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CONDITIONS FOR TRIVIAL PRINCIPAL 
TOLERANCES 

JOSEF NÍEDERLE, Brno 
(Received December 5,1980) 

Definitions. By a tolerance on an algebra 21 is meant a compatible reflexive and 
symmetric relation on 21, i.e. a subalgebra of 21 x 21 with a reflexive and symmetric 
relation on | 211 as its support. 

By a principal tolerance T(a, b) on an algebra 21 is meant the least tolerance 
on 21 containing [a, b~] e | 211 x | 211, 

An algebra 21 is said to have trivial principal tolerances ifevery principal tolerance 
on 21 is a congruence. 

A class of algebras i^ is said to have trivial principal tolerances if every algebra 
from i^ has trivial principal tolerances. 

Lemma 1. Let 21 be an algebra, a, b, x, y e | 211. There holds [x, y] e T(a, b) iff 
there exist a natural number n, an (n 4- 2) — ary polynomial f on 21 and elements 
ct, ..., c„ G | 2t | such that 

x =zf(a,b,ct, ...,cn) 

y =*f(b,a,cl9 ...,cn). 

Proof will be omitted, cf. [1]. 

Lemma 2. Let q> be a homomorphism of an algebra 21 onto an algebra S. Then 
T((pa, (pb) = (<p x cp) T(a, b). 

Proof. Let [x, y] e (<p x cp) T(a, b). Then there exist elements t>, w e | 211 such 
that [v, u>] e T(a, b) and x = <pv, y = <pw. By the lemma 1, there exist an (n 4- 2)-ary 
polynomial / and elements ct, ..., cn e | 211 such that v = f(a,b, ct, ...,cn), 
w = f(b, a, ct, ..., cn). Then 

x = <pv = <pf(a, b, ct, ..., c„) =f((pa, (pb, <pct, ..., ^ c j , 

j = (pW = (pf(b, a, ct, ..., c„) = f(<pb, (pa, (pct, ..., ^cn), 

so that it holds [x, y] e T((pa, (pb). We have obtained (q> x (p) T(a, b) £ r(<joa, ̂ oi). 
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Clearly [(pa, <pb] e((pxq>) T(a, b). Since (q> x ip) T(a, b) is reflexive, as (p is onto, 
and symmetric, and as a homomorphic image of a subalgebra of 21 x 21 a sub-
algebra of © x 93, so a tolerance on 23, it follows T(<pa, (pb) £ (<pxcp) T(a, b). 
Consequently T((pa, (pb) = (yxy) T(a, b). Q.E.D. 

Proposition. An algebra 21 satisfies (i) and (ii) iff it satisfies (Hi). 
(/) 21 has trivial principal tolerances 

(ii) every principal congruences S, T on 21 satisfy STS = TST 
(Hi) every principal tolerances S, T on 21 satisfy STS = TST 
Proof. Obviously (/) and (//) implies (///). Let (Hi) hold, let T be a principal 

tolerance on 21. Since A is a principal tolerance on 21, it follows T = ATA — 
= J J r = J r . Thus Tis a congruence. There holds (/). But (/) and (Hi) implies (i) 
immediately. Q.E.D. 

This proposition describes completely relations among the conditions (/), (/) 
and (iii). It will be illustrated in the following examples. 

Example 1. Let TT be the variety of all monounary algebras that satisfy identity 
ffx = x. Every O -̂firee algebra satisfies (/), but if it has at least two generators it 
does not satisfy (ii) and (iii): 

Obviously T(a, b) = {[a, b], [b, a], [fa,fb], [fbja]} u A. 
I. fa = b 
In this case T(a, b) = {[a, b], [b, a]} u A. It is a congruence. 
2.fa*b 
In this case fb ^ a, because fb = a would imply fa = ffb = b, and obviously 

fa # a,fb # b. So T(a, b) is a congruence. 
Let a, b be two distinct free generators of a ^-free algebra. We have [b,fb] e 

e T(a, b) T(a,fa) T(a, b), but [b,fb] $ T(a,fa) T(a, b) T(a,fa). 

