations among the conditions (i), (7)
and (§ii). It will be illustrated in the following examples.

Example 1. Let ¥~ be the variety of all monounary algebras that satisfy identity
[ffx = x. Every ¥ -free algebra satisfies (i), but if it has at least two generators it
does not satisfy (ii) and (iii):

Obviously T(a, b) = {[a, b], [b, a], [ fa, fb], [ /b, fa]} v 4.

l.fa=5

In this case T(a, b) = {[a, b], [b, a]} v 4. It is a congruence.

2.fa+#b

In this case fb # a, because fb = a would imply fa = ffb = b, and obviously
fa # a, fb # b. So T(a, b) is a congruence.

Let a, b be two distinct free generators of a ¥ -free algebra. We have [b, fb] €
€ T(a, b) T(a, fa) T(a, b), but [b, fb] ¢ T(a, fa) T(a, b) T(a, fa).
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Example 2. A simple algebra which is not tolerance simple satisfies (ii) but
it does not satisfy (i) and (ii7). An example of such an algebra is the following
modular lattice.
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Theorem 1. Let ¥~ be a class of algebras and let & be a subclass of ¥~ such that
¥ = HZ. The following conditions are equivalent:

(A) ¥ has trivial principal tolerances

(B) every algebra N from F satisfies (i) and (ii)
(C) every algebra N from F satisfies (iii)

(D) every algebra W from ¥~ satisfies (iii)

Proof. A= D: Let ¥ have trivial principal tolerances. Let S = @(a, b),
T = O(c, d) be arbitrary principal tolerances i.e. principal congruences on .
We have H¥ = HHY = H¥ = ¥, thus U|; is an algebra from ¥". Denote by ¢
the quotient homomorphism of U onto A|;. By the lemma 2, T(¢pa, pb) =
= (¢ x @) T(a, b). Let [x, y] € STS, so there exists elements v, w such that [x, v] € S,
[v,w]eT and [w,y]eS. Then @v = ow and it holds [¢x, @v] € T(¢pa, ¢b),
Lov, py]e T(pa, pb). Since A, is an algebra from ¥ and so it has trivial principal
tolerances, we have [¢x, @y] e T(pa, pb). It means that there exist elements
Xy, y1 €| W|suchthat[x,x,]eT,[y,y,]€ Tand [x, y,] €S, and so [x, y]eTST.
We have obtained STS < TST for arbitrary principal tolerances S, T on U. Thus
STS < TST < STS holcs for arbitrary principal tolerances on .

D = C is obvious.

C = B: follows from the Proposition.

B = A: Let every algebra U from & satisfy (i) and (ii). Let B be an arbitrary
algebra from #". Since ¥~ = HZ, there exists an algebra U from % and a homo-
morphism ¢ of 2 onto B. Let a, b, x, y, z€ | B | be such that [x, y] € T(a, b) and
[v, z] € T(a, b). Choose g, € ¢ 'a and g, € ¢ ~'b. Then, by the lemma 2, T(a, b) =
= (¢ x¢) T(g,, g,). Thus there exist elements g,g,,h,, h.,€| A | such that
Le.. 8,1 € T(ga, gb), [y, h:1€ T(g0, &) and @g. = x, ¢g, = ¢h, =y, ¢h, = z.
By the assumption, T(g. &) is a congruence. So if g, = h,, then [g.,h,]¢€
€ T(g,, &) and consequently [x, z] € T(a, b). If g, # h,, denote S = T(g,, h,) and
T = T(g,, g,). We have [&x, h.] € TST. By the assumption, there exist elements
81,82 €| | such that [&x, 8,]€S, [g1,8:.]€T and [g,,h,]€S. Since S&
S Ker o, it holds ¢g, = ¢g, and ¢g, = ¢h,. Hence [x,z] = [¢g., 0h.] =
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= [¢og,, v8,] € (¢ x @) T = T(a, b). We have obtained that T(a,b) is a con-
gruence. Q.E.D.

Theorem 2. Let¥” be a varietv of algebras. The following conditions are equivalent :