Example 1. A simple algebra which is not tolerance simple satisfies (ii) but 
it does not satisfy (/) and (///). An example of such an algebra is the following 
modular lattice. 
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Theorem 1. Let i^ be a class of algebras and let F be a subclass of'V such that 
i^ = HF. The following conditions are equivalent: 

(A) i^ has trivial principal tolerances 
(B) every algebra 21 from F satisfies (i) and (ii) 
(C) every algebra 2t from IF satisfies (Hi) 
(D) every algebra 21 from i^ satisfies (Hi) 

Proof. A=>D: Let y have trivial principal tolerances. Let S = 0(a,b), 
T = 0(c, d) be arbitrary principal tolerances i.e. principal congruences on St. 
We have WT = HH#" = HF = y \ thus 2t| r is an algebra from iT. Denote by (p 
the quotient homomorphism of 21 onto 2t | r . By the lemma 2, T(<pa, <pb) = 
= (cpxcp) T(a, b). Let [x, y] e STS, so there exists elements v, w such that [x, v] e S, 
[v, w] e T arid [w, y] e S. Then cpv = cpw and it holds [cpx, q>v] e T(cpa, cpb), 
[cpv, cpy] e T(cpa, cpb). Since 2t | r is an algebra from V and so it has trivial principal 
tolerances, we have [cpx, cpy] e T(cpa, cpb). It means that there exist elements 

*i > yi e I ^ I s u c h t h a t [*> xilE T> [y> y i ] e 7"and ixi> y i ] G £ a n d s o [*> y ] e r 5 T -
We have obtained STS c TST for arbitrary principal tolerances S, T o n 2t. Thus 
SFS c. FSF c SFS holes for arbitrary principal tolerances on 91. 

D => C is obvious. 
C => B: follows from the Proposition. 
B=> A: Let every algebra 2t from F satisfy (i) and (//). Let -8 be an arbitrary 

algebra from y . Since f = HJ^, there exists an algebra 21 from F and a homo­
morphism (p of 21 onto 23. Let a, b, x, y, z e \ SB \ be such that [x, y] e T(a, b) and 
[y, z] e T(a, b). Choose gae<p~la and gb ecp~1b. Then, by the lemma 2, T(a, b) = 
= (<p x <p) r (£ a , ft). Thus there exist elements gx,gy,hy,hze\ 211 such that 
[#*, £y] e -Tfe., ft), [hy, K] e r ( f t , ft) and W x = x, cpgy = <phy = j , # 2 = z. 
By the assumption, F(ft, gb) is a congruence. So if gy = Ay, then [gx,hz]e 
e T(ga, gb) and consequently [x, z] e T(a, b). If gy •£ hy, denote S = T(gy, hy) and 
7" = T(ga,gb). We have [f t , A*] 6 TST By the assumption, there exist elements 
£ i , £ 2 e | 2 t | such that [ f c , ^ ] e S , [g i , g2] e T and [g 2 , AJ e 5. Since S £ 
~ Ker<r\ it holds (?ft = <pgx and ^g 2 = # 2 . Hence [x, z] = [<pgx,(phe] «* 

117 



- \SP8i> <P8i\ e((pxq>)T = T(a, b). We have obtained that T(a, b) is a con­
gruence. Q.E.D. 

Theorem 2. LefV be a variety of algebras. The following conditions are equivalent: 

(A) if has trivial principal tolerances, 
(B) every iT-free algebra 21 satisfies (i) and (ii), 
(C) every i^-free algebra 21 satisfies (Hi), 
(D) every algebra 21 from Y* satisfies (Hi), 
(E) for every natural number n, every (n + 2)-ary polynomials fx, g, f2 and 

every n-ary polynomials s, t, u, v such that 

fx(s(xx, ..., x„), t(xx, ..., xn), xx, ..., xn) = g(u(xx,..., xn), v(xx, ..., xn), xx, ..., xn), 
f2(t(xx, ...,xn),s(xx, ...,xn),xx, ...,xn) = g(v(xx, ...,xn),u(xx, ...,xn),xx, ...,xn), 

holds in i^ there exist (n + 2)-ary polynomials gx,f,g2 such that 

fx(t(xx, ...,xn),s(xx, ...,xn),xx, ...,xn) = gx(u(xx,...,xn),v(xx, ...,xn),xx, ...,xn), 

f (s(xl > • • • > xn)> t(Xx , ..., Xn), Xx, ..., Xn) = gX(v(Xx , . . . , Xn), ll(Xx , . . . , Xn), Xx, ... , Xn), 

f (t(xi > • • • 9 xn), s(xx, ..., xn), xx, ..., xn) = g2(u(xx, ..., xn), v(xx, ..., Xn), xx, ..., xn), 
f2(s(xx, ...,xn),t(xx, ...,xn),xx, ...,xn) ^g2(v(xx, ...,xn),u(xx, ...,xn),xx, ...,xn) 

holds in f\ 
Proof. Since every algebra from ^ is a homomorphic image of a f^-free 

algebra, we have A=>D=&C=*>B=>A by theorem 1. 
C=>E: Suppose C Let fx, g,f2, s, t, u, v be polynomials satisfying the first 

two identities. Then tfx(t(x),s(x), x),f2(s(x), t(x), x)] e T(s(x), t(x)) T(u(x), v(x)) 
T(s(x), t(x)), where x denotes xx, ..., xn. It is true also for the ^-free algebra 
over n free generators, so applying C and lemma 1 we obtain polynomials gx,f 
g2 in request. 

E=> C: Suppose E. Let 21 be a ^-free algebra, a, b, c, d, x, y e j 211, [x, y] e 
e T(a, b) T(c, d) T(a, b). By the lemma 1, there exist natural numbers mp,mq, mr 

and an mp-ary polynomial hp, an m^-ary polynomial hq, an mr-ary polynomial hr, 
elementsp^ ...,pmp,qx, . . . ,?* f , r1 , ...,rmr such that 

ftp(a,b,px, ...,pmp) = x; 
hp(b, a,px, ...,pmp) = hq(c, d, qx, ..., qmq), 
K(a, b,rx,..., rmr) = hq(d, c, qx, ..., qmJ, 
hr(b, a,rx, ...,rmr) = y. 

There exists a finite set of free generators of 21, denote it {xx, ..., xn}, such that 
a9b,c9d>pt9...9pmp,qx>...,qmqirx,...,rmr are elements of the subalgebra 93 
of 2C generated by {x%9 ..., xn}9 which is itself a ^-free algebra with the set of 
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free generators {xl9 ..., xn}. Thus there exist /a-ary polynomials s, t, w, t> such that 

a = f(xr, . . . ,xn) , 

b = s(xx, ...,x„), 

c = u(xi9 ...9x„)9 

d= v(xt, ...9xn) 

and (w 4- 2)-ary po lynomials / i ,£ , /2 such that 

hp(w9z9p^ ...9pmp) = / t ( w , z, Xj, . . . ,xB), 

Afl(*t\ z, qt, ...,qmq) = #(K>, z, xx , . . . ,xw), 

hr(w, z9rl9 ..., rmr) = /2(w, z, xA, ..., xn) 

holds for abitrary elements w9 z e | 93 |. Now we substitute a, 6, c, d for w9 z and 
then t(x)9 s(x)9 u(x), v(x) for a9 b9 c, d. We obtain the first two expresions from .IT and 

fx(t(x\ s(x)9 x) = x9 

fi(s(x)9 t(x)9 x) = y. 

Since xt, ..., xn are free generators, the first two identities from E hold identically 
in the variety ir. Thus there exist (n -f 2)-ary polynomials gt,/, #2 such that the 
last four identities from E hold in *V. But then [x, y] e T(c9 d) T(a9 b) T(c% d) 

Q.E.D. 
The condition (//) in B cannot be omitted. There exists a variety which has not 

trivial principal tolerances even though all free algebras of it have. 

Example 3. The variety from example 1 has not trivial principal tolerances: 
Put | 211 = {a, b9 c}, / = (a i-> a9 b H> C, C h> b). Obviously [a, c] <= T(a9 b)9 but 

[Z>, c] * F(a, b). 

Example 4. The variety of distributive lattices has trivial principal tolerances 
(cf. [2]). We confirm that fact by proving the assertion (£). 

Let /x , / 2 , g9 s919 u9 v be arbitrary lattice polynomials satisfying the conditions 
required. Denote by hi9 h2 the following (n 4- 2)-ary lattice polynomials: 
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hx(y, z, x) s f(s(x), t(x), x) Vf(z, y, x) Vf2(y, z, x) Vf2(t(x), s(x), x), 

h2(y, z, x) = f(s(x), t(x), x) Af(z, y, x) Af2(y, z, x) Af2(t(x), s(x), x). 

It is clear that 

h2(s(x), t(x), x) ^ h2(t(x), s(x), x) g h,(t(x), s(x), x) ^ h,(s(x), t(x), x), 

and if we denote 

j(y, z, x) = (g(u(x), v(x), x) A g(y, z, x)) V (g(z, y, x) A g(v(x), u(x), x), 

then we obtain 
ht(t(x), s(x), x) = j(«(x), v(x), x) 

and 
h2(t(x), s(x), x) = j(i>(x), u(x), x). 

From the VA-representation of ht and h2 and in view of the above we conclude 
that there exist «-ary lattice polynomials al,a2,bl, b2 such that 

A. (s(x), t(x), x) = (at (x) A (s(x) V t(x))) V bt (x), 

ht(t(x), s(x), x) = (at(x) A (s(x) A t(x))) V bt(x), 

h2(t(x),s(x),x) = (a2(x)A(s(x)vt(x)))vb2(x), 

h2(s(x), t(x), x) = (a2(x) A (s(x) A t(x))) V b2(x), 

be means of which we can construct the desired polynomials. First we define 
auxiliary (n + 2)-ary lattice polynomials kt, k2,1 by 

kt(y, z, x) = j(y, z, x) V ((at(x) V a2(x)) A (s(x) V t(x))), 

k2(y, z, x) = j(y, z, x) A ((((a,(x) V a2(x)) A (s(x) A t(x))) V b2(x)), 

l(y, z, x) = (((s(x) A y) V (z A t(x))) A (a,(x) V a2(x))y V b2(x). 