(A) ¥ has trivial principal tolerances,

(B) every ¥ -free algebra W satisfies (i) and (ii),

(C) every ¥ -free algebra U satisfies (iii),

(D) every algebra U from ¥ satisfies (iii),

(E) for every natural number n, every (n + 2)-ary polynomials f,, g, f, and
every n-ary polynomials s, t, u, v such that

fl(s(xh -":xn); t(xl’ RN xn)’ xl’ ety xn) = g(u(xlﬁ AR xn); u(x,, LR xn)> Xl, s xu)s
f-Z(t(xI’ ey x’l)s S(xls cery x,,), xl) cecy xn) = g(v(xl9 LR ] xn)a u(xla ceey xn), xxa LX) x")s

holds in ¥ there exist (n + 2)-ary polynomials g, f, g, such that

Ji@Cers ooy X)), SCery ey X0y Xps ooy X)) = &1 (U(Xy, ooy X,), 0(X 15 ey Xp)s Xqy oovs X)s
F(0egy s X, (X s ey Xn)s Xy oens X)) = 810X 15 oeey X), (15 oeey Xp)y X1y vees X)s
f Oy oy X))y S(X g cees X))y Xps wvns Xn) = &2(0(X 15 oy X)), V(X (5 wvvs Xp)y Xps oee s Xp)s
FolS(X1 s coes Xy 815 ey Xp)s Xps oeey X)) = &o(0(X 15 ooey X)) U(X 15 oeey X))y Xp s ens Xp)
holds in V",

Proof. Since every algebra from ¥~ is a homomorphic image of a ¥ -free
algebra, we have 4 == D = C= B = A by theorem 1.

C = E: Suppose C. Let f1,8,/5,5,t u, v be polynomials satisfying the first
two identities. Then [f,(¢(x), s(x), x), f5(s(x), 1(x), x)] € T(s(x), t(x)) T(u(x), v(x))
T(s(x), t(x)), where x denotes x,, ..., x,. It is true also for the ¥ "-free algebra
over n free generators, so applying C and lemma 1 we obtain polynomials g, f;
g, in request.

E = C: Suppose E. Let U be a ¥ -free algebra, a, b, ¢, d, x, ye| A |, [x, y] €
€ T(a, b) T(c, d) T(a, b). By the lemma 1, there exist natural numbers m,, m,, m,
and an m,-ary polynomial A,, an m_ -ary polynomial 4,, an m,-ary polynomial &,,
elements py, ..., Pm,> 915 -5 Amgs> '15 ---» I'm, SUCh that

hya, b, py, ..., Pm,) = X;

“hy(b, a, pys .., Pm,) = (e, d, qys ..., @),
h(a, b,ry,...,1ry) = h(d, c,qy, ..., Ing)s
h(b, a,ry,...,1,) = ).

There exists a finite set of free generators of U, denote it {x,, ..., x,}, such that
8,b,¢,d, P15 -os Pmys Q15 o5 Gmgs T -+> I'm, ar€ elements of the subalgebra B
of A generated by {x,, ..., x,}, which is itself a ¥ -free algebra with the set of
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free generators {x,, ..., x,}. Thus there exist n-ary polynomials s, ¢, », v such that
= Xy, cers Xp)s
= S(Xy, eeny Xp)s
U(Xyy ey Xy)s
d=v(x, ..., X,)

o o R
|

and (n + 2)-ary polynomials f,, g, f, such that

hy (W, 2, Pis ey Py) = F1(W, 2, Xq 4 oony X)),
hq(ws Z,oqqys oees qmq) = g(W, Zy Xys eens xn),
h(w, z,ry, oy 1) = (W, 2, X1, ...\ X,)

holds for abitrary elements w, z€ | B |. Now we substitute a, b, c, d for w, z and
then ¢(x), s(x), u(x), v(x) for a, b, ¢, d. We obtain the first two expresions from E and

f1(t(x), s(x), x) = x,

fa(s(x), t(x), x) = y.
Since x,, ..., x, are free generators, the first two identities from E hold identically
in the variety ¥". Thus there exist (n + 2)-ary polynomials g,, f; &, such that the
last four identities from E hold in ¥”. But then [x, y]e T(c, d) T(a, b) T(c, d)

Q.E.D.
The condition (i7) in B cannot be omitted. There exists a variety which has not
trivial principal tolerances even though all free algebras of it have.

Example 3. The variety from example 1 has not trivial principal tolerances:
Put | A | = {a,b,c}, f = (a~ a, b+ ¢, c » b). Obviously [a, c] € T(a, b), but
[, c] ¢ T(a, b).
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Example 4. The variety of distributive lattices has trivial principal tolerances
(cf. [2]). We confirm that fact by proving the assertion (E).