We have 

kt(u(x), v(x), x) = hMx), s(x), x) V ((at(x) V a2(x)) A (s(x) V t(x))) = 

= ((a,(x) A (s(x) A t(x))) V bt(x))V 

V ((ai(x) V a2(x)) A (s(x) V t(x)))y = 

= ((at(x) V a2(x)y A (s(x) V /(x))) V bt(x) = 

= (ai(x) A (s(xy v t(xyy) v (a2(x) A (S(X) V t(x)yy v bt(x) = 

= l*i(s(*), t(x), x), 

kMx)r«(x)> x) = h2(t(x), s(x), x) V «a t(x) V a2(x)) A (s(x) V t(x))) = 

= ((a2(x) A (i(x) V t(x))) V b2(x)) V 

v ((a,(x) v a2(xyy A (s(x) v t(xyyy = 

= ((Ql(Xy v a2(x)) A(S(X) v t(Xyyy v b2(Xy = i(s(xy, t(Xy, xy, 



k2(u(x), v(x), x) = A^K*), s(x), x) A 

A (((«i(*) V a2(x)) A (s(x) A t(x))) V b2(x)) = 

= ({{at (*) A (s(x) A t(x))) V />, (x)) A 

A (((<»i(x) V a2(*)) A (j(x) A /(x))) V *2(x)) = 

= ((a,(*) V a2(x)) A (s(x) A /(x))) V b2(x) = 

= /(/(*), ̂ (x), x), 

k2(v(x), u(x), x) = A2(/(x), s(x), x) A (((a.(x) V a2(x)) A (s(x) A t(x))) V A2(x)) = 

= ((a2(x) A (j(x) V /(x))) V b2(x)) A 

A (((«!(*) V a2(x)) A (J(X) A t(x))) V />2(x)) = 

= (a2(x) A (s(x) A /(x))) V b2(x) = 

= h2(s(x), /(*), *). 

Now, the polynomials gi,g2,/
are a s follows: 

^ ( j , z, x) = (/,(/(x), J(x), x) A kt(y, z, x)) V (f2(s(x), t(x), x) A k2{z, y, x)), 

S2(y, z, x) = (/i(/(*), *(x), *) A k2(y, z, x)) V (f2(s(x), t(x), x) Kky(z,y, x)), 

f(y, z, x) = (f,(t(x), s(x), x) A l(y, z, x)) V (f2{s(x), t(x), x) A l(z, y, x)). 

Indeed, this construction yields 

gl(u(x), v(x), x) = (/,(/(*), s(x), x) A ht(s(x), t(x), x)) V 

V (f2(s(x), t(x), x) A A20s(x), t(x), x)) = 

= /i(t(*),s(*), *), 

gl(v(x), u(x), x) = C/i(/(*), J(*), *) A l(s(x), t(x), x)) V 

V (f2(s(x), t(x), x) A /(/(x), s(x), x)) = 

= /( j (x) , / (x) ,x) , 

£2(K(X), v(x), *) = (fMx), s(x), x) A l(t(x), s(x), x)) V 

V (f2(s(x), t(x), x) A l(s(x), t{x), x)) = 

= / ( / ( X ) , J ( X ) , X ) , 

g2(v(x), u(x), x) = ( / J ( / (X) , S{X), X) A A2(J(X), /(x), x)) V 

V (f2(s(x), t(x), x) A hMx), t(x), x)) = 

= / 2 ( J ( X ) , / ( X ) , X ) . 

N o t e d by the referee. For motivation and some other results see [3], which 
has appeared in the meantime. 

151 



REFERENCES 

[1] Niederle, J.: Relative bicomplements and tolerance extension property in distributive lattices. 
Časopis p st. matem. 103 (1978), 250—-254. 

[2] Chajda, L, Zelinka, B.: Minimal compatible tolerances on lattices. Czech. Math. J. 27 (1977), 
452—459. 

[3] Chajda, L: Recent results and trends in tolerances on algebras and varieties. In: Colloquia 
Mathematica Societatis János Bolyai 28, North-Holland, Amsterdam 1981. 

J. Niederle 
Vinicni 60, 615 00 Brno 15 
Czechoslovakia 

152 


		webmaster@dml.cz
	2012-05-09T18:34:02+0200
	CZ
	DML-CZ attests to the accuracy and integrity of this document