Let f,, /., & 5, t, u, v be arbitrary lattice polynomials satisfying the conditions
required. Denote by A, h, the following (n + 2)-ary lattice polynomials:
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hl(y9 Z, x) = fl(s(x), t(x), x) Vfl(Z, y’ x) sz(y, z, x) VfZ(t(x), s(x), X),
hZ(y, z, x) = fl(s(x)’ t(x)’ x) Af!(za Y, x) AfZ(y’ z, x) AfZ(t(x)a S(x)a x)'
1t is clear that '
hy(s(x), t(x), x) < hy(t(x), s(x), x) < hy(1(x), s(x), x) < h,(s(x), t(x), x),
and if we denote
i, z, x) = (g(u(x), v(x), x) Ag(y, z, X)) V (g(z, y, x) A g(v(x), u(x), x),

then we obtain
hl(t(x)’ S(X), x) = j(u(x), U(X), x)
and

hZ(t(x)’ S(.‘:), x) = j(D(X), U(X), x)'

From the VA-representation of #; and h, and in view of the above we conclude
that there exist n-ary lattice polynomials a,, a,, b,, b, such that

hy(s(x), 1(x), x) = (a;(x) A (s(x) V H(x))) V b, (),
hy(1(x), s(x), x) = (ay(x) A (s(x) A L(x)) V by (x),
hy(t(x), 5(x), x) = (a5(x) A (s(x) V £(x))) V b, (),
hy(s(x), 1(x), x) = (a;(x) A (s(x) A 1(x)) V by(x),

be means of which we can construct the desired polynomials. First we define
auxiliary (» + 2)-ary lattice polynomials k,, k,, [ by

ky(y, 2, x) = j(y, z, ©) V ((a,(x) V a,(x)) A (s(x) V 1(x))),
ky(y, z, x) = j(3, z, x) A (a1 (%) V ax(x)) A (s(x) A t(x))) V by(x)),
Iy, z, x) = ((s(x) A y) V (z A t(x))) A (a;(x) V a5(x))) V by(x).
We have :

ey (u(x), 0(2), %) = hy(2(x), 5(x), )V ((a,(x) V @,(x)) A (s(x) V 2(x))) =
= ((a;(x) A (s(x) A £(x)) V by (R)V
V (@ (%) V a5(x) A (s(x) V #x) =
= (@) V a(®) A (D) V 1) V by(x) =
= (02(x) A (s(x) V H)) V (@2(3) A (5O V 1x) V by (x) =
= hy(s(x), (), ),
ey (o), 4(x), %) = ha(t(x), ), ) V (@, (%) V a,(®) A (5(3) V 1(x))) =
= ((ay(x) A (3(x) V t(x)) V by(x)) v
V(@ (x) V ay(x)) A (s(x) V 1(x))) =
= (@ (%) V a,(x)) A () V 1) V by(x) = I(s(x), 1(x), ),
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ko (u(x), v(x), x) = hy(1(%), 5(x), ) A
A (@1 (%) Y ax(x)) A (s(x) A £(x))) V by(x)) =
= (((a;(®) A (s(x) A1(x))) V by(x)) A
A (@0 V @x(®) A (5(6) A 1)) V by(x)) =
= ((a;(®) V a(x) A (s(x) A 1(x))) V by(x) =
= I(t(x), 5(x), x), _
ko (u(x), u(x), x) = hy(1(x), s(x), ) A (((a1(x) V ay(x)) A (s(x) A t(x))) V b,(x)) =
= ((ay(x) A (s(x) V 1(x))) V by(x)) A
A (((a1(%) V a3(x)) A (s(x) A t(x))) V by(x)) =
= (ay(¥) A (s(x) A t(x))) V by(x) =
= hy(s(x), t(x), x).

Now, the polynomials g, &2, f are as follows:

gl(y, z, X) = (fl(t(x)7 s(x), x) A kl(y7 2, x)) v (fz(S(X), t(x)s x) A kZ(Z’ Y, X)),
gz(y, Z, x) = (f](t(x): S(x)> x) A kZ(ya Z, x)) v (fz(s(x), t(x)a x) A‘kl(za y: x))’
fW, z, x) = (f10(x), 5(x), x) Al(y, 2, ) V (f5(s(x), 1(x), x) A(z, y, x)).

Indeed, this construction yields

g1(u(x), v(x), x) = (f,(t(x), 5(x), X) A hy(s(x), 1(x), x)) V
V (f2(s(x), 1(x), x) A hy(s5(x), t(x), x)) =
= fl(t(x)a S(x)’ x)a

&1(v(x), u(x), x) = (f,(#(x), 5(x), x) Al(s(x), £(x), x)) V
V (f2(s(x), 1(x), x) A l(1(x), 5(x), X)) =
= f(s(x), 1(x), x),
82(u(x), v(x), x) = (f1(t(x), 5(x), x) A l(t(x), 5(x), x)) V
V (f2(s(x), £(x), x) A l(s(x), £(x), X)) =
= f(1(x), 5(x), x),
82(0(x), u(x), x) = (f1(¢(x), 5(x), x) A hy(5(x), 1(x), X)) V
V (f2(s(x), 1(x), x) A hy(s(x), 1(x), x)) =
= f>(s(x), 1(x), x).

Noted by the referee. For motivation and some other results see [3], which
has appeared in the meantime.
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